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ABSTRACT 
 
 
 
 

A thermal barrier coating (TBC) system usually consists of a ceramic top coat 

(yittria stabilized zirconia or YSZ) and a metallic bond coat (MCrAlY) (M = Ni, Co 

or mixture of these two) on the nickel-based superalloy as a substrate. A thermally 

grown oxide (TGO) layer can be easily formed on the bond coat which plays an 

important role in the spallation of TBC due to its growth during oxidation. Hence, 

the principal purpose of this research is to provide a new coating to significantly 

lessen the TGO growth and to suppress the growth of detrimental mixed oxides 

(CSNs) on the Al2O3 (TGO) layer during oxidation. Therefore, air plasma sprayed 

normal and nano TBC systems including, Inconel 738/normal NiCrAlY/normal YSZ, 

Inconel 738/normal NiCrAlY/normal YSZ/normal Al2O3, Inconel 738/nano 

NiCrAlY/normal YSZ, Inconel 738/nano NiCrAlY/normal YSZ/nano Al2O3 (as a 

novel system), and Inconel 738/normal NiCrAlY/nano YSZ were prepared then 

evaluated by pre-oxidation at 1000°C for 48h, high temperature oxidation at 1000°C 

for 120h, cyclic oxidation (thermal shocks) at 1150°C and finally hot corrosion test 

at 1000°C. Microstructural characterization of coatings was also performed using 

SEM, FESEM, XRD and EDX. The results showed that both TGO growth and CSNs 

were considerably reduced with the use of nano NiCrAlY/YSZ/nano Al2O3 coating 

compared to the other coatings. It was found that pre-oxidation treatment and 

particularly TBC system microstructure can influence the evolution of TGO layer 

and TBCs durability during service at elevated temperatures. 
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ABSTRAK 
 
 
 
 

Sistem salutan halangan haba (TBC) biasanya mengandungi satu lapisan 

seramik sebagai lapisan atas (YSZ atau yittria distabilkan zirconia) dan satu lapisan 

logam sebagai lapisan pengikat (MCrAlY) (M = Ni, Co atau campuran kedua-

duanya) di atas substrat superaloi berasaskan nikel. Satu lapisan oksida tertumbuh 

haba (TGO) akan terbentuk dengan mudah di atas lapisan pengikat yang memainkan 

peranan yang penting dalam proses serpihan TBC yang disebabkan oleh 

pertumbuhan lapisan TGO semasa pengoksidaan. Jadi, tujuan utama penyelidikan ini 

adalah untuk membentuk satu salutan baru untuk mengurangkan kadar pertumbuhan 

lapisan TGO dan mengurangkan dengan berkesan pembentukan campuran oksida 

yang merosakkan (CSNs) di atas lapisan Al2O3 (TGO) semasa pengoksidaan. Oleh 

itu, beberapa sistem TBC iaitu normal dan nano disediakan melalui kaedah semburan 

plasma iaitu Inconel 738/normal NiCrAlY/normal YSZ, Inconel 738/normal 

NiCrAlY/normal YSZ/ normal Al2O3, Inconel 738/nano NiCrAlY/ normal YSZ, 

Inconel 738/nano NiCrAlY/normal YSZ/nano Al2O3 (sistem novel) dan Inconel 

738/normal NiCrAlY/nano YSZ yang kemudiannya dinilai melalui kaedah pra-

pengoksidaan pada suhu 1000oC selama 48 jam, pengoksidaan pada suhu tinggi pada 

suhu 1000oC selama 120 jam, pengoksidaan berkitar (kejutan suhu) pada suhu 

1150oC dan seterusnya ujian kakisan panas pada suhu 1000oC. Pencirian 

microstruktur terhadap salutan yang terbentuk telah dilakukan melalui beberapa 

kaedah SEM, FESEM, XRD dan EDX. Keputusan kajian ini mendapati kedua-dua 

pertumbuhan TGO dan CSN telah berkurangan dengan begitu ketara bagi salutan 

nano NiCrAlY/YSZ/nano Al2O3, berbanding dengan salutan-salutan lain. Didapati 

juga, mikrostruktur dari rawatan pra-pengoksidaan terutamanya sistem TBC yang 

digunakan boleh mempengaruhi evolusi pembentukkan lapisan TGO dan 

kebolehtahanan sistem salutan semasa digunakan pada suhu tinggi. 
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CHAPTER 1 
 
 
 
 

INTRODUCTION 
 
 
 
1.1 Research Background 
 
 

Gas turbines have been claimed to be one of the most important systems for 

generating energy at the present and the future. Most research activities on gas 

turbines have been carried out, in order to enhance the thermal efficiency and 

durability of gas turbines components. The efficiency and durability of turbine blades 

can be increased by using high strength materials and protective coatings at high 

temperature applications [1, 2]. 

 
 

Ni or Co based superalloys were developed during 1950-1970. The Ni-based 

superalloys are usually used in fabrication of turbine blades and hot sections of gas 

turbines. Depending on the type of turbine, the temperature of external gases from 

the combustor can range between 800-1200°C. Under these conditions, superalloy 

would be reacted by high temperature oxidation and corrosion at elevated 

temperatures [3].  

 
 
Additionally, Ni- based superalloys do not have adequate resistance at above 

ambient condition [4]. So, surface protection of gas turbine blades is very important 

using highly resistant ceramic coatings. The following coatings could improve high 

temperature oxidation and corrosion resistances of gas turbine blades at elevated 

temperatures: 
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(1) Diffusion coatings: the aluminum can diffuse into the substrate surface. 

These coatings are usually applied on substrate using Diffusion – Slurry, Powdery 

Sementasion and CVD methods.  

 
 

(2) Overlay coatings: the principal chemical composition of these coatings is: 

MCrAlY (M=Ni, Co or both of them) which is usually applied on the blades via 

plasma spray or EB-PVD methods. 

 
 

(3) Thermal barrier coating (TBC): these coatings have low thermal 

conductivity. They could significantly reduce the overall substrate (Ni- based 

superalloy) temperature [4-6].  

 
 
TBCs could significantly increase the efficiency and durability of hot sections 

of gas turbines because zirconia has lower thermal conductivity in comparison with 

other ceramics [4]. If this coating is applied on the substrate, then the temperature of 

internal gases inside the combustor of gas turbines will be increased. It means that, 

the substrate temperature would not be altered [5]. 

 
 

The first TBC was applied on the engine components of aircraft in 1960. This 

coating had several problems such as ZrO2 instability and poor bonding between the 

substrate and the ceramic thermal barrier coating [2]. These problems were then 

solved during 1970 – 1980 using (a) YSZ as a thermal barrier layer due to its low 

thermal conductivity, and (b) metallic bond coat MCrAlY (M = Ni, Co or mixture of 

these two) which was employed to improve the adhesion between the ceramic top-

coat and the substrate. MCrAlY layer is an oxidation-resistant material. 

 
 
 

Additionally, MCrAlY plays a major role in providing a rough and adherent 

surface for applying thermal barrier coatings and provides protection for the alloy 

(substrate) from further oxidation [7]. Other researches were carried out by some 

investigators during 1980-2007, which are: (a) FGM (Functionally Graded Materials) 

coatings: this coating increased the mechanical properties of coating [8, 9], (b) CeO2 

stabilizer that can be added to the ceramic thermal barrier layer, in order to improve 
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thermal shock resistance, and (c) remelting the ceramic layer using laser which 

reduced the oxygen infiltration into the TBCs [10]. 

 
 

Additionally, other researchers also investigated other aspects of TBCs during 

2002-2011 which are: (a) to replace zirconia (ZrO2) with other ceramic materials in 

order to obtain lowest thermal conductivity and highest stability [11, 12], (b) to 

reduce oxygen diffusion and fused salts infiltration into the YSZ layer using normal 

Al2O3 as a third layer over the YSZ coating [11-19], and (c) to reduce the TGO 

growth and internal oxidation of the bond coat using nano crystalline NiCrAlY layer 

as bond coat in a TBC system [20-23]. In this research, it is expected that oxidation 

and hot corrosion resistances of TBCs at elevated temperatures will be considerably 

increased. This involves the use of nanostructured NiCrAlY layer as bond coat (via 

formation of continuous Al2O3 layer) in a TBC system with nanostructured Al2O3 as 

a third layer (as an infiltration barrier on the YSZ coating). 

 
 
1.2 Problem Statement 

 
 

Listed are the current major problems associated with conventional TBCs: 

 
(a) TGO formation and growth in TBCs: an oxidized scale can be formed 

on the bond coat (BC) which is termed thermally grown oxide layer which is mainly 

related to the oxygen diffusion through the top coat towards the bond coat at elevated 

temperatures by micro-cracks and interconnected pinholes inside the top coat (TC) 

(via gas infiltration mechanism) [24]. It was found that the growth of the TGO layer 

plays an important role in the failure of TC during thermal exposure in air [25], 

(Figure 1.1). 

 
 

The increase in TGO thickness during the oxidation process is accompanied 

by the evolution of stress at the BC / YSZ interface. This stress would cause the 

delamination of the coating at the interface of the BC / YSZ. It was found that the 

stresses in TBC will increase with a growing TGO layer [26]. 
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Figure 1.1: Schematic illustration of a normal thermal barrier coating system in 

addition to thermally grown oxide (TGO) layer. The temperature gradient during 

engine operation can be also observed.  

 
 

(b) CSNs formation and growth on the Al2O3 oxide scale (as pure TGO): 

The mixed oxides formation on the Al2O3 oxide scale (as pure TGO) has been 

reported by the other investigators [25-27]. These complex oxides (CSNs) contain 

chromia (Cr,Al)2O3, spinel Ni(Cr,Al)2O4 (CS) and nickel oxide NiO [28-31] which 

may be formed via a solid state reaction along with this TGO (Al2O3) layer in plasma 

sprayed TBC systems [32, 33]. 

 
 

CSNs are also believed to be detrimental to TBC durability during service at 

higher temperatures [26]. In this regard, it was reported that the maximum radial 

stress of bi-layered TGO (Al2O3 /detrimental mixed oxides) is about five times and 

the difference of maximum axial stress is about 10 times larger than mono-layered 

TGO (Al2O3) [26]. The formation of harmful oxides would provoke micro-cracks 
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nucleation during thermal exposure in air, leading to premature TBC failure during 

extended thermal exposure in air [26, 29-31]. 

 
 
The majority of previous researches described the failure mechanisms of 

TBCs due to TGO growth especially internal oxidation of BC during high 

temperature oxidation [30, 34]. Therefore, the main purpose of this research is to 

obtain a new coating to reduce the growth of the TGO layer during pre-oxidation (as 

a thinner and continuous Al2O3 layer) and to suppress the formation and growth of 

detrimental mixed oxides on the Al2O3 (as pure TGO) layer during thermal shocks. 

 
 
(c) TC (TBC) deterioration during hot corrosion process: Low quality 

fuels usually contain impurities such as Na and V which lead to the formation of 

Na2SO4 and V2O5 corrosive salts on the coating of turbine blades [14]. These 

corrosive fused salts can penetrate into the entire thickness of YSZ through splat 

boundaries and other YSZ coating defects such as micro-cracks and open pores 

during hot corrosion process [34]. The penetrated salts can then react with yttria (the 

stabilizer component of YSZ). So, the depletion of the stabilizer and phase 

transformation of tetragonal zirconia to monoclinic zirconia and followed by YVO4 

crystals formation can occur in a very rapid and effective manner during cooling [14, 

34]. This phase transformation is accompanied by 3–5% rapid volume expansion, 

leading to cracking and spallation of TBC [35]. So, the reduction of hot corrosion 

products (by using nanostructured Al2O3 coating) in the YSZ layer can be expected 

as a major factor for increasing the lifetime of TBCs during hot corrosion process. 

 
 
1.3 Purpose of the Study 

 
 
 

In this research, it is anticipated that the aforementioned problems to be 

considerably decreased using a TBC system consisting of nanostructured NiCrAlY 

(manufactured using planetary ball mill) as bond coat (BC) and YSZ/ nano Al2O3 

(using granulated nano Al2O3 powders) coating as top coat (TC). In this regard, the 

nanostructured NiCrAlY layer would create a continuous and dense layer of Al2O3 

on the BC which is a strong barrier for the oxygen penetration into the NiCrAlY 
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layer [20]. Nanostructured Al2O3 top coat over the YSZ layer will significantly 

lessen the oxygen diffusion and corrosive molten salts infiltration into the YSZ layer 

at higher temperatures. This phenomenon may be originated from the compactness of 

the nanostructure that was observed in the nanostructured YSZ coating which was 

mainly composed of nano zones and fully molten parts [36]. 

 
 

It is worth mentioning that the Al2O3 crystal lattice on the YSZ layer would 

resist the oxygen diffusion into the YSZ layer [13, 15]. Previous studies also showed 

that the dense alumina layer over the YSZ coating can lessen the oxygen partial 

pressure at the BC/YSZ interface and can prevent further formation of deleterious 

oxides within the BC [16, 18]. 

 
 
In later studies [32, 37], it was found that a continuous Al2O3 layer could 

develop at the ceramic/bond coat interface in air plasma-sprayed normal TBC 

systems under a low oxygen pressure conditions (furnace with low oxygen pressure). 

This continues and thin Al2O3 (TGO) layer could diminish the growth of CSNs in the 

normal TBC system during subsequent thermal exposure in service [37]. In this 

research, a new TBC system is required to create a dense, continuous and thinner 

Al2O3 layer on the BC during pre-oxidation in air, in order to diminish the formation 

and growth of Ni (Cr,Al)2O4 (spinel) and NiO oxides on the alumina oxide scale 

during thermal cycles in air. In other words, it is expected that nano TBC systems 

after a pre-oxidation could considerably improve oxidation behavior of normal TBC 

systems at elevated temperatures. 
 
 
 
 
It was observed that the protective Al2O3 layer on the YSZ coating can 

remarkably reduce the molten salts infiltration into the YSZ layer and can 

substantially lessen the depletion of stabilizer (Yittria) from this layer during the hot 

corrosion process. So, the percentage of monoclinic ZrO2 and YVO4 crystals (as hot 

corrosion products) was reduced in YSZ/ normal Al2O3 coating compared to that of 

conventional YSZ coating [14, 38]. In this research, it is expected that the usage of 

nanostructured Al2O3 layer over the YSZ coating could significantly reduce the 

corrosive molten salts penetration within the YSZ layer and could lessen hot 
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corrosion products in the YSZ as inner layer of YSZ/nano Al2O3 coating during the 

hot corrosion process. 

 
 

Recently, NiCrAlY/nano YSZ coating showed better high temperature 

oxidation (according to the TGO thickness) and corrosion (according to hot corrosion 

products values) resistance compared to NiCrAlY/normal YSZ coating [36, 39]. This 

is because of the presence of nanostructured YSZ layer (with lower pinholes and 

micro-cracks) in the nano TBC system. But, the formation and growth of CSNs 

(NiO. Ni (Cr,Al)2O4 . (Cr, Al)2 O3) have not been studied yet in the NiCrAlY/nano 

YSZ coating during extended thermal exposure in air. Therefore, it can be speculated 

that the CSNs formation and growth in NiCrAlY/nano YSZ coating to be 

considerably suppressed in comparison with NiCrAlY/normal YSZ coating during 

cyclic oxidation (thermal shocks). 

 
 

1.4 Objectives of the Study 

 
 

The main objectives in the present research are as follows: 

 
 

1) To lessen the oxygen diffusion (getting TGO (Al2O3) layer with 

lowest thickness) and also molten corrosive salts infiltration (according to hot 

corrosion products values) into the YSZ layer by using nanostructured Al2O3 top coat 

over the YSZ layer during high temperature oxidation and corrosion. 

 
 

2) To further reduce oxidation effect (bi-layered TGO thickness) using 

nanostructured NiCrAlY as bond coat (BC) and YSZ/ nano Al2O3 coating as top coat 

(TC) in a TBC system, simultaneously during cyclic oxidation (thermal shocks). 

 
 

1.5      Scopes of Work 

 
 

  ● In order to prepare the nanostructured NiCrAlY powders, commercial 

Ni22Cr10Al1Y powders would be milled using planetary ball mill device for 36h 

[20, 21, 40 and 41]. 
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  ● The nanostructured NiCrAlY powders (as bond coat) will be then applied 

on the base metal by APS method. 

 
 
            ● In order to produce nano NiCrAlY/normal YSZ/nano Al2O3 coating (Figure 

1.2), normal YSZ layer will be sprayed on the nanostructured NiCrAlY layer and 

followed by granulated nano Al2O3 powders will be then deposited on the YSZ layer. 

 
 
 

 
 
 
 

    

 

 

 

 

 
 

Figure 1.2:  Schematic illustration of cross section of air plasma sprayed nano 

NiCrAlY/normal YSZ/nano Al2O3 coating on the Ni-based superalloy (as a novel 

TBC system) in this research. 

 
 

So, it is anticipated that the new coating (See Figure 1.2) to form a thinner 

and fully continuous Al2O3 layer at the BC/YSZ interface during pre-oxidation and 

to diminish the formation and growth of detrimental mixed oxides on the Al2O3 (as 

pure TGO) layer during cyclic oxidation (thermal shocks). In this research, it is also 

expected that the nanostructured Al2O3 layer over the YSZ coating could 

significantly reduce the corrosive molten salts penetration within the YSZ layer and 

could lessen hot corrosion products in the YSZ as inner layer of YSZ/nano Al2O3 

coating during hot corrosion process. On the other hand, the reduction of hot 

corrosion products (YVO4 crystals and monoclinic zirconia) in the YSZ layer is a 

major factor for increasing the lifetime of TBCs during hot corrosion process which 

was observed in the triple layered TBCs [38]. 

Inconel 738 

Nano NiCrAlY layer as bond coat (BC) 

Normal YSZ layer  

Nano Al2O3 as a third layer Nano layer composite 
of YSZ /nano Al2O3 

coating as TC  
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● Normal NiCrAlY layer (as bond coat), normal and nano YSZ layers (as top 

coats) will be eventually applied on the base metal (Inconel 738) using APS method. 

On the whole, five types of TBCs will be produced which consist of: (1) Inconel 

738/normal NiCrAlY/normal YSZ (normal TBCs), (2) Inconel 738/normal 

NiCrAlY/normal YSZ/normal Al2O3 (normal TBCs), (3) Inconel 738/nano 

NiCrAlY/normal YSZ (nano TBCs), (4) Inconel 738/nano NiCrAlY/normal 

YSZ/nano Al2O3 (as a novel nano TBCs ), and (5) Inconel 738/normal 

NiCrAlY/nano YSZ (nano TBCs). 

 
 
● The air plasma sprayed normal and nano TBC systems will be evaluated by 

pre-oxidation (at 1000°C for 48h), high temperature oxidation (at 1000°C for 120h), 

cyclic oxidation (or thermal shocks at 1150°C) and hot corrosion (at 1000°C) tests.  

 
 
● Microstructural characterization of the coatings before and after tests will 

be performed using SEM, EDS, FESEM, XRD, and X-ray mapping. 

 
 

1.6      Organization of Thesis 
 
 

This thesis consists of five chapters. Chapter 1 provides an introduction to the 

study. The background of the study, problem statement, objectives and scopes of the 

study and organization of thesis are presented in this chapter. In the Chapter 2, 

normal thermal barrier coating system and its problems in the service would be 

comprehensively introduced. In the meantime, recent research activities about 

improvement of TBCs at elevated temperatures are reviewed. Chapter 3 is concerned 

with the research methodology for this study. In this chapter, the experimental steps 

from providing feed stokes until microstructural characterization of samples are 

discussed in detail. There are 7 sub chapters in the Chapter 4. In this chapter, 1) 

microstructural characterization of the feed stokes and as-sprayed coatings, 2) 

improvement of thermally grown oxide layer in thermal barrier coating systems with 

nano alumina as a third layer during isothermal oxidation, 3) investigation of hot 

corrosion resistance of YSZ/ nano Al2O3 coating at 1000 ◦C, 4) role of formation of 

continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat 

during thermal exposure (pre-oxidation + cyclic oxidation) in air, 5) formation of a 
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thinner and continues Al2O3 layer in nano thermal barrier coating systems for the 

suppression of Spinel growth on the Al2O3 oxide scale during cyclic oxidation, 6) 

high temperature oxidation and corrosion behavior of thermal barrier coating systems 

with nanostructured YSZ as top coat, and 7) formation and effect of nearly continues 

but thinner thermally grown oxide scale in NiCrAlY/nanostructured YSZ coating 

during oxidation (pre-oxidation + cyclic oxidation) test would be comprehensively 

discussed. Chapter 5 summarizes all the results and discussion in this research and 

some recommendations for the future work are also made. 
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