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ABSTRACT

Plate-fin heat exchangers (PFHEs) are extensively implemented in practical 

applications due to their superior compactness and comparatively good heat transfer rate. 

Nevertheless, the desired high performance and relatively low weight is connected to high 

pressure drops that consequently result in additional costs. Hence, the design task of 

PFHEs for industrial applications is an intricate process. To overcome the existing 

difficulties, this research presents a novel evolutionary-based approach for design 

optimization of PFHEs based on variable operating conditions instead of the conventional 

constant heat duty over the working period of the heat exchangers. To find the best suited 

evolutionary algorithm (EA) for the problem at hand, various widely used EAs are 

modified and tested on several practical problems. Moreover, since the heat exchanger 

design optimization is a highly constrained problem and the EAs are not equipped with 

constraint handling capabilities, conventional external strategies such as penalty function 

methods have been employed for this problem. The fine-tuning of the penalty parameters 

have been a drawback of using these methods, therefore a novel feasibility-based ranking 

strategy is proposed and utilized in the existing EAs. Using the proposed constrained EAs, 

the design of the PFHEs is presented based on entropy generation minimization (EGM) and 

economic considerations. Cross-flow PFHEs with offset strip fins on both sides are 

considered while method and the correlations available in the literature are

employed for rating the heat exchangers. Illustrative case studies from literature are 

considered to show the efficiency and the accuracy of the proposed methods. The results of 

numerical tests show that the proposed approach finds the optimal design of PFHEs with 

superior accuracy and success rate in comparison with the available solutions in the 

literature.
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ABSTRAK

Alat penukar haba plat bersirip (PFHEs) digunakan secara meluas di dalam 

industri kerana ianya padat dan kecekapan pemindahan habanya adalah tinggi. Walau 

bagaimanapun, kecekapan tinggi dan ringan itu menyebabkan kejatuhan tekanan yang 

besar dan harganya meningkat. Oleh itu, proses rekabentuk industri PFHE ini adalah 

mencabar. Untuk mengatasinya, penyelidikan ini memaparkan suatu kaedah yang baru 

berasaskan pendekatan evolusi dalam pengoptimuman rekabentuk PFHE. Strategi 

rekabentuk baru ini mengesyorkan satu keadah berasaskan keadaan kerja yang 

berubah -  ubah dan bukan hanya pada pembebanan terma malar yang lazim dilakukan 

dalam rekabentuk alat penukar haba. Untuk mencari algoritma evolusi (EA) yang 

terbaik, beberapa EA yang digunakan dengan meluas telah diubahsuai dan diuji 

terhadap beberapa masalah praktikal. Di samping itu, disebabkan pengoptimuman 

rekabentuk alat penukar haba biasanya merupakan masalah pengoptimuman 

terkekang ketat dan EA tidak mampu mengendalikan hal tersebut, maka strategi luaran 

yang lazim seperti kaedah fungsi denda digunakan pada masalah ini. Permurnian 

parameter penalti ini pula menpunyai kelemahan tersendiri. Oleh itu, strategi 

berasaskan pemangkatan kebolehan yang baru dipadankan dengan EA yang sedia ada. 

Dengan menggunakan EA terkekang ini, rekabentuk PFHE diajukan berasaskan proses 

peminimuman entropi terjana (EGM) dan juga pertimbangan ekonomi. PFHE aliran 

lintang dengan sirip terofset pada kedua sisi plat diambilkira. PFHE aliran lintang 

dengan sirip terofset pada kedua sisi plat diambilkira. Dalam pada itu kaedah s -  NTU 

serta persamaan sekaitan yang terdapat di dalam literatur digunapakai untuk menaksir 

prestasi alat penukar haba. Beberapa kajian kes dari literatur telah dipertimbangkan 

bagi menunjukkan kecekapan dan kemampuan kaedah yang disyorkan ini. Hasil ujian 

berangka menunjukkan pendekatan kaedah baru ini menyediakan rekabentuk 

optimumal PFHE dengan kejituan dan kadar kejayaan yang tinggi berbanding dengan 

penyelesaian sedia ada yang terdapat di dalam literatur.
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CHAPTER 1

INTRODUCTION

1.1 Overview

In this chapter, an introduction to the problem at hand is presented that 

includes an overview of the plate-fin heat exchangers (PFHEs) and their importance 

along with the background of the problem, problem statement, research objectives, 

significance of the study, scope of the study and thesis organization.

Generally, heat exchangers are defined as devices that facilitate the heat 

transfer between two streams of flows. Heat exchangers are an essential element in 

many areas such as air conditioning, waste heat recovery, power generation etc. 

Among various types of heat exchangers, compact heat exchangers (CHEs) 

distinguish themselves by their high “area density”, the ratio of heat transfer area to 

the heat exchanger volume, that results in lower weight and volume.

These characteristics along with their high-heat transfer performance make 

CHEs more preferable in many industrial applications because of the savings in the 

material and the required space for a specific heat duty. The latter is especially 

important in applications, such as concentrated solar power systems (Li et al., 2011), 

where the space restrictions are vital and CHEs are one of the possible solutions for 

these types of applications. A specific definition of CHEs was presented by (Shah 

and Sekulic, 2007).
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2 3 2 3An area density of over 700 m /m and 400 m /m was introduced as the 

criterion for the applications that make use of at least one stream of gas and others 

respectively. As a typical heat exchanger, the area density of shell-and-tube heat
2 3exchangers is less than 100 m /m for fluid sides with plain tubes and approximately

2-3 times higher with high-fin-density low-finned tubing.

Some types of CHEs have been widely employed in industrial applications 

for many decades while some other types are relatively new in the market and there 

are still new patents that are being tested in the laboratories. However, Commercial 

CHEs are typically fin-and-tube or plate-fin designs. Between these two types, a 

design based on the latter called plate fin heat exchanger (PFHE) is widely used in 

gas-gas applications such as automobile, chemical and petrochemical processes, 

cryogenics and aerospace.

A PFHE consists of several corrugated sheets that are separated by partying 

layers and are enclosed by side bars to form a finned chamber (Shah and Sekulic, 

2007, Kays and London, 1984). The whole system, i.e. the fins and partying layers 

are brazed in a vacuum furnace to ensure that a single rigid core is formed. A 

drawing of a typical brazed Aluminum PFHE is presented in Figure 1.1. Since the 

arrangement of fins can be easily changed, a PFHE has the ability to work in cross

flow, counter-flow, cross-counter flow and co-current flow layouts. A simple cross

flow arrangement is usually employed in low or moderate heat transfer duties. A 

PFHE is adaptable to any combination of gas, liquid, and two-phase fluids (air-to-air, 

air-to-liquid and liquid-to-air). Different types of fins, including wavy, offset-strip, 

louver, perforated and pin fins (Kays and London, 1984) can be implemented on a 

PFHE for enhancing the heat transfer. Despite their superiority in term of achieving a 

high thermal performance, plate-fin heat exchangers show large pressure drops 

consequently which leads to higher operational costs. As a result, for practical 

applications and based on the required constraints, PFHEs have to be designed to 

present a trade-off between their high thermal performance and the induced 

additional costs resulted from the increase in pressure drops.
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Figure 1.1: Typical multi-stream plate-fin heat exchanger

1.2 Background of the problem

For achieving a practical design of PFHEs, commonly, a trial-and-error 

process is performed for finding the geometrical parameters in a way that all 

necessary requirements are attained. These requirements are generally a specific heat 

transfer rate or predefined exit temperatures. Additionally, this process usually 

involves taking into account specific constraints such as maximum allowable 

pressure drops, size and weight limits. Moreover, specific optimization objectives 

should be considered by the designer prior to the design process. As an example, 

considering the cost considerations, a lower capital cost can be generally achieved by 

smaller heat transfer area. This in turn can be attained by adopting higher heat 

transfer coefficients that correspond to higher flow velocities. However, shifting the 

design toward higher flow velocities would ultimately result in higher pressure drops 

and therefore the operational costs of the heat exchanger would increase (Jia and 

Sunden, 2003; Muralikrishna and Shenoy, 2000; Nasr and Polley, 2000; Shah and
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Sekulic, 2003; Wang and Sunden, 2001). The variation of total, area and power 

costs with flow velocity is demonstrated in Figure 1.2. The initial cost (capital cost) 

is mainly associated with the heat transfer area while operation cost is essentially the 

required power cost for overcoming the pressure drops.

A \
\  Total cost

Velocity’

Figure 1.2: Optimization of a heat exchanger from economic point of view.

Moreover, the growing need for more efficient thermal systems and conserving 

energy resources has led to a completely new point of view in thermodynamic 

analysis and optimization of systems. The new methodology that simultaneously 

makes use of both first and second laws of thermodynamics is called exergy analysis 

and its optimization term is known as entropy generation minimization (EGM). 

Exergy of a system accounts for the maximum work it can produce theoretically. In 

contrast to energy that is never destroyed during a process, exergy is always 

destroyed when a process involves irreversibility as a result of temperature 

difference, friction and etc. The amount of destroyed exergy is proportionate to the 

amount of entropy generation. The EGM method, as illustrated in Figure 1.3 occurs 

in the interface of heat transfer, engineering thermodynamics and fluid mechanics.
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Figure 1.3: The interdisciplinary field covered by the method of entropy generation 
minimization.

The EGM method was first introduced by Bejan (Bejan, 1977) where the 

design of a gas-to-air heat exchanger for minimum irreversibility was presented. 

Considering a constant number of entropy generation units, this study also presented 

the design of a regenerative heat exchanger for minimum heat transfer area.

Considering the various objectives, ahead of the design procedure, the 

optimization objectives should be considered carefully by the designer. Due to the 

complexity of the PFHEs design process, it has remained an active field of research, 

and various studies have proposed different strategies ranging from traditional 

mathematical formulations (Reneaume and Niclout, 2003, Reneaume et al., 2000, 

Reneaume and Niclout, 2001) to artificial neural networks (Jia and Sunden, 2003) 

and evolutionary methods (Ahmadi et al., 2011, Sanaye and Hajabdollahi, 2010, Rao 

and Patel, 2010, Peng et al., 2010, Mishra et al., 2009, Mishra and Das, 2009, Xie et 

al., 2008, Peng and Ling, 2008, Guo et al., 2008, Xie and Wang, 2006).

Evolutionary algorithms (EAs) seek an optimum solution for an optimization 

problem by approaches inspired by evolution process (Zang et al., 2010). These 

approaches are generally appropriate for different types of problems since they are
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not required to make any assumption about the problem at hand. A great 

advantageous of EAs is that no information of derivatives is required. The 

performance of EAs is not dependant on the initial values of decision variables that 

could be essential in traditional optimization approaches. As a result of these 

characteristics, EAs have been effectively employed in diverse domains including 

operations research, scheduling, marketing, chemistry, robotics, art, social science, 

physics, and biology. Moreover, EAs have been demonstrating their effectiveness 

and strength in design and optimization of thermal systems that include handling 

several decision variables and constraints at the same time. A comprehensive review 

of the application of these methods in thermal systems design can be found in 

(Gosselin et al., 2009).

1.3 Problem statement

Compact heat exchangers have a significant role in different aspects of 

industry due to their high performance and relatively small weight and size. Among 

different types of compact heat exchangers, plate-fin heat exchangers (PFHE) are 

the most popular one. However, the design of these heat devices has been always a 

challenging task since a large number of variables and constraints should be 

considered at the same time. In the practical applications, a heat exchanger is 

usually needed to be designed for a specified heat duty and working conditions. In 

this case, the main decision variables are the geometrical characteristics of a PFHE. 

These design variables should be chosen in a way that the desired heat duty is 

achieved while the specific constraints, such as size or pressure drops limitations are 

satisfied. Moreover, the growing prices of energy and material have strengthened 

the need for optimum designs based on cost minimization. A design, not only 

should satisfy all the requirements and constraints, but also should provide a near

optimum solution. In addition, any heat device could be also considered an 

individual in the whole thermal system; therefore, second-law based optimization 

could also be important. The complicated task of PFHE design could be faced by
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employing evolutionary-based approaches. Many evolutionary algorithms have been 

presented in recent years and shown great performance in various engineering 

applications (Mahdavi et al., 2007, Atashpaz-Gargari and Lucas, 2007, Kennedy 

and Eberhart, 1995, Geem et al., 2001b, Rezaei et al., 2012, Nicknam and Hosseini, 

2012, Shariatkhah et al., 2012, Sirjani et al., 2012); however, there has not been 

much effort in modifying and employing them for this task. The EAs are problem 

dependant and there is not a single algorithm that could be introduced to outperform 

all the others in all engineering applications.

Moreover, the EAs are naturally introduced for unconstrained applications 

and in order to make them compatible with the highly constrained PFHE design, 

external approaches should be implemented. Static penalty functions have been 

extensively utilized for many engineering application including thermal system’s 

design optimizations (Pacheco-Vega et al., 1998, Tayal et al., 1999, Pacheco-Vega 

et al., 2003). However, this method induces additional parameters that should be 

carefully tuned for achieving reasonable performances. The fine-tuning of the 

penalty parameters has been a drawback of using these methods, therefore, a more 

efficient and user-friendly constraint handling strategy is needed to be present and 

employed for evolutionary design approach of PFHEs.

Additionally, the available works in the literature have neglected the fact that 

in many engineering application the thermal device is not working for a constant 

heat duty and the working conditions can vary in time. The study aims to present a 

framework for these problems by considering multi-stage designs.

1.4 Research Goal

The main research goal of this study is to present a novel evolutionary-based 

approach for design optimization of PFHEs. The new design strategy is based on 

variable operating conditions instead of the conventional constant heat duty over the
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working period of the heat exchangers and a novel feasibility-based ranking 

constraint handling strategy. Moreover, the study aims at investigating the 

performance of the newly introduced EAs on the PFHE design problem and to find 

the best suited one.

1.5 Research objectives

Overall, the followings are the main objectives of this study. Hence, the 

followings are the research questions that will be addressed in this study.

1) How the design of PFHEs is affected by variable operating conditions 

instead of the conventional constant ones?

2) How the difficulties of fine-tuning of penalty parameters can be solved?

3) How the best suited evolutionary algorithm for solving PFHE design 

optimization could be determined?

To achieve the aim and for answering the above questions, the following 

research objectives are formulated.

1) To develop a novel multi-stage design strategy for compact heat 

exchangers that could be employed in other types of heat exchangers as well.

2) To establish various design points for PFHEs including second-law based, 

economic-based, etc.

3) To develop and apply a parameter-free constraint handling strategy for 

eliminating the difficulties of the existing penalty function methods.

4) To improve the performance of the existing evolutionary algorithms and 

present their application in thermal systems, which is scarce.
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1.6 Significance of the study

Unlike the previous studies on PFHE design, this research presents the design 

optimizations based on variable operating conditions, which are more consistent with 

the real-world application of PFHEs. The presented ranking-based constraint 

handling approach is more efficient and user-friendly when compared to the 

conventional penalty function methods. Moreover, since the application of the newly 

introduced evolutionary algorithms is scarce in the thermal engineering problems, 

this study also provides a better understanding of these algorithms.

1.7 Scope of the study

The main aim of this study is to present a robust evolutionary-based design 

approach for cross-flow plate-fin heat exchangers for achieving optimum 

configurations considering various objective functions. These objective functions 

include achieving minimum total annual cost and minimum number of entropy 

generation units. The cost calculation is made based on the available works in the 

literature. The electricity cost is assumed to be constant throughout the working 

period of the heat exchangers though an inflation rate is employed. The entropy 

generation is calculated based on methodology of Bejan (2002) The thermal 

modeling is based on the available correlations in the literature and this study is not 

to explore the empirical aspects of heat exchanger design. In the thermal analysis, the 

PFHE is modeled under steady-state condition. Moreover, the variations of thermal 

characteristics of working fluids with temperature are not considered. The fouling is 

not considered in thermal modeling because it has a negligible effect in gas-gas 

applications.
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1.8 Thesis organization

The thesis is organized as follows. In the first chapter an introduction to the 

existing problems in plate-fin heat exchanger design optimization are described and 

the goals and objectives of the study are presented accordingly. To understand the 

background of the problem, a comprehensive exploration on the existing literature is 

provided in Chapter 2. A comprehensive background of the existing approaches for 

PFHE design optimization is presented along with a literature review on the 

evolutionary algorithms. The most dominant evolutionary algorithms along with 

their advantageous and disadvantageous are presented in this chapter. Chapter 2 is 

continued with a comprehensive literature on the constraint handling strategies that 

have been used for solving constrained optimization problems when they are solved 

with evolutionary algorithms. Based on existing gaps in the literature and to fulfill 

the objectives of the study the research methodology of this study is presented in 

detail in Chapter 3. The thermal modeling of the heat exchanger, which is essential 

for starting the optimization process through evolutionary computation, is presented 

at first. Afterwards the objectives of the optimization problems are described. The 

total annual cost and number of entropy generation units are the main objectives of 

the optimization. The evolutionary-based design framework including decision 

variables and problem representation is presented subsequently. Next, the proposed 

constraint handling strategy is described. The proposed strategy solves the existing 

drawback of the available methods through eliminating the parameter-settings and 

providing feasible solutions at any condition. The numerical results and the 

corresponding discussions are presented in Chapter 4. Firstly, the numerical results 

on several practical case studies form the literature are presented using the 

methodology presented in Chapter 3, and then based on the attained results and the 

literature; discussions are made in Section 4.4. The numerical results cover both 

single- and multi-stage optimization problems (Sections 4.2 and 4.3). Finally, the 

conclusions and recommendations for the future works are drawn in Chapter 5.


