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ABSTRACT 

The effort to reconstruct and simulate flow-particle behavior in realistic patient-

specific airway system requires multi-software skills. Conventionally, pre-processing, 

simulation and optimization and post-processing stages are carried out explicitly via a 

combination of commercial, open source and/or in-house engineering software. The 

tedious procedure had left more significant medical analysis such as flow pattern 

classification, patient group-based flow analysis and statistical flow studies at bay. In 

this work, the focus is on the development of a dedicated software that is capable of 

performing all the three stages for any patient-specific data set. A novel approach of 

combining the efficient Immersed Boundary method and Finite Difference Splitting 

solver within a matrix-based open source programming platform has radically simplified 

the procedure especially in the pre-processing stage. The air and particle interactions are 

based on Eulerian-Lagrangian technique with comprehensive validations for each stage 

of the solvers integration. A non-dimensional convergence error of less than 1 x 10-6 was 

consistently set for all the validations. An air flow rate of 30 litre / minute was used 

throughout the analyses representing the normal inhalation condition while a number of 

10,000 and 5,000 micro particles were modeled for simplified and image-based airways 

respectively. The assessment analysis showed that 42.35% of the particles inhaled by 

female subject managed to reach the end of trachea while male subject with epiglottis 

blockage recorded only 0.43%.  None of the inhaled particles managed to pass through 

the trachea of the oversized male subject. This work suggests that such pattern analyses 

are crucial to facilitate medical practitioners in their patient-specific diagnosis and 

decision making process of airway flow related diseases.  
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ABSTRAK 

Kaedah lazim untuk membentuk semula dan melakukan simulasi realistik tingkah 

laku aliran zarah dalam sistem saluran pernafasan pesakit tertentu memerlukan 

kemahiran penggunaan pelbagai perisian. Peringkat pra-pemprosesan, simulasi dan 

pengoptimuman serta pasca pemprosesan lazimnya dijalankan melalui gabungan perisian 

kejuruteraan komersil, sumber terbuka dan/atau persendirian. Prosedur yang rumit ini 

menyebabkan analisis perubatan yang lebih penting seperti pengkelasan corak aliran, 

analisis aliran berasaskan kumpulan pesakit dan kajian statistik aliran terabai. Tumpuan 

kajian ini adalah kepada pembangunan perisian khusus yang mampu menyelesaikan 

kesemua tiga peringkat untuk sebarang set data pesakit tertentu. Satu pendekatan baru 

menggabungkan kaedah Immersed Boundary dan penyelesai Finite Difference Splitting 

dalam platform pengaturcaraan sumber terbuka berasaskan matriks telah 

mempermudahkan prosedur simulasi secara radikal. Interaksi udara dan zarah adalah 

berdasarkan keadah Eulerian-Lagrangian manakala semua proses pengesahan bagi 

setiap integrasi penyelesai dilakukan secara menyeluruh. Ralat ketepatan tanpa unit data 

ditetapkan kurang daripada 1 x 10-6 secara konsisten dalam semua pengesahan. Kadar 

aliran udara 30 liter/minit telah digunakan sepanjang analisis bagi mewakili keadaan 

penyedutan biasa manakala 10,000 dan 5,000 zarah mikro masing-masing digunakan 

bagi model dipermudahkan dan model berasaskan imej perubatan saluran pernafasan. 

Analisis penilaian menunjukkan bahawa 42.35% daripada zarah dihidu oleh subjek 

wanita berjaya sampai ke penghujung trakea manakala subjek lelaki dengan sekatan 

injap nafas mencatatkan hanya 0.43%. Tiada sebarang zarah yang dihidu berjaya 

melepasi trakea subjek lelaki bersaiz besar. Kajian ini membuktikan bahawa analisis 

corak aliran adalah penting untuk memudahkan diagnosis dan proses membuat 

keputusan untuk pesakit tertentu oleh pengamal perubatan apabila berhadapan dengan 

penyakit berkaitan aliran saluran pernafasan.  
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

The involvement of engineering practices in medical technology has grown 

substantially over the years due to the advancement in computing power. However, 

the implementation of Computational Fluid Dynamics, CFD is still considered as a 

new premature tool for medical practitioners. As non-expert users of CFD tools, a 

fully integrated CFD software that capable of utilizing raw medical image data up to 

the visualization of air-particle distribution throughout human airway system is far 

beyond their reach. Being an establish simulation tool, this great fluid engineering 

tool happens to be too complicated for medical diagnosis purposes that often deal 

with specific patient conditions, complex flow boundaries and most importantly the 

time constrain for the diagnosis procedure. The complexity is even greater when it 

comes to air-particle distributions within the upper human respiratory system where 

large computational domain and time dependency are involved. With almost all 

commercial and non-commercial CFD pre-processing, flow solver and post-

processing softwares are intended for engineering applications, it is really a novel 

challenge to develop a full-blown CFD algorithm which is capable of accurately 

converting medical 3D image data into numerical flow domain, simulating the time-
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dependent air-particle flow distributions within the airway system and present the 

results in a way that medical practitioners could really appreciate. 

1.2 Background of the problem 

Non-invasive peroral procedure is one of the most common routes of drug 

administration especially when it comes to respiratory diseases such as Asthma and 

Chronic Obstructive Pulmonary Disease, COPD. Inhalers or puffers are extensively 

used to transmit aerosol or powdered drug particles through oral inhalation. With 

increasing numbers of inhaler types and aerosol particle sizes, there are no practically 

available in vivo or in vitro procedures to determine the effectiveness and most 

appropriate type of inhaler for each patient with unique airway size and shape. 

Questions on how much the inhaled drug particles actually reach the targeted 

sections and how the patient should inhale for better effectiveness are always 

ambiguous for medical practitioners. The common practice of prescribing suitable 

treatment is only based on the medical practitioners' experience with generalized 

solutions for most of the cases.  

Although there are few high-end diagnosis tools such 4D Magnetic Resonance 

Image and Ventilation-Perfusion Scan, time dependent in vivo analysis of air-particle 

flow distribution within human upper airway is still practically impossible with 

present technologies. While in vivo human airway flow pattern is way out of topic, 

few in vitro, experimental setups of human airway models were established with the 

aim of analyzing the actual flow pattern throughout the upper airway system. 

Although the efforts are noble and proven to be capable of simulating the actual flow 

phenomena, the experimental setups are excessively complicated and acquires 

handsome amount of time to generate multiple image-based reconstructed model 

analyses. 
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Moreover, Medical practitioners are now well aware of the physical differences 

of human airways between genders, age groups and medical conditions. Instead of 

running the experimental setup for each type of airway profile uniqueness, numbers 

of commercial software developers have expanded their effort to introduce CFD into 

biomechanics applications. The efforts however are more universal towards 

converting medical image data into three-dimensional model and utilizing common 

engineering tools. In most CFD commercial software, three-dimensional models are 

often required to be in tetrahedral mesh, triangular surfaces or other specific mesh 

generated formats. Unfortunately, mesh generation functionality is not offered in 

most image segmentation software. Such advantage is currently found in AMIRA 

(Mercury Systems, MA, USA), Simpleware (Simpleware Ltd., UK) and MIMICS 

(Materialise, NJ, USA) which are capable of converting medical image data into 

reconstructed model format that can be transported into other commercial software 

such as ADINA (ADINA R&D, Inc., USA), ABAQUS (Dassault Systèmes, FR.), 

ANSYS (ANSYS, Inc., USA), cfd++ (Metacomp Technologies, Inc., USA) 

COMSOL (COMCOL, Inc., USA) and LS-DYNA (LSTC, USA) for various 

engineering purposes.  

In academic field, quite a number of CFD researchers had offered their 

expertise in analyzing flow behaviors in human respiratory system via sets of 

commercial software. With majority of the works were done in all three different 

pre-processing, flow solver and post-processing phases, weeks or even months were 

needed to establish all the objectives for any single medical data image. Literature 

review shows that the reconstructed 3D model from a medical image data sets were 

established using commercial pre-processing software such as MIMICS, Simpleware 

and AMIRA. Fluid-particle flow analyses were then launched using few other 

commercial CFD software such as ADINA, ABAQUA, ANSYS and LS-DYNA 

before the employment of another commercial post-processing software such as 

AMIRA, MatLab or Tecplot to visualize and analyze the resulting data. Obviously, 

these previous works were expensive in terms financial, time and efforts.   
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One of the most recent researches on the same interest of simulating flow 

behavior on patient-specific intranasal cavity was the award winning research by 

Gengenbach at al., (2011) at Karlsruhe Institute of Technology, Germany. Being an 

outstanding and one of the most modern computational research centers, this effort 

however was still utilizing commercial pre-processing MIMIC software and 

ParaView open source visualization software as necessary complement of their own 

in-house flow solver. The schematic diagram of the simulation procedure constructed 

by the research team is compared head-to-head with the current integrated procedure 

in Figure 1.1. This figure clearly illustrates the novelty of the current effort relative 

to the conventional procedures that is still widely utilized at present. This current 

developed software is not only more economic being an entirely open source 

software but also higher in efficacy as it does not require any data conversion 

between processes.  

Apart from the use of commercial CFD software, algorithm development is 

also considered as another unpopular CFD procedure which is utilized for specific 

purposes including human airway flow analysis. The complexity of the works 

involved however had left only few CFD researchers courageously pulling their 

efforts to introduce dedicated CFD algorithm for human airway flow analysis. The 

tediousness of algorithm development had also limited the previous studies to 

concentrate only on the medical image-based meshing algorithms, air / air-particle 

flow analysis or the post-processing of collected flow data.  
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Figure 1.1 Multi-software usage in conventional patient-specific flow simulation 

versus fully integrated in-house software developed in this work. 
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The focal uniqueness of the present effort is that there is no exertion as far as 

the current work progresses has integrated the capability of reconstructing medical 

image into 3D model, introducing the air and particle throughout the air passage and 

time dependently visualizing the results for flow pattern analysis. Table 1.1 

illustrates the broad figure of current scenario for air-particle flow analysis in image-

based human upper airway system. The distribution shows that none of the existing 

commercial software is truly intended for specific application of image-based human 

airway flow analysis whereby all simulation phases are taken into account. With the 

aim of having algorithm architecture that suit well with all three simulation phases, 

the other challenges are to make sure that the algorithm is practical enough to be 

used in a daily basis by non-CFD experts and without consuming too much time for 

patient-specific model optimizations and results crunching. 

The main motivation of the current work is the advancement of computing 

capability which enables us to explore more efficient and accurate CFD solver 

integrations. There are great numbers of CFD methods and solvers introduced by 

researchers even before the evolution of computational power but the developments 

were stranded due to the computing constrains of that era. The conflict had left 

researchers resorted into the use of accuracy-compromised flow solvers and widely 

used until now. The current computing power however has allowed us to reevaluate 

and reshuffle the ideas of having an all-in-one application with better accuracy and 

efficiency. Air-particle solver for instance was considered as a highly computational-

consuming multi-phase flow solver.  

Although the idea of multiphase flow was introduced back in 1970's, the 

implementation is only feasible in the past few years since the multiphase 

computational consumptions are considerably enormous. At present, there are only 

few relatively expensive commercial CFD software that capable of simulating both 

fluid and particle distributions with respect to time and these software are not 

specifically intended for biomechanics applications. 
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Table 1.1: Functionality matrix of most common currently available commercial 

software for image-based air-particle flow analysis in human upper airway system 
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1.3 Statement of the problem 

The focal dilemma which has driven the exertion of this work is the need of 

having an all-in-one CFD algorithm for medical practitioners during the diagnosis of 

upper human respiratory diseases. As the question of how far the drug being 

delivered during non-invasive peroral procedure is still unanswered, the accuracy of 

any prescribed treatment is still uncertain. The ability to assess the air flow behavior 

during inhalation of any individual patient and the possibility to simulate the particle 

distribution of different types of inhalers are believed to be beneficial for the 

diagnosis of related respiratory diseases. Another notable issue in medical practice is 
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the effectiveness of surgeries involving the respiratory system. Nasal surgery for 

instance is mainly to improve airflow but the exclusion must be kept nominal to 

minimize the side effects such as nasal drainage, septal perforation, numbness of 

facial structures or even alteration of smell and taste senses. A clear-cut post-surgery 

flow simulation to optimize the surgical outcome is expected to come in handy. 

On the CFD side, the most common way to-date for biomechanics application 

is by the use of traditional commercial engineering CFD software which is tedious 

and impractical. As the diagnosis of respiratory diseases are way more critical and 

urgent than a malfunctioning vehicle, an efficient, specific single algorithm which is 

proficient of manipulating medical image data up to the air-particle analysis is 

simply a must. The option to alter the airway geometry is a bonus especially for post-

surgical simulations. 

In order to develop a full-blown algorithm, proper planning on how the three 

simulation phases should be integrated must be given priority. Since the accuracy of 

the simulation is a life-threatening issue, algorithm validation must be carried out in 

the best of interest. The algorithm consists of flow solver and particle solver which 

act as internal flow within an immersed boundary. Five phases of validations are 

underlined to make sure that the solver integrations are irrefutable. The first 

validation is on the fluid flow solver which is the most critical part of the simulation. 

The second is the validation of fluid flow solver within an immersed boundary. The 

third is the validation of particle trajectory deep in the fluid flow within an immersed 

boundary. The final validation is on the fluid-particle flow in immersed complex 

geometry equivalent to the actual medical image-based upper human airway model. 

Once the algorithm is fully validated, the final hurdle is to assure the feasibility 

of the developed algorithm. Actual medical image data need to be applied and a trial 

analysis is to be selected. With respect to the available sets of medical CT scan 

image data, courtesy of Department of Radiology, Hospital Universiti Sains 

Malaysia, Kubang Kerian, analyses of flow patterns and particle distributions in 
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upper airway passages of a male adult, a female adult and an obese patient are 

chosen. A good amount of image data set is not an option since all contributed data is 

not intentionally taken on patients with respiratory diseases. 

.    

1.4    Objectives 

    Based on the problem statements brought up in previous section, the objectives 

of this research are: 

i. To develop an algorithm which is capable of reconstructing upper airway passage 

from medical image data, introducing air and particle distributions throughout the 

passage and visualize the results as a supplementary tool for the diagnosis of 

respiratory diseases. 

ii. To optimize the developed algorithm as a single, efficient and easy-to-use tools 

for medical practitioners both for diagnosis and post-surgery simulation. 

iii. To fully validate the developed algorithm with fluid phase, immersed-fluid 

phase, immersed-fluid-particle phase and immersed-fluid-particle in complex 

boundary phase validations. 

iv. To demonstrate the flow patterns and particle distributions in different upper 

airway passage geometrical conditions of male,  female and oversized patients. 

1.5    Scopes of the study 

          Simulation of particle inhalation is a vast field of study. A thorough 

development of such algorithm requires a life-long effort from not only a single 

expert. This study is expected to be a wide  but elementary platform for further 
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development of more complete, multi-optional software that suit the needs of more 

CFD, biomechanics applications. The scope of this study is based on the time 

constrain and the current computing power accessible to the most of the intended 

target group. List of the scopes are as follows.  

i. The developed code is expected to produce 4 dimensional simulations with x, y 

and z directions plus the variations with time. The coordinate system chosen is 

arguably the most efficient, Cartesian coordinate system. The selection is also 

based on the fact that the structure of medical image data and finite difference 

flow solver are fully matched and require zero conversion algorithm that may 

lead to initial conversion errors.  

ii. Eulerian Incompressible finite difference Navier-Stokes fluid flow solver is 

selected for this work. The fluid flow solver is chosen correspond to the original 

structure medical image data to assure the efficiency of post-processing 

algorithm.  

iii. The particle solver is based on the Lagrangian solid sphere particle equation of 

motion. As the corresponding particles under considerations are relatively small 

while a single calculation is adequate to represent a cloud of imaginary particles, 

solid sphere particle equation of motion is expected to serve the requirements 

comparable to more complex particle solvers. 

iv. As the implicated particles are relatively small and almost conform to the fluid 

flow, one-way-coupling between fluid flow and particle flow is opted for. The 

particle flow in this manner is directly a function of collocated fluid flow but has 

negligible effect on the fluid behavior. 

v. The selection of programming platform is also based on the nature of all related 

materials. A matrix based programming platform is believed to be the most 

fitting with finite difference solver and orthogonal nature of most medical image 

data structure.  

vi. Code validations are expected to be comparable with benchmark experimental 

and numerical data which is carefully selected from reputable scientific articles 

and procedures. 

vii. Algorithm feasibility verification is based on the capability of the developed 

algorithm to exploit several patient-specific medical image data for flow pattern 

and particle distribution analysis. 
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1.6    Significance of the study 

          A successful development of a full-blown algorithm with the capabilities of 3-

dimensional reconstruction model based on medical image data, simulation of air-

particles distributions and visualization of the resulting time dependent flow patterns 

will definitely benefit not only medical practitioners in diagnosis of patients with 

respiratory diseases but also to biomechanics researchers in their related studies. The 

developed algorithm is expected to offer more than the traditional tedious CFD 

engineering procedures which normally only practical for analysis of any single 

medical image data set. The simplicity, feasibility and efficiency of the developed 

algorithm will open the possibilities of further analyses of flow patterns and particle 

distributions of various patient categories, derivations of related coefficients for 

multi-conditional flow distribution, predictions of surgical practices on flow patterns 

and many other air-particle distribution related analysis. 

1.7    Expected findings and summary 

The possible outcomes of the research project are:-

i. A fully developed algorithm with capabilities of medical image based 

reconstruction of upper airway passage model, introduction of air and particle 

distributions throughout the passage and visualization of results as a 

supplementary tool for research analysis anddiagnosis of respiratory diseases. 

ii. An optimized algorithm as all-in-one, efficient and easy-to-use tools for medical 

practitioners both for diagnosis and post-surgery simulation. 

iii. Comparable validation results for fluid phase, immersed-fluid phase, immersed-

fluid-particle phase and immersed-fluid-particle in complex boundary phase with 

benchmark results of two-dimensional lid-driven cavity flow, two-dimensional 

symmetric bifurcation flow, lid-driven cube cavity fluid flows, particle 
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trajectories in immersed lid-driven cube cavity fluid flows, internal flows through 

backward facing step channel and air-particle distributions through simplified 

model of human upper respiratory system respectively. 

iv. Variations and comparisons of flow patterns and particle distributions in upper 

airway passages of a male adult, a female adult and an obese patient. 

1.8 Organization of the thesis 

This thesis is organized with the aim of conveying the idea of an all-in-one 

algorithm for air-particle distribution throughout the image based human airway 

system. The first two chapters discuss the problem statements from the medical 

practitioners' point of view, the previous works done on the matters and the 

objectives of the current effort. The third chapter discusses on how the work is 

carried out while the fourth chapter resembles the results obtained throughout the 

research period. The final chapter concludes the outcomes of the research with a list 

of suggested further works.  

Chapter 1 initiates with the explanation of the current measure of CFD 

involvement in the study of air-particle flow in human airway system. The current 

work is then justified by comparing the issues raised by medical practitioners with 

what were offered by previous works. As the need of having a single algorithm that 

capable of simulating air-particle flow in multi-patient sets of medical image data is 

found to be the prime upshot of this work, the objectives, scopes of study, 

significance of study and expected outcomes of the study are thoroughly 

prearranged.  

Chapter 2 contains the justifications of scopes of study, selected numerical 

methods, validation criteria and simulation setups. These rationalizations are based 
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on literature reviews on related previous works. Major references are clarified in 

more details to give a clearer view on what is expected from the current effort.  

Chapter 3 describes the methodology of this research. The first section 

describes the code structure for the segmentation process. Once the process of 

converting the medical image data into the form most suitable for matrix 

manipulation, the second section will take place with the flow solver development is 

explained. The third section is meant for the particle solver formulation while the 

fourth section explains discretization issues. Section five describes the validation 

methods employed in this work while the sixth section discusses on the simulation 

setups for trial analysis. The final section is reserved for the post-processing 

methodology.       

Chapter 4 exemplifies the simulation results from the procedures explained in 

chapter 3. Discussions on all validation case studies are first constructed before the 

view on the trial case study takes place. The validation analyses consist of 

experimental and simulation results comparisons.         

Chapter 5 concludes the whole achievement of this novel masterpiece. The 

fulfillment of the outlined objectives are justified with results and analyses 

customized in chapter 4. Long list of suggestions for further studies implies that there 

are plenty of rooms for improvement for this work with focus on the solvers 

improvements and alternatives for existing features. 
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