EVALUATION OF NANOSTRUCTURED BOND COAT IN THERMAL BARRIER COATING SYSTEM WITH NANO ALUMINA LAYER DURING OXIDATION

MOHAMMADREZA DAROONPARVAR

A thesis submitted in fulfillment of the requirements for the award of the degree of Doctor of Philosophy (Mechanical Engineering)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > JUNE 2013

To my beloved parents and wife thanks for all your affectionate caring and supporting, and above all your sacrifices and prayers accorded to me until the successful completion of this project.

"My Success Is Yours Too"

ACKNOWLEDGEMENT

In preparing this thesis, I was in contact with many people, researchers, academicians, and practitioners. They have contributed towards my understanding and thoughts. In particular, I wish to express my sincere appreciation to my thesis supervisors, Dr. Muhamad Azizi Mat Yajid and Professor. Dr. Noordin Mohd Yusof for encouragement, guidance, critics and friendship. I am also very thankful to all members in department of materials, manufacturing and industrial engineering for their useful guidance related to materials engineering matters. I also extended my sincere gratitude to all the materials laboratory's technicians for helping me to carry out all the tests throughout my studies.

I am also indebted to Universiti Teknologi Malaysia (UTM) for funding my Ph.D. study. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed. Unfortunately, it is not possible to list all of them in this limited space. I am grateful to all my family members.

ABSTRACT

A thermal barrier coating (TBC) system usually consists of a ceramic top coat (yittria stabilized zirconia or YSZ) and a metallic bond coat (MCrAlY) (M = Ni, Co or mixture of these two) on the nickel-based superalloy as a substrate. A thermally grown oxide (TGO) layer can be easily formed on the bond coat which plays an important role in the spallation of TBC due to its growth during oxidation. Hence, the principal purpose of this research is to provide a new coating to significantly lessen the TGO growth and to suppress the growth of detrimental mixed oxides (CSNs) on the Al₂O₃ (TGO) layer during oxidation. Therefore, air plasma sprayed normal and nano TBC systems including, Inconel 738/normal NiCrAlY/normal YSZ, Inconel 738/normal NiCrAlY/normal YSZ/normal Al₂O₃, Inconel 738/nano NiCrAlY/normal YSZ, Inconel 738/nano NiCrAlY/normal YSZ/nano Al₂O₃ (as a novel system), and Inconel 738/normal NiCrAlY/nano YSZ were prepared then evaluated by pre-oxidation at 1000°C for 48h, high temperature oxidation at 1000°C for 120h, cyclic oxidation (thermal shocks) at 1150°C and finally hot corrosion test at 1000°C. Microstructural characterization of coatings was also performed using SEM, FESEM, XRD and EDX. The results showed that both TGO growth and CSNs were considerably reduced with the use of nano NiCrAlY/YSZ/nano Al₂O₃ coating compared to the other coatings. It was found that pre-oxidation treatment and particularly TBC system microstructure can influence the evolution of TGO layer and TBCs durability during service at elevated temperatures.

ABSTRAK

Sistem salutan halangan haba (TBC) biasanya mengandungi satu lapisan seramik sebagai lapisan atas (YSZ atau yittria distabilkan zirconia) dan satu lapisan logam sebagai lapisan pengikat (MCrAlY) (M = Ni, Co atau campuran keduaduanya) di atas substrat superaloi berasaskan nikel. Satu lapisan oksida tertumbuh haba (TGO) akan terbentuk dengan mudah di atas lapisan pengikat yang memainkan peranan yang penting dalam proses serpihan TBC yang disebabkan oleh pertumbuhan lapisan TGO semasa pengoksidaan. Jadi, tujuan utama penyelidikan ini adalah untuk membentuk satu salutan baru untuk mengurangkan kadar pertumbuhan lapisan TGO dan mengurangkan dengan berkesan pembentukan campuran oksida yang merosakkan (CSNs) di atas lapisan Al₂O₃ (TGO) semasa pengoksidaan. Oleh itu, beberapa sistem TBC iaitu normal dan nano disediakan melalui kaedah semburan plasma iaitu Inconel 738/normal NiCrAlY/normal YSZ, Inconel 738/normal NiCrAlY/normal YSZ/ normal Al₂O₃, Inconel 738/nano NiCrAlY/ normal YSZ, Inconel 738/nano NiCrAlY/normal YSZ/nano Al₂O₃ (sistem novel) dan Inconel 738/normal NiCrAlY/nano YSZ yang kemudiannya dinilai melalui kaedah prapengoksidaan pada suhu 1000°C selama 48 jam, pengoksidaan pada suhu tinggi pada suhu 1000°C selama 120 jam, pengoksidaan berkitar (kejutan suhu) pada suhu 1150°C dan seterusnya ujian kakisan panas pada suhu 1000°C. Pencirian microstruktur terhadap salutan yang terbentuk telah dilakukan melalui beberapa kaedah SEM, FESEM, XRD dan EDX. Keputusan kajian ini mendapati kedua-dua pertumbuhan TGO dan CSN telah berkurangan dengan begitu ketara bagi salutan nano NiCrAlY/YSZ/nano Al₂O₃, berbanding dengan salutan-salutan lain. Didapati juga, mikrostruktur dari rawatan pra-pengoksidaan terutamanya sistem TBC yang digunakan boleh mempengaruhi evolusi pembentukkan lapisan TGO dan kebolehtahanan sistem salutan semasa digunakan pada suhu tinggi.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATIONS	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	XV
	LIST OF FIGURES	xvi
	LIST OF ABBREVIATIONS	xxxii
	LIST OF APPENDICES	xxxiii
1	INTRODUCTION	1
	1.1 Research Background	1
	1.2 Problem Statement	3
	1.3 Purpose of the Study	5
	1.4 Objectives of the Study	7
	1.5 Scopes of Work	7
	1.6 Organization of Thesis	9
2	LITERATURE REVIEW	11
	2.1 Introduction of Thermal Barrier Coating Systems	11
	2.1.1 MCrAlY as Bond Coat in TBCs (Thermal	13
	Barrier Coating Systems)	
	2.1.2 YSZ as Top Coat in TBCs	14
	2.1.2.1 Phase Transformation of Pure	14

Zirconia at Elevated Temperatures

2.1.2.2	Alloying of Zirconia with the other	14
	Stable Oxides	

- 2.2 Oxidation as Principal Problem of TBCs at Elevated 16 Temperatures
 - 2.2.1 Detrimental Mixed Oxides Formation and 22Growth on the Al₂O₃ Oxide Scale During Oxidation
- 2.3 Methods Which Can Reduce Oxidation of TBC 27 Systems
 - 2.3.1 Micro-Structured Al₂O₃ as a Third Layer in 27 TBC systems
 - 2.3.2 Nanostructured NiCrAlY Layer as Bond Coat 29 in TBC Systems
 - 2.3.3 Nanostructured YSZ Layer as Top Coat in TBC 33 Systems
- 2.4 Hot Corrosion Phenomenon in Thermal Barrier 35 Coatings
- 2.5 Microstructural Investigation of Plasma Sprayed 43Coatings
- 2.6 The Oxidation kinetic of the Bond Coat in TBC 45 Systems
- 2.7 The Other Important Research Activities for 46 Modifying the Properties of TBCs at Elevated Temperatures
 - 2.7.1 Utilizing Ceramic Layer of ZrO₂ CeO₂- Y₂O₃ 46 as Top Coat
 - 2.7.2 FGM coatings 46
 - 2.7.3 Improvement of TBCs Properties using Laser 48 Treatment
 - 2.7.4 LPHS Method 49
- 2.8 Comparison of Alumina (Al₂O₃) and Zirconia (YSZ)
 49 Properties in TBCs

ME	THO	DOLOGY	52
3.1	Intro	duction	52
3.2	Chara	acteristics of Feed Stokes (Ni-Based Superalloy	54
	as Ba	ase Metal and as-Received Powders)	
	3.2.1	Ni-Based Superalloy (Inconel 738) as a Base	54
		Metal	
	3.2.2	As-Received Powders	54
		3.2.2.1 Normal NiCrAlY Powders (AMDRY	54
		962 POWDER)	
		3.2.2.2 Normal YSZ (8% Yittria Stabilized	55
		Zirconia) Powders as TBC	
		3.2.2.3 Nano Al ₂ O ₃ Powders	55
		3.2.2.4 Normal Al ₂ O ₃ Powders	55
		3.2.2.5 Granulated Nano YSZ Powders	56
3.3	The	Preparation of as-Received Powders for Air	56
	Plasn	na Spraying	
	3.3.1	Granulation of Nano Al ₂ O ₃ Powders	56
	3.3.2	The Preparation of Nano NiCrAlY Powders	57
		Using a Planetary Ball Mill Device	
	3.3.3	The Preparation of Substrates (Inconel 738)	59
		Surface for Air Plasma Spraying (APS)	
3.4	Depo	sition of Coatings on the Base Metal (Inconel	61
	738)	using Air Plasma Spraying Method	
	3.4.1	Air Plasma Spraying (APS) Method	61
3.5	Intro	duction of Air Plasma Sprayed Coatings	64
	3.5.1	Normal TBC System (Inconel 738/Normal	64
		NiCrAlY/Normal YSZ)	
	3.5.2	Nano TBC System (Inconel 738 / Nano	65
		NiCrAlY / Normal YSZ)	
	3.5.3	Triple layered Normal TBC System (Inconel	65
		738/Normal NiCrAlY/Normal YSZ/Normal	
		Al ₂ O ₃)	
	254		

3

3.5.4 Triple layered Nano TBC System (Inconel 66

738/Nano NiCrAlY/Normal YSZ/Nano Al $_2O_3$)

	3.5.5	Nano TBC System with Nanostructured YSZ	67
		(Inconel 738/Normal NiCrAlY/Nano YSZ)	
3.6	Inves	tigation of As-Sprayed Coatings	67
	3.6.1	Isothermal Pre -Oxidation Test at 1000°C and	67
		Cyclic Oxidation (Thermal Shocks) Test at	
		1150°C	
	3.6.2	High Temperature Oxidation Resistance of As-	68
		Sprayed TBCs at 1000°C	
	3.6.3	Hot Corrosion Resistance Test at 1000°C	68
3.7	Micr	ostructural Characterization using SEM and	70
	FESE	EM Equipped With EDS	
	3.7.1	Morphology Investigation of As-Received	70
		Powders and Microstructural Investigation of	
		As-Sprayed TBCs	
		3.7.1.1 Microstructural Characterization of	72
		As-Sprayed TBCs	
	3.7.2	Morphological Investigation of NiCrAlY	72
		Powders after Milling Process	
	3.7.3	Microstructural Investigation of TBC Systems	72
		after Oxidation Tests	
	3.7.4	Microstructural Characterization of TBCs after	73
		Hot Corrosion Test	
3.8	Phase	Analysis using XRD	73
	3.8.1	Phase Analysis of Outer Surface of As-Sprayed	73
		TBCs, As-Received, Granulated and Milled	
		Powders using XRD	
	3.8.2	Phase Analysis after Isothermal and Cyclic	75
		Oxidation Tests	
	3.8.3	Phase Analysis after Hot Corrosion Test	75
RE	SULT	S AND DISCUSSION	76

4.1 The Characterization of Prepared Powders and As-

4

4.1.1 Introduction	76
4.1.2 Microstructural Characterization of NiCrAlY	77
Powders before and after Milling Process	
4.1.3 Microstructural Characterization of Granulated	80
Nano Al ₂ O ₃ Powders	
4.1.4 Microstructural Characterization of used	82
Corrosive Salts for Hot Corrosion Test	
4.1.5 Microstructural Characterization of Air Plasma	84
Sprayed Coatings	
4.1.5.1 Normal Thermal Barrier Coating	84
system (Normal NiCrAlY / Normal	
YSZ)	
4.1.5.2 Nano Thermal Barrier Coating System	89
(Inconel 738/Nano NiCrAlY/ Normal	
YSZ)	
4.1.5.3 The Triple Layered Normal Thermal	92
Barrier Coating System (Inconel	
738/Normal NiCrAlY / Normal YSZ /	
Normal Al ₂ O ₃)	
4.1.5.4 The Triple Layered Nano Thermal	97
Barrier Coating System (Inconel 738/	
Nano NiCrAlY / Normal YSZ / Nano	
Al ₂ O ₃)	
4.1.5.5 Nano Thermal Barrier Coating System	101
with Nanostructured YSZ (Inconel	
738/ Normal NiCrAlY / Nano YSZ)	
4.1.6 Summary	107
4.2 Improvement of Thermally Grown Oxide Layer in	108
Thermal Barrier Coating Systems with Nano	
Alumina as a Third Layer During Isothermal	
Oxidation	
4.2.1 Introduction	108

	4.2.2 The Microstructural Characterization of TBCs	108
	After Isothermal Oxidation at 1000°C	
	4.2.3 Summary	122
4.3	Investigation of Hot Corrosion Resistance of YSZ/	124
	nano Al ₂ O ₃ Coating at 1000 °C	
	4.3.1 Introduction	124
	4.3.2 Microstructural Characterization of Coatings	124
	after Hot Corrosion Test	
	4.3.3 Hot Corrosion Mechanism of YSZ Coating at	131
	Elevated Temperatures	
	4.3.4 Summary	136
4.4	The Role of Formation of Continuous Thermally	138
	Grown Oxide Layer on the Nanostructured NiCrAlY	
	Bond Coat during Thermal Exposure (Pre-Oxidation	
	+ Cyclic Oxidation) in Air	
	4.4.1 Introduction	138
	4.4.2 Microstructural Characterization of TBCs after	138
	Pre-Oxidation Test at 1000°C	
	4.4.3 The Microstructural Characterization of Pre-	141
	oxidized TBCs after Cyclic Oxidation Test at	
	1150°C	
	4.4.4 Summary	149
4.5	Formation of a Thinner and Continuous Al ₂ O ₃ Layer	151
	in Nano Thermal Barrier Coating Systems for the	
	Suppression of Spinel Growth on the Al_2O_3 Oxide	
	Scale during Cyclic Oxidation	
	4.5.1 Introduction	151
	4.5.2 Microstructural Characterization of different	151
	Thermal Barrier Coating Systems after	
	Isothermal Pre-Oxidation Test At 1000°C	
	4.5.3 The Microstructural Characterization of Pre-	156
	oxidized Thermal Barrier Coating Systems	
	after Cyclic Oxidation Test at 1150°C	

4.5.4 Summary	170
4.6 The High Temperature Oxidation and Corrosion	172
Behavior of Thermal Barrier Coating Systems with	
Nanostructured YSZ	
4.6.1 Introduction	172
4.6.2 Hot Corrosion Behavior of Micro-Structured	172
and Nanostructured YSZ Coatings at 1000°C	
4.6.3 The High Temperature Oxidation Behavior of	180
TBCs at 1000°C	
4.6.4 Summary	192
4.7 The Formation and Effect of Nearly Continuous but	194
Thinner Thermally Grown Oxide Scale in	
NiCrAlY/Nanostructured YSZ Coating during	
Oxidation (Pre-Oxidation + Cyclic Oxidation) Test	
4.7.1 Introduction	194
4.7.2 Microstructural Investigation of TBC Systems	194
with Micro-structured and Nano-structured	
YSZ Coatings after Isothermal Pre-Oxidation	
Test at 1000°C	
4.7.3 Microstructural Characterization of Pre-	202
Oxidized Thermal Barrier Coating Systems	
with Micro-structured and Nano-structured	
YSZ Coatings after Cyclic Oxidation Test at	
1150°C	
4.7.4 Summary	215
CONCLUSIONS AND RECOMMENDATION FOR	217
THE FUTURE WORKS	
5.1 Conclusions	217
5.2 Recommendation for the Future Works	219

REFERENCES

Appendices A.B

231

LIST OF TABLES

TABLE NO	TITLE	PAGE
2.1	Comparison of thermal expansion coefficient of Al ₂ O ₃	50
	and ZrO ₂ particles at different temperatures	
2.2	Thermal conductivity of Al_2O_3 and ZrO_2 particles at	50
	different temperatures	
3.1	Chemical composition of Inconel 738	54
3.2	Chemical composition of NiCrAlY powders (AMDRY	54
	962)	
3.3	Chemical composition of normal YSZ powders	55
3.4	Chemical composition of nano Al ₂ O ₃ powders	55
3.5	Chemical composition of normal Al ₂ O ₃ powders	55
3.6	Chemical composition of nano YSZ powders	56
3.7	The parameters of APS method	64
3.8	The physical properties of corrosive materials	69
4.1	The apparent density and flowability of nano Al_2O_3	81
	powders before and after granulation treatment	
4.2	Hot corrosion test results	173

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
1.1	Schematic illustration of a normal thermal barrier	4
	coating system in addition to thermally grown oxide	
	(TGO) layer. The temperature gradient during engine	
	operation can be also observed	
1.2	Schematic illustration of cross section of air plasma	8
	sprayed nano NiCrAlY/normal YSZ/nano Al ₂ O ₃	
	coating on the Ni-based superalloy (as a novel TBC	
	system) in this research.	
2.1	Turbine temperatures progression from 1950 to 2010	12
2.2	Cross section of air plasma sprayed normal TBC	13
	system	
2.3	Phase transformation of pure zirconia at different	14
	temperatures	
2.4	Phase diagram of Y_2O_3 - ZrO_2	16
2.5	Predicted dependence on temperature of the oxygen	18
	fluxes for gas permeation and diffusion through a 250	
	\pm 50 μm thick zirconia top coat (TC), representing a	
	maximum pressure and concentration gradient	
2.6	Deterioration mechanism of TC during oxidation	19
2.7	Internal oxidation of the bond coat at elevated	20
	temperatures	
2.8	TGO layer at the BC/YSZ interface after high	21
	temperature oxidation at 1100°C for 100 h	
2.9	Detrimental mixed oxides at the Al ₂ O ₃ /YSZ interface	23
	in APS TBC system (Inconel/normal MCrAlY/normal	
	YSZ); a) granular NiO b) (Cr,Al) ₂ O ₃ (chromia),	

2.10	Radial stress Sx distribution in TBC system with TGO	24
	involving a) Al ₂ O ₃ (mono-layered TGO) b) spinel	
	and Al_2O_3 (bi-layered TGO); and axial stress Sy	
	distribution in TBC system with TGO containing c)	
	Al ₂ O ₃ d) spinel and Al ₂ O ₃	
2.11	APS normal TBC system with normal NiCrAlY as BC	25
	a) somewhat continues and thinner Al_2O_3 (TGO) layer	
	formation b) Ni(Cr,Al) ₂ O ₄ ·NiO formation between the	
	Al_2O_3 layer and the YSZ as top coat in some regions	
	after 24 h at 1080 °C in low-pressure oxygen	
	environment	
2.12	Bi-layered TGO formed in normal TBC system a)	26
	after 194 h at 1010°C (spinels formation) b) after 216	
	h at 1150°C (micro-cracks formation at the Al_2O_3 /	
	YSZ interface or CSNs)	
2.13	Cross section of normal TBC system with normal	28
	Al ₂ O ₃ as a third layer after spraying	
2.14	TGO thickness versus oxidation time for normal YSZ	28
	and normal YSZ/nomal Al ₂ O ₃ coatings after 100h of	
	isothermal oxidation test	
2.15	TGO layer formation in TBC systems; a) TGO layer	31
	formation on the normal NiCrAlY coating b)	
	Formation of TGO layer (nearly continues but thinner)	
	on the nanostructured NiCrAlY coating after high	
	temperature oxidation at 1000°C for 24 h	
2.16	As-sprayed nano YSZ coating surface	33
2.17	a) Nano YSZ powders b) Nano regions in the as-	34
	sprayed nano YSZ coating	
2.18	Surface of YSZ layer after spallation: monoclinic ZrO ₂	36
	and YVO ₄ crystals as disruptive phases can be	
	observed after hot corrosion test	
2.19	YVO ₄ small rod crystals with low number on YSZ as	37
	inner layer of YSZ/normal Al2O3 coating after hot	

	corrosion test. Normal alumina layer spalled at the	
	YSZ/normal Al ₂ O ₃ interface	
2.20	Cross-section of TBCs after hot corrosion test; a)	37
	normal YSZ coating with wide crack at the BC/YSZ	
	interface due to YVO4 crystals and monoclinic ZrO2	
	formation b) YSZ/normal Al ₂ O ₃ coating after	
	spallation of normal Al ₂ O ₃ layer	
2.21	Surface of TBCs after hot corrosion test; a) normal	38
	YSZ layer surface with high amount of hot corrosion	
	products b) $Gd_2Zr_2O_7 + YSZ$ surface with low amount	
	of hot corrosion products c) $Gd_2Zr_2O_7$ surface with	
	medium amount of hot corrosion products after hot	
	corrosion test in $Na_2SO_4 + V_2O_5$ at 1050 °C	
2.22	Morphology of plasma spray-able nano Y_2SiO_5	40
	powders; a) granulated nano Y_2SiO_5 powders b) nano	
	Y ₂ SiO ₅ particles in a granulated particle	
2.23	Monoclinic zirconia volume fraction in different	41
	thermal barrier coating systems after hot corrosion test	
2.24	YVO_4 crystals with high number on the YSZ + normal	42
	Al ₂ O ₃ coating after hot corrosion test	
2.25	Formation mode of plasma sprayed coatings structure	43
2.26	Lamellar structure with high interconnected pinholes	44
	in plasma sprayed thermal barrier coatings	
2.27	Cross section of thermal barrier coating, fabricated by	45
	EB-PVD method. Columnar structure can be clearly	
	seen in this figure	
2.28	Cross section of a two-layer FGM coating	47
2.29	Cross section of a five-layer FGM coating	47
2.30	a) air plasma sprayed YSZ coating surface before laser	49
	treatment b) air plasma sprayed YSZ coating surface	
	after laser treatment	
2.31	Comparison of oxygen diffusion coefficient in	51
	different oxide ceramics	
3.1	The flow chart of research methodology	53

3.2	Rotary-evaporator device	57
3.3	Planetary Ball Mill device (PM 400)	58
3.4	The grinding jars of planetary ball mill device (PM	58
	400)	
3.5	Glove box	59
3.6	Fixture for sustaining the substrates during air plasma	60
	spraying process; a) total view b) top view c) front	
	view	
3.7	The shot blast machine	61
3.8	3MB gun	62
3.9	The air plasma spray (APS) machine	62
3.10	Air plasma spraying (APS) method; a) adjusting	62
	plasma flame b) air plasma spraying in length side c)	
	air plasma spraying in width side	
3.11	The geometry of layers in normal TBC system	64
	(Inconel 738/normal NiCrAlY/normal YSZ)	
3.12	The geometry of layers in nano TBC system (.Inconel	65
	738/Nano NiCrAlY/Normal YSZ)	
3.13	The geometry of the layers in normal TBC system	66
	(Inconel 738/Normal NiCrAlY/Normal YSZ/Normal	
	Al ₂ O ₃)	
3.14	The geometry of the layers in nano TBC system	66
	(Inconel 738/Nano NiCrAlY/Normal YSZ/Nano	
	Al ₂ O ₃) as a novel system	
3.15	The geometry of the layers in nano TBC system	67
	(Inconel 738/Normal NiCrAlY/Nano YSZ)	
3.16	Formation of an even film of corrosive material on the	69
	coating surface keeping 3-4 mm distance from the	
	edge	
3.17	Schematic diagram of each cycle of hot corrosion test	69
	at 1000°C	
3.18	SEM machine in UTM (Philips, XL.40, Cam Scan MV	70
	2300, Holland) suitable for low magnification	
	investigation	

3.19	FESEM machine (Supra-350V) in UTM, suitable for	71
	high magnification (nano-scale) investigation	
3.20	FESEM machine (Hitachi-S 4160)	71
3.21	Image analyzer	73
3.22	Normal NiCrAlY layer on the Ni-based super alloy	74
3.23	Nano NiCrAlY layer on the Ni-based super alloy	74
3.24	XRD machine in UTM	74
4.1	The morphology of NiCrAlY powders before and after	77
	milling process; a) as-received NiCrAlY powders b)	
	NiCrAlY powders after 36h of milling	
4.2	The FESEM images of surface of NiCrAlY powders	78
	after milling process at different magnifications; a) X	
	15.0 K b) X 5.0 K c) X 50.0 K d) X 100 K e) X 60.0	
	K, f) X 110 K.	
4.3	X-ray diffraction analysis for A) as-received NiCrAlY	79
	powders B) milled NiCrAlY powders for 36h	
4.4	FESEM images of nano Al ₂ O ₃ powders after	80
	granulation at different magnifications; a) X 100 b) X	
	20 K	
4.5	EDX analysis of granulated nano Al ₂ O ₃ powders	81
4.6	XRD analysis of granulated nano Al ₂ O ₃ powders	82
4.7	SEM images of corrosive salts; a) V_2O_5 b) Na_2SO_4	82
	powders	
4.8	Elemental analysis of corrosive salts; a) V_2O_5 b)	83
	Na ₂ SO ₄ powders	
4.9	XRD analysis of V ₂ O ₅ powders	83
4.10	XRD analysis of Na ₂ SO ₄ powders	84
4.11	Cross section of normal TBC system after air plasma	85
	spraying	
4.12	Surface morphology of as-sprayed normal YSZ	85
	coating at different magnifications; a) 500X b) 2000X	
	c, d) 10000X	
4.13	Elemental analysis of cross sectional view of ((A)	86
	normal NiCrAlY / (B) normal YSZ layers).	

4.14	XRD analysis of normal YSZ surface after air plasma	87
	spraying	
4.15	Surface morphology of as-sprayed normal NiCrAlY	87
	layer at low magnifications; a) 100X b) 500X	
4.16	Surface morphology of as-sprayed normal NiCrAlY	88
	layer at high magnification (10000X)	
4.17	XRD analysis of outer surface of as-sprayed normal	88
	NiCrAlY layer	
4.18	Cross section of nano TBC system (Inconel 738/nano	89
	NiCrAlY/ normal YSZ) after air plasma spraying	
4.19	Surface morphology of as-sprayed nano NiCrAlY	89
	layer at low magnifications; a) 400X b) 1000X	
4.20	Elemental analysis of cross sectional view of ((A)	90
	nano NiCrAlY / (B) normal YSZ layers)	
4.21	Surface morphology of as-sprayed nano NiCrAlY	91
	layer at high magnifications; a) 6000X b) 15000X c)	
	30000X d) 60000X e) 100000X f) 150000X	
4.22	XRD analysis of outer surface of as-sprayed nano	92
	NiCrAlY layer.	
4.23	Cross section of normal TBC system (Inconel	93
	738/normal NiCrAlY / normal YSZ / normal Al ₂ O ₃)	
4.24	Surface morphology of as- sprayed normal Al_2O_3	94
	coating at different magnifications; a) 500X b) 1000X	
	c) 25000X	
4.25	EDX analysis of different layers of normal TBC	95
	system after air plasma spraying ((A) normal NiCrAlY	
	/ (B) normal YSZ $/$ (C) normal Al ₂ O ₃)	
4.26	XRD analysis of outer surface of as-sprayed normal	96
	Al ₂ O ₃ layer	
4.27	Cross section of nano TBC system (Inconel 738/nano	97
	NiCrAlY / normal YSZ / nano Al ₂ O ₃) after air plasma	
	spraying	
4.28	EDX analysis of cross section of nano TBC system (98
	(A) nano NiCrAlY / (B)normal YSZ / (C) nano Al ₂ O ₃)	

after air plasma spraying

4.29	Surface morphology of na	anostructured	l NiCrAlY layer	99
	at high magnifications;	a) 2000X	b) 6000X c)	
	100000X			

- 4.30 Surface morphology of nanostructured Al₂O₃ layer 100 after air plasma spraying at different magnifications;
 a) 1000X b) 2000X c) 5000X d) 25000X e) 50000X
- 4.31 XRD analysis of outer surface of as-sprayed nano 101 Al₂O₃ layer
- 4.32 Cross section of as-sprayed nano YSZ coating; a) a tri 102 model distribution b) columnar grins c) micro and nano equaixed grains d) semi melted nano powders
- 4.33 Surface morphology of as-sprayed nano YSZ coating 103 at different magnifications; a) 500X b) 1000X
 c)10000X d) 15000X
- 4.34 Cross section of the as-sprayed TBCs; (a) 104 NiCrAlY/nano YSZ coating (b) NiCrAlY/normal YSZ coating (for comparison with nano TBC system)
- 4.35 Elemental analysis of cross sectional view of nano 105 TBC system; a) Nano YSZ coating b) normal NiCrAlY layer
- 4.36 X-ray diffraction analysis of as-received powders and 106 as-sprayed YSZ coatings; a) normal YSZ powders b) nano YSZ powders c) as-sprayed normal YSZ layer
 d) as-sprayed nano YSZ layer
- 4.37 SEM micrographs of cross section of coatings after 109 oxidation at 1000°C for 120h; a) normal NiCrAlY/normal YSZ b) nano NiCrAlY/ normal YSZ c) normal NiCrAlY/normal YSZ/normal Al₂O₃ d) nano NiCrAlY/ normal YSZ/nano Al₂O₃ coatings
- 4.38 TGO layer of four types of TBCs after oxidation at 110 1000°C for 120h at high magnifications; a) normal NiCrAlY/normal YSZ coating b) nano NiCrAlY/ normal YSZ coating c) normal NiCrAlY/normal

	YSZ/normal Al ₂ O ₃ coating d) nano NiCrAlY/normal	
	YSZ/nano Al ₂ O ₃ coating	
4.39	The EDS analysis of the TGO layer after oxidation at	110
	1000°C for 48h	
4.40	The FESEM images of TGO layer of normal TBCs	111
	after oxidation at 1000°C for 120h; a) there are	
	several protrusions at the interface of TGO/YSZ b)	
	The micro-crack nucleation within the YSZ layer	
4.41	TGO thickness versus oxidation time at 1000 °C for	112
	four types of TBCs	
4.42	FESEM images from bi-layered TGO in TBC systems	113
	with normal TBC after oxidation at 1000°C for 120h;	
	a) normal NiCrAlY /YSZ coating b) normal	
	NiCrAlY/YSZ/normal Al ₂ O ₃ coating c) nano	
	NiCrAlY/YSZ coating	
4.43	The EDX analysis of bi-layered TGO; the outer layer	114
	of TGO (a, b, c, d and e); and the inner layer of TGO	
	(f)	
4.44	X-ray diffraction analysis of oxide phases on the	115
	NiCrAlY layer	
4.45	Crack formation at the TGO/YSZ interface; a) the	117
	spallation of the ceramic layer may occur at the	
	summit of protrusions, b) the progress of horizontal	
	micro-cracks in the ceramic layer during thermal	
	cyclings is due to presence of vertical tensile stresses	
	on the interface of TGO/YSZ layers	
4.46	FESEM image of TGO layer of nano	122
	NiCrAlY/YSZ/nano Al ₂ O ₃ coating after oxidation at	
	1000°C for 120h	
4.47	Cross-section of the coatings after hot corrosion test at	125
	1000°C; a, b) conventional YSZ coating c) YSZ as	
	inner layer of YSZ/normal Al_2O_3 coating d) YSZ as	
	inner layer of YSZ/nano Al ₂ O ₃ coating	
4.48	XRD results for a) normal YSZ coating b) YSZ as	126

	inner layer of YSZ/normal Al ₂ O ₃ coating c) YSZ as	
	inner layer of YSZ/nano Al2O3 coating after hot	
	corrosion test at 1000 °C	
4.49	SEM micrographs of YVO ₄ crystals on the surface of	128
	coatings; a,b) normal YSZ coating c,d) YSZ as inner	
	layer of (YSZ / normal Al ₂ O ₃) coating	
	e,f) YSZ as inner layer of (YSZ/ nano Al ₂ O ₃) coating	
	after hot corrosion test at 1000°C.	
4.50	FESEM micrographs of YVO ₄ crystals on the surface	130
	of coatings; a) thicker rod/plate crystals in normal	
	YSZ b) thin rod/plate crystals in YSZ as inner layer of	
	(YSZ / normal Al_2O_3) coating c) thinner rod/plate	
	crystals in YSZ as inner layer of (YSZ/ nano Al ₂ O ₃)	
	coating after hot corrosion test	
4.51	EDX spectrum from the rod shaped crystals of YVO_4	131
	on the surface of YSZ layer of TBCs	
4.52	Schematic illustration of corrosive molten salts	134
	infiltration into the YSZ layer of different thermal	
	barrier coating systems during hot corrosion process at	
	elevated temperatures	
4.53	The outward growth of YVO ₄ crystals in conventional	136
	YSZ coating which caused additional stresses at the	
	interface of bond coat/YSZ	
4.54	The TGO layer of TBCs after oxidation at 1000°C for	139
	24 and 48h; a) normal NiCrAlY/YSZ coating b) nano	
	NiCrAlY/YSZ coating after 24h c) normal	
	NiCrAlY/YSZ coating d) nano NiCrAlY/YSZ coating	
	after 48h of oxidation	
4.55	The EDX analysis of pure TGO layer after pre-	139
	oxidation at 1000°C	
4.56	The TGO thickness versus pre-oxidation time	141
4.57	Cross section of TBCs after 100 cycles at 1150°C; a)	143
	nano NiCrAlY/YSZ coating b) normal NiCrAlY/YSZ	
	coating	

4.58	Bi-layered TGO in TBCs after 200 cycles at 1150°C;	144
	a) normal NiCrAlY/normal YSZ coating b) nano	
	NiCrAlY/normal YSZ coating	
4.59	EDS line-scan analysis of bi-layered TGO in TBC	144
	systems after 200 cycles; a) NiO b) CS c) (Cr, Al) $_2$	
	O ₃ d) Al ₂ O ₃	
4.60	The X-ray diffraction analyses of oxide phases on the	146
	surface of bond coat after 200 cycles at 1150°C; a)	
	normal NiCrAlY layer b) nano NiCrAlY layer	
4.61	The schematic illustration of formation of detrimental	147
	mixed oxides (CSN) on the Al_2O_3 (as pure TGO) layer	
	during thermal exposure in air; a) TGO formation	
	including protrusions b) TGO thickening c) micro-	
	cracks formation at the TGO/YSZ interface d) CSNs	
	formation at the Al_2O_3/YSZ interface e) CSNs growth	
	and micro-cracks propagation in the YSZ layer.	
4.62	The thickness of bi-layered TGO versus oxidation time	148
	for nano NiCrAlY/YSZ and normal NiCrAlY/YSZ	
	coatings after cyclic oxidation at 1150°C	
4.63	A three stage TGO growth phenomenon during	149
	oxidation at elevated temperatures for nano	
	NiCrAlY/YSZ and normal NiCrAlY/YSZ coatings	
4.64	TGO layer of different thermal barrier coating systems	152
	after oxidation at 1000°C for 24h; a) normal	
	NiCrAlY/normal YSZ b) nano NiCrAlY/normal YSZ	
	c) nano NiCrAlY/normal YSZ/nano Al2O3 coatings	
4.65	TGO layer of different thermal barrier coating systems	153
	after oxidation at 1000°C for 48h; a) normal	
	NiCrAlY/normal YSZ b) nano NiCrAlY/normal YSZ	
	c) nano NiCrAlY/normal YSZ/nano Al2O3 coatings	
4.66	EDX analysis of the pure TGO layer in the novel	153
	coating	
4.67	TGO thickness versus oxidation time after isothermal	155
	pre-oxidation test for three types of thermal barrier	

coating systems

4.68	Cross section of TBCs after 100 of thermal cycles at	157
	1150°C; a) normal NiCrAlY/YSZ b) nano	
	NiCrAlY/YSZ c) nano NiCrAlY/YSZ/nano Al ₂ O ₃	
	coatings	
4.69	Bi-layered TGO in three types of TBC systems after	160
	200 of thermal cycles at 1150 °C; a) normal	
	NiCrAlY/YSZ b) nano NiCrAlY/YSZ c) nano	
	NiCrAlY/YSZ/nano Al ₂ O ₃ coatings	
4.70	EDX analysis of the TGO layer of three types of TBC	162
	systems after 200 thermal cycles at 1150° C; a) CSNs	
	b) Al ₂ O ₃ c) NiO d) NiCr ₂ O ₄ (CS) e) Cr ₂ O ₃ f) ZrO ₂	
4.71	FESEM images of CSNs and Cr ₂ O ₃ after cyclic	163
	oxidation test at 1150°C; a) granular NiO b) hexagonal	
	system of NiO c, d) outward growth of NiO e)	
	formation of nano spinels f) cubic $NiAl_2O_4$ g) Cr_2O_3	
	h) cubic NiCr ₂ O ₄	
4.72	X-ray diffraction analysis of formed oxide phases at	164
	the BC/YSZ interface of TBCs after cyclic oxidation at	
	1150°C	
4.73	Thickness of bi-layered TGO along the BC/TC	165
	interface of three types of TBC systems after 100 and	
	200 of thermal cycles at 1150 °C	
4.74	A three stage growth phenomenon of the TGO layer in	166
	three types of TBC systems during oxidation (pre-	
	oxidation + cyclic oxidation) at elevated temperatures	
4.75	Schematic illustration of formation and growth of bi-	167
	layered TGO in normal TBC systems after oxidation	
	(pre-oxidation +cyclic oxidation) test	
4.76	Schematic illustration of formation and growth of bi-	169
	layered TGO in nano TBC systems after oxidation	
	(pre-oxidation +cyclic oxidation) test	
4.77	CSNs at the Al ₂ O ₃ /YSZ interface of nano TBC	170
	systems after 200 of thermal cycles at 1150°C; a) nano	

- 4.78 Surface of YSZ layers after hot corrosion test; a) 174 surface of nano YSZ layer b) surface of normal YSZ layer after spallation
- 4.79 EDX analysis of YVO₄ crystals in normal and nano 175 YSZ coatings
- 4.80 XRD analysis from surface of YSZ layer after hot 175 corrosion test; a) nano YSZ layer b) normal YSZ layer after spallation
- 4.81 Schematic illustration of hot corrosion process in nano 177 YSZ layer; a) penetrated corrosive fused salts into the entire thickness of the nano YSZ layer b) depletion of stabilizer (Y_2O_3) in zirconia and followed by the phase transformation of tetragonal zirconia to monoclinic zirconia c) easy transformation of zirconia to fully monoclinic and formation of YVO₄ crystals which have outward growth d, e) SEM images of YVO₄ crystals at different magnifications
- 4.82 Schematic illustration of hot corrosion process in 178 normal YSZ layer; a) penetrated corrosive fused salts into the entire thickness of the nano YSZ layer b) depletion of stabilizer (Y₂O₃) in zirconia and followed by the phase transformation of tetragonal zirconia to monoclinic zirconia c) easy transformation of zirconia to fully monoclinic and formation of YVO₄ crystals which have outward growth d, e) FESEM and SEM images of YVO₄ crystals at different magnifications
 4.83 Chemical composition of ZrV₂O₇ on the YSZ layer 179 after hot corrosion test at 1000°C
- 4.84 Cross section of coatings after high temperature 182 oxidation at 1000°C for 12h; a) NiCrAlY /nano YSZ coating b) NiCrAlY /normal YSZ coating c) the presence of unique structure of nano YSZ coting over

xxvii

4.85	Cross section of coatings after high temperature	183
	oxidation test at 1000°C for 24h; a) NiCrAlY /normal	
	YSZ coating b) NiCrAlY /nano YSZ coating c) CSNs	
	formation on the Al_2O_3 oxide scale in NiCrAlY	
	/normal YSZ coating d) CSNs formation on the Al_2O_3	
	oxide scale in NiCrAlY /nano YSZ coating	
4.86	Cross section of coatings after high temperature	184
	oxidation at 1000°C for 48h; a) NiCrAlY /normal	
	YSZ coating b) NiCrAlY /nano YSZ coating c)	
	presence of nano grains over the continues TGO layer	
	in NiCrAlY /nano YSZ coating	
4.87	Cross section of coatings after high temperature	185
	oxidation at 1000°C for 120h; a) NiCrAlY /normal	
	YSZ coating b) NiCrAlY /nano YSZ coating c) more	
	CSNs formation on the Al ₂ O ₃ oxide scale in NiCrAlY	
	/normal YSZ coating d) lower CSNs formation on the	
	Al ₂ O ₃ oxide scale in NiCrAlY /nano YSZ coating	
4.88	EDX analysis of TGO (Al ₂ O ₃) layer in	185
	NiCrAlY/nanoYSZ coating after high temperature	
	oxidation test at 1000°C	
4.89	Micro-cracks formation and growth in the CSNs and	187
	protrusions; a) FESEM image of a protrusion at the	
	TGO/YSZ interface of normal TBC system after 120h	
	of high temperature oxidation test at 1000°C b)	
	schematic illustration of progress of horizontal micro-	
	cracks within the ceramic layer and coalescence of	
	formed micro-cracks inside the CSNs (particularly on	
	the protrusions) with discontinuities and pre-exiting	
	open micro-cracks in the YSZ layer	
4.90	TGO thickness versus oxidation time for normal and	188
	nano TBC systems after high temperature oxidation	
	test at 1000°C for 120h	
4.91	EDX analysis of a) inner layer of TGO and, b-f) outer	190

	layer (CSNs) of TGO after high temperature oxidation	
	test at 1000°C for 120h	
4.92	X-ray map from inner and outer layers of TGO after	191
	120h of oxidation at 1000°C	
4.93	Type of formed oxide phases on the Al_2O_3 oxide scale	192
	after 120h of oxidation	
4.94	Cross section of coatings after per-oxidation at 1000°C	195
	for 12h; a) NiCrAlY /normal YSZ coating b)	
	NiCrAlY /nano YSZ coating	
4.95	Cross section of coatings after pre-oxidation at 1000°C	195
	for 24h; a) NiCrAlY /normal YSZ coating b)	
	NiCrAlY /nano YSZ coating	
4.96	Cross section of coatings after pre-oxidation at 1000°C	196
	for 48h; a) NiCrAlY /normal YSZ coating b)	
	NiCrAlY /nano YSZ coating c) pure TGO layer in	
	nano TBC system (NiCrAlY/nano YSZ)	
4.97	Schematic illustration of oxygen penetration into the	198
	nano TBC system and TGO formation during	
	oxidation; a) lower oxygen penetration in nano YSZ	
	layer b) Formation of nearly continues but thinner	
	Al ₂ O ₃ layer in NiCrAlY/nano YSZ coating during	
	isothermal pre-oxidation	
4.98	Schematic illustration of oxygen penetration into the	199
	normal TBC system and TGO formation during	
	oxidation; a) more oxygen diffusion in normal YSZ	
	layer b) Formation of discontinues but thicker Al_2O_3	
	layer in NiCrAlY/normal YSZ coating during	
	isothermal pre-oxidation	
4.99	X-ray map of oxidized regions (containing mixed	200
	oxides (1) which are surrounded by Al_2O_3 layer (2))	
	after isothermal pre-oxidation at 1000°C	
4.100	TGO thickness versus pre-oxidation time for	201
	NiCrAlY/normal YSZ and NiCrAlY/nano YSZ	
	coatings	

4.101	Cross section of coatings after 30 thermal cycles at	203
	1150°C; a, c) NiCrAlY /normal YSZ coating b, d)	
	NiCrAlY /nano YSZ coating	
4.102	Cross section of coatings after 50 thermal cycles at	204
	1150°C; a, c, e) NiCrAlY /nanoYSZ coatings b, d, f)	
	NiCrAlY /normal YSZ coatings	
4.103	Cross section of coatings after 100 thermal cycles at	205
	1150°C; a, c) NiCrAlY /normal YSZ coatings b, d)	
	NiCrAlY /nano YSZ coatings e) X-ray map of	
	NiCrAlY /nano YSZ coating (d)	
4.104	Cross section of coatings after 200 thermal cycles at	206
	1150°C; a) NiCrAlY /nano YSZ coating, in addition	
	to its X-ray map b) NiCrAlY /normal YSZ coating, in	
	addition to its X-ray map	
4.105	Horizontal micro-cracks growth within the CSNs; the	207
	coalescence of micro- cracks and formation of a large	
	crack in the YSZ layer near the interface in a cleavage	
	mode.	
4.106	Cross section of NiCrAlY/nano YSZ coating after 50	209
	thermal cycles at 1150°C; (1) nearly continues and	
	thinner TGO layer, and (2) the presence of unique	
	structure of nano YSZ coating (particularly nano	
	zones) top of the TGO layer	
4.107	X-ray map of bi-layered TGO (containing inner (A)	210
	and outer (B) layers) in NiCrAlY/nano YSZ coating	
	after 200 thermal cycles at 1150°C	
4.108	X-ray map and EDX analysis of inner and outer layers	211
	of the TGO in NiCrAlY/normal YSZ coating after 200	
	thermal cycles at 1150°C	
4.109	XRD analysis of formed oxide phases on the bond coat	212
	(NiCrAlY layer) after 200 thermal cycles at 1150°C	
4.110	TGO thickness versus oxidation (pre-oxidation +	212
	cyclic oxidation) time for NiCrAlY/normal YSZ and	
	NiCrAlY/nano YSZ coatings	

4.111 TGO texture during oxidation; a, b) Al₂O₃ oxide scale 214 (as pure TGO) with columnar grains (columnar zone or CZ), in addition to somewhat equiaxed grains (equiaxed zone or EZ) a, e) particles of YAG ((Y-Al-O) precipitates) along columnar grain boundaries of Al₂O₃ and its EDX analysis c, d) equiaxed grains of CSNs with cubic crystalline structure d) NiO with hexagonal structure

LIST OF ABBREVIATIONS

APS	-	Air Plasma Spray
BC	-	Bond Coat
CZ	-	Columnar Zone
CVD	-	Chemical Vapor Deposition
CTE	-	Coefficient of Thermal Expansion
EDX	-	Energy Dispersive Spectroscopy
EZ	-	Equiaxed Zone
EB-PVD	-	Electron Beam- Physical Vapor Deposition
EBSD	-	Electron Backscatter Diffraction Analysis
FESEM	-	Field Emission Scanning Electron Microscope
PSZ	-	Partially Stabilized Zirconia
SEM	-	Scanning Electron Microscope
TEM	-	Transmission Electron Microscope
TGO	-	Thermally Grown Oxide
TBC	-	Thermal Barrier Coating
TC	-	Top Coat
XRD	-	X-ray Diffraction
YSZ	-	Yttria Stabilized Zirconia
TBCs	-	Thermal Barrier Coating System
FGM	-	Functionally Graded Materials
LPHS	-	Laser Plasma Hybrid Spraying

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	List of Papers	231
В	Used Materials in This Project	233

CHAPTER 1

INTRODUCTION

1.1 Research Background

Gas turbines have been claimed to be one of the most important systems for generating energy at the present and the future. Most research activities on gas turbines have been carried out, in order to enhance the thermal efficiency and durability of gas turbines components. The efficiency and durability of turbine blades can be increased by using high strength materials and protective coatings at high temperature applications [1, 2].

Ni or Co based superalloys were developed during 1950-1970. The Ni-based superalloys are usually used in fabrication of turbine blades and hot sections of gas turbines. Depending on the type of turbine, the temperature of external gases from the combustor can range between 800-1200°C. Under these conditions, superalloy would be reacted by high temperature oxidation and corrosion at elevated temperatures [3].

Additionally, Ni- based superalloys do not have adequate resistance at above ambient condition [4]. So, surface protection of gas turbine blades is very important using highly resistant ceramic coatings. The following coatings could improve high temperature oxidation and corrosion resistances of gas turbine blades at elevated temperatures: (1) Diffusion coatings: the aluminum can diffuse into the substrate surface. These coatings are usually applied on substrate using Diffusion – Slurry, Powdery Sementasion and CVD methods.

(2) Overlay coatings: the principal chemical composition of these coatings is: MCrAIY (M=Ni, Co or both of them) which is usually applied on the blades via plasma spray or EB-PVD methods.

(3) Thermal barrier coating (TBC): these coatings have low thermal conductivity. They could significantly reduce the overall substrate (Ni- based superalloy) temperature [4-6].

TBCs could significantly increase the efficiency and durability of hot sections of gas turbines because zirconia has lower thermal conductivity in comparison with other ceramics [4]. If this coating is applied on the substrate, then the temperature of internal gases inside the combustor of gas turbines will be increased. It means that, the substrate temperature would not be altered [5].

The first TBC was applied on the engine components of aircraft in 1960. This coating had several problems such as ZrO_2 instability and poor bonding between the substrate and the ceramic thermal barrier coating [2]. These problems were then solved during 1970 – 1980 using (a) YSZ as a thermal barrier layer due to its low thermal conductivity, and (b) metallic bond coat MCrAlY (M = Ni, Co or mixture of these two) which was employed to improve the adhesion between the ceramic top-coat and the substrate. MCrAlY layer is an oxidation-resistant material.

Additionally, MCrAIY plays a major role in providing a rough and adherent surface for applying thermal barrier coatings and provides protection for the alloy (substrate) from further oxidation [7]. Other researches were carried out by some investigators during 1980-2007, which are: (a) FGM (Functionally Graded Materials) coatings: this coating increased the mechanical properties of coating [8, 9], (b) CeO₂ stabilizer that can be added to the ceramic thermal barrier layer, in order to improve

thermal shock resistance, and (c) remelting the ceramic layer using laser which reduced the oxygen infiltration into the TBCs [10].

Additionally, other researchers also investigated other aspects of TBCs during 2002-2011 which are: (a) to replace zirconia (ZrO_2) with other ceramic materials in order to obtain lowest thermal conductivity and highest stability [11, 12], (b) to reduce oxygen diffusion and fused salts infiltration into the YSZ layer using normal Al₂O₃ as a third layer over the YSZ coating [11-19], and (c) to reduce the TGO growth and internal oxidation of the bond coat using nano crystalline NiCrAlY layer as bond coat in a TBC system [20-23]. In this research, it is expected that oxidation and hot corrosion resistances of TBCs at elevated temperatures will be considerably increased. This involves the use of nanostructured NiCrAlY layer as bond coat (via formation of continuous Al_2O_3 layer) in a TBC system with nanostructured Al_2O_3 as a third layer (as an infiltration barrier on the YSZ coating).

1.2 Problem Statement

Listed are the current major problems associated with conventional TBCs:

(a) TGO formation and growth in TBCs: an oxidized scale can be formed on the bond coat (BC) which is termed thermally grown oxide layer which is mainly related to the oxygen diffusion through the top coat towards the bond coat at elevated temperatures by micro-cracks and interconnected pinholes inside the top coat (TC) (via gas infiltration mechanism) [24]. It was found that the growth of the TGO layer plays an important role in the failure of TC during thermal exposure in air [25], (Figure 1.1).

The increase in TGO thickness during the oxidation process is accompanied by the evolution of stress at the BC / YSZ interface. This stress would cause the delamination of the coating at the interface of the BC / YSZ. It was found that the stresses in TBC will increase with a growing TGO layer [26].

Figure 1.1: Schematic illustration of a normal thermal barrier coating system in addition to thermally grown oxide (TGO) layer. The temperature gradient during engine operation can be also observed.

(b) CSNs formation and growth on the Al_2O_3 oxide scale (as pure TGO): The mixed oxides formation on the Al_2O_3 oxide scale (as pure TGO) has been reported by the other investigators [25-27]. These complex oxides (CSNs) contain chromia (Cr,Al)₂O₃, spinel Ni(Cr,Al)₂O₄ (CS) and nickel oxide NiO [28-31] which may be formed via a solid state reaction along with this TGO (Al₂O₃) layer in plasma sprayed TBC systems [32, 33].

CSNs are also believed to be detrimental to TBC durability during service at higher temperatures [26]. In this regard, it was reported that the maximum radial stress of bi-layered TGO (Al_2O_3 /detrimental mixed oxides) is about five times and the difference of maximum axial stress is about 10 times larger than mono-layered TGO (Al_2O_3) [26]. The formation of harmful oxides would provoke micro-cracks

nucleation during thermal exposure in air, leading to premature TBC failure during extended thermal exposure in air [26, 29-31].

The majority of previous researches described the failure mechanisms of TBCs due to TGO growth especially internal oxidation of BC during high temperature oxidation [30, 34]. Therefore, the main purpose of this research is to obtain a new coating to reduce the growth of the TGO layer during pre-oxidation (as a thinner and continuous Al_2O_3 layer) and to suppress the formation and growth of detrimental mixed oxides on the Al_2O_3 (as pure TGO) layer during thermal shocks.

(c) TC (TBC) deterioration during hot corrosion process: Low quality fuels usually contain impurities such as Na and V which lead to the formation of Na₂SO₄ and V₂O₅ corrosive salts on the coating of turbine blades [14]. These corrosive fused salts can penetrate into the entire thickness of YSZ through splat boundaries and other YSZ coating defects such as micro-cracks and open pores during hot corrosion process [34]. The penetrated salts can then react with yttria (the stabilizer component of YSZ). So, the depletion of the stabilizer and phase transformation of tetragonal zirconia to monoclinic zirconia and followed by YVO₄ crystals formation can occur in a very rapid and effective manner during cooling [14, 34]. This phase transformation is accompanied by 3–5% rapid volume expansion, leading to cracking and spallation of TBC [35]. So, the reduction of hot corrosion products (by using nanostructured Al₂O₃ coating) in the YSZ layer can be expected as a major factor for increasing the lifetime of TBCs during hot corrosion process.

1.3 Purpose of the Study

In this research, it is anticipated that the aforementioned problems to be considerably decreased using a TBC system consisting of nanostructured NiCrAlY (manufactured using planetary ball mill) as bond coat (BC) and YSZ/ nano Al_2O_3 (using granulated nano Al_2O_3 powders) coating as top coat (TC). In this regard, the nanostructured NiCrAlY layer would create a continuous and dense layer of Al_2O_3 on the BC which is a strong barrier for the oxygen penetration into the NiCrAlY layer [20]. Nanostructured Al_2O_3 top coat over the YSZ layer will significantly lessen the oxygen diffusion and corrosive molten salts infiltration into the YSZ layer at higher temperatures. This phenomenon may be originated from the compactness of the nanostructure that was observed in the nanostructured YSZ coating which was mainly composed of nano zones and fully molten parts [36].

It is worth mentioning that the Al_2O_3 crystal lattice on the YSZ layer would resist the oxygen diffusion into the YSZ layer [13, 15]. Previous studies also showed that the dense alumina layer over the YSZ coating can lessen the oxygen partial pressure at the BC/YSZ interface and can prevent further formation of deleterious oxides within the BC [16, 18].

In later studies [32, 37], it was found that a continuous Al_2O_3 layer could develop at the ceramic/bond coat interface in air plasma-sprayed normal TBC systems under a low oxygen pressure conditions (furnace with low oxygen pressure). This continues and thin Al_2O_3 (TGO) layer could diminish the growth of CSNs in the normal TBC system during subsequent thermal exposure in service [37]. In this research, a new TBC system is required to create a dense, continuous and thinner Al_2O_3 layer on the BC during pre-oxidation in air, in order to diminish the formation and growth of Ni (Cr, Al_2O_4 (spinel) and NiO oxides on the alumina oxide scale during thermal cycles in air. In other words, it is expected that nano TBC systems after a pre-oxidation could considerably improve oxidation behavior of normal TBC systems at elevated temperatures.

It was observed that the protective Al_2O_3 layer on the YSZ coating can remarkably reduce the molten salts infiltration into the YSZ layer and can substantially lessen the depletion of stabilizer (Yittria) from this layer during the hot corrosion process. So, the percentage of monoclinic ZrO_2 and YVO_4 crystals (as hot corrosion products) was reduced in YSZ/ normal Al_2O_3 coating compared to that of conventional YSZ coating [14, 38]. In this research, it is expected that the usage of nanostructured Al_2O_3 layer over the YSZ coating could significantly reduce the corrosive molten salts penetration within the YSZ layer and could lessen hot corrosion products in the YSZ as inner layer of YSZ/nano Al_2O_3 coating during the hot corrosion process.

Recently, NiCrAlY/nano YSZ coating showed better high temperature oxidation (according to the TGO thickness) and corrosion (according to hot corrosion products values) resistance compared to NiCrAlY/normal YSZ coating [36, 39]. This is because of the presence of nanostructured YSZ layer (with lower pinholes and micro-cracks) in the nano TBC system. But, the formation and growth of CSNs (NiO. Ni (Cr,Al)₂O₄ . (Cr, Al)₂ O₃) have not been studied yet in the NiCrAlY/nano YSZ coating during extended thermal exposure in air. Therefore, it can be speculated that the CSNs formation and growth in NiCrAlY/nano YSZ coating to be considerably suppressed in comparison with NiCrAlY/normal YSZ coating during cyclic oxidation (thermal shocks).

1.4 Objectives of the Study

The main objectives in the present research are as follows:

1) To lessen the oxygen diffusion (getting TGO (Al_2O_3) layer with lowest thickness) and also molten corrosive salts infiltration (according to hot corrosion products values) into the YSZ layer by using nanostructured Al_2O_3 top coat over the YSZ layer during high temperature oxidation and corrosion.

 To further reduce oxidation effect (bi-layered TGO thickness) using nanostructured NiCrAlY as bond coat (BC) and YSZ/ nano Al₂O₃ coating as top coat (TC) in a TBC system, simultaneously during cyclic oxidation (thermal shocks).

1.5 Scopes of Work

• In order to prepare the nanostructured NiCrAlY powders, commercial Ni22Cr10Al1Y powders would be milled using planetary ball mill device for 36h [20, 21, 40 and 41].

• The nanostructured NiCrAlY powders (as bond coat) will be then applied on the base metal by APS method.

• In order to produce nano NiCrAlY/normal YSZ/nano Al_2O_3 coating (Figure 1.2), normal YSZ layer will be sprayed on the nanostructured NiCrAlY layer and followed by granulated nano Al_2O_3 powders will be then deposited on the YSZ layer.

Figure 1.2: Schematic illustration of cross section of air plasma sprayed nano NiCrAlY/normal YSZ/nano Al_2O_3 coating on the Ni-based superalloy (as a novel TBC system) in this research.

So, it is anticipated that the new coating (See Figure 1.2) to form a thinner and fully continuous Al_2O_3 layer at the BC/YSZ interface during pre-oxidation and to diminish the formation and growth of detrimental mixed oxides on the Al_2O_3 (as pure TGO) layer during cyclic oxidation (thermal shocks). In this research, it is also expected that the nanostructured Al_2O_3 layer over the YSZ coating could significantly reduce the corrosive molten salts penetration within the YSZ layer and could lessen hot corrosion products in the YSZ as inner layer of YSZ/nano Al_2O_3 coating during hot corrosion process. On the other hand, the reduction of hot corrosion products (YVO₄ crystals and monoclinic zirconia) in the YSZ layer is a major factor for increasing the lifetime of TBCs during hot corrosion process which was observed in the triple layered TBCs [38]. • Normal NiCrAlY layer (as bond coat), normal and nano YSZ layers (as top coats) will be eventually applied on the base metal (Inconel 738) using APS method. On the whole, five types of TBCs will be produced which consist of: (1) Inconel 738/normal NiCrAlY/normal YSZ (normal TBCs), (2) Inconel 738/normal NiCrAlY/normal YSZ/normal Al₂O₃ (normal TBCs), (3) Inconel 738/nano NiCrAlY/normal YSZ (nano TBCs), (4) Inconel 738/nano NiCrAlY/normal YSZ/nano Al₂O₃ (as a novel nano TBCs), and (5) Inconel 738/normal NiCrAlY/nano YSZ (nano TBCs).

• The air plasma sprayed normal and nano TBC systems will be evaluated by pre-oxidation (at 1000°C for 48h), high temperature oxidation (at 1000°C for 120h), cyclic oxidation (or thermal shocks at 1150°C) and hot corrosion (at 1000°C) tests.

• Microstructural characterization of the coatings before and after tests will be performed using SEM, EDS, FESEM, XRD, and X-ray mapping.

1.6 Organization of Thesis

This thesis consists of five chapters. Chapter 1 provides an introduction to the study. The background of the study, problem statement, objectives and scopes of the study and organization of thesis are presented in this chapter. In the Chapter 2, normal thermal barrier coating system and its problems in the service would be comprehensively introduced. In the meantime, recent research activities about improvement of TBCs at elevated temperatures are reviewed. Chapter 3 is concerned with the research methodology for this study. In this chapter, the experimental steps from providing feed stokes until microstructural characterization of samples are discussed in detail. There are 7 sub chapters in the Chapter 4. In this chapter, 1) microstructural characterization of the feed stokes and as-sprayed coatings, 2) improvement of thermally grown oxide layer in thermal barrier coating systems with nano alumina as a third layer during isothermal oxidation, 3) investigation of hot corrosion resistance of YSZ/ nano Al_2O_3 coating at 1000 °C, 4) role of formation of continues thermally grown oxide layer on the nanostructured NiCrAlY bond coat during thermal exposure (pre-oxidation + cyclic oxidation) in air, 5) formation of a

thinner and continues Al_2O_3 layer in nano thermal barrier coating systems for the suppression of Spinel growth on the Al_2O_3 oxide scale during cyclic oxidation, 6) high temperature oxidation and corrosion behavior of thermal barrier coating systems with nanostructured YSZ as top coat, and 7) formation and effect of nearly continues but thinner thermally grown oxide scale in NiCrAlY/nanostructured YSZ coating during oxidation (pre-oxidation + cyclic oxidation) test would be comprehensively discussed. Chapter 5 summarizes all the results and discussion in this research and some recommendations for the future work are also made.

REFERENCES

- 1. Schmitt. T. K. G, Hertter. M (1999). Improved oxidation resistance of thermal barrier coatings. *Surface and Coatings Technology*. 120–121, 84–88.
- Brandl. W, Grabke. H. J, Toma. D, Kruger. J (1996). The oxidation behavior of sprayed MCrAIY coatings. *Surface and Coatings Technology*. 86-87 (part 1), 41-47.
- Schulz. U, Leyens. C, Fritscher. K, Peters. M, Saruhan-Brings. B, Lavigne.
 O, Dorvaux. Jean-M, Poulain. M, Mévrel. R, Caliez. M (2003). Some recent trends in research and technology of advanced thermal barrier coatings. *Aerospace Science and Technology*. 7 (1), 73–80.
- 4. Jeanine. T (1994). Protective coatings in the gas turbine engine. *Surface and Coatings technology*. 68-69, 1-9.
- Haynes. J. A, Ferber. M. K, Porter. W. D (2000). Thermal Cycling Behavior of Plasma-Sprayed Thermal Barrier Coatings with Various MCrAIX Bond Coats. *Thermal Spray Technology*. 9 (1), 38-48.
- Sohn, Y. H, Kim, J. H (2001). Thermal cycling of EB-PVD/MCrAIY thermal barrier coatings: I. Microstructural development and spallation mechanisms. *Surface and Coatings Technology*. 146–147, 70–78.
- Seung. Y, Lee. I. G, Lee. D. Y, Kim. D. J., Kim. S, Lee. K (2002). Hightemperature properties of plasma-sprayed coatings of YSZ/NiCrAlY on Inconel substrate. *Materials Science and Engineering A*. 332 (1-2), 129–133.
- Kawasaki. A, Watanabe. R (2002). Thermal fracture behavior of metal/ceramic functionally graded materials. *Engineering Fracture Mechanics*. 69 (14-16), 1713–1728.
- Shanmugavelayutham. G, Kobayashi. A (2007). Mechanical properties and oxidation behavior of plasma sprayed functionally graded zirconia–alumina thermal barrier coatings. *Materials Chemistry and Physics*. 103 (2-3), 283– 289.

- Batista. C, Portinha. A, Ribeiro. R. M, Teixeira. V, Oliveira. C. R (2006). Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts. *Surface and Coatings Technology*. 200 (24) 6783–6791.
- Park. S.Y, Kim. J. H, Kim. M. C, Song. H. S, Park. C. G (2005). Microscopic observation of degradation behavior in Yttria and Ceria stabilized zirconia thermal barrier coatings under hot corrosion. *Surface and Coatings Technology*. 190 (2-3), 357–365.
- 12. Ma. B, Yao. L (2009). Characterization of ceria–yttria stabilized zirconia plasma-sprayed coatings. *Applied Surface Science*. 255 (16), 7234–7237.
- Saremi. M, Afrasiabi. A(2008). Microstructural analysis of YSZ and YSZ/Al₂O₃ plasma sprayed thermal barrier coatings after high temperature oxidation. *Surface and Coatings Technology*. 202 (14), 3233–3238.
- Chen. Z, Wu. N. Q, Singh. J, Mao. S. X (2003). Effect of Al₂O₃ overlay on hot-corrosion behavior of Yttria-Stabilized Zirconia coating in molten sulfate-vanadate salt. *Thin Solid Films*. 443 (1-2), 46–52.
- Widjaja. S, Limarga. A. M, Yip. T. H (2002). Oxidation behavior of a plasma-sprayed functionally graded ZrO₂/Al₂O₃ thermal barrier coating. *Materials Letters*. 57 (3), 628–634.
- Limarga. A. M, Widjaja. S, Yip. T. H, The. L K (2002). Modeling of the effect of Al₂O₃ interlayer on residual stress due to oxide scale in thermal barrier coatings. *Surface and Coatings Technology*. 153 (1) 16–24.
- Zhao. X, Hashimoto. T, Xiao. P (2006). Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings. *Scripta Materialia*. 55 (11), 1051–1054.
- Gao. J, He. Y, Wang. D (2011). Preparation of YSZ/Al₂O₃ micro-laminated coatings and their influence on the oxidation and spallation resistance of MCrAlY alloys. *European Ceramic Society*. 31 (1-2) 79-84.
- Limarga. A. M, Widjaja. T. S, Yip. T. H (2005). Mechanical properties and oxidation resistance of plasma-sprayed multilayered Al₂O₃/ZrO₂ thermal barrier coatings. *Surface and Coatings Technology*. 197 (1), 93–102.
- Zhang. Q, Li. C. J, Xin. C. L, Yang. G. J, Lui. S .C (2008). Study of oxidation behavior of nanostructured NiCrAIY bond coatings deposited by cold spraying. *Surface and Coatings Technology*. 202 (14), 3378–3384.

- Ajdelsztajn. L, Tang. F, Kim. G. E, Provenzano. V, Schoenung. M (2005).
 Synthesis and Oxidation Behavior of Nanocrystalline MCrAlY Bond Coatings. *Thermal Spray Technology*. 14 (1) 23-30.
- Kim. G. E, Addona. T, Richer. P, Jodoin. B, Al-Mathami. A (2010). Characterization and Evaluation of Nanostructured Bond Coats from Noncryogenically Milled Feedstock. *Thermal Spray Technology*. 112 (2) 29–33.
- Ajdelsztajn. L, Hulbert. D, Mukherjee. A, Schoenung. J. M (2007). Creep deformation mechanism of cryomilled NiCrAIY bond coat material. *Surface* and Coatings Technology. 201 (24) 9462-9467.
- 24. Fox. A. C, Clyne. T. W (2004). Oxygen transport by gas permeation through the zirconia layer in plasma sprayed thermal barrier coatings. *Surface and Coatings Technology*. 184 (2-3), 311–321.
- 25. Chen. W.R, Wu. X, Marple. B.R, Patnaik. P.C (2005). Oxidation and crack nucleation/growth in an air-plasma-sprayed thermal barrier coating with NiCrAlY bond coat. *Surface and Coatings Technology*. 197 (1), 109–115.
- Ni. L.Y, Liu. C, Huang. H, Zhou. C. G (2011). Thermal Cycling Behavior of TBCs with HVOF NiCrAlY. *Thermal Spray Technology*. 20 (5), 1133–1138.
- 27. Prescott. R, Graham. M. J (1992). The formation of Aluminum oxide scales on high-temperature alloys. *Oxidation of Metals*. 38 (3-4), 233-254.
- 28. Rabiei. A, Evans. A. G (2000). Failure Mechanisms Associated with the thermally grown oxide in plasma-sprayed thermal barrier coatings. *Acta materialia*. 48 (15), 3963–3976.
- 29. Mumm. D. R, Evans. A. G (2000). On the role of imperfections in the failure of a thermal barrier coating made by Electron Beam Deposition. *Acta materialia.* 48 (8), 1815-1827.
- 30. Chen. W. R, Wu. X, Marple. B. R, Patnaik. P. C (2006). The growth and influence of thermally grown oxide in a thermal barrier coating. *Surface and Coatings Technology*. 201(3-4), 1074–1079.
- Lee. C. H., Kim. H. K., Choi. H. S, Ahn. H. S (2000). Phase transformation and bond coat oxidation behavior of plasma-sprayed zirconia thermal barrier coating. *Surface and Coatings Technology*. 124(1), 1–12.
- Chen. W. R, Wu. X, Dudzinski. D, Patnaik. P. C (2006), Modification of oxide layer in plasma-sprayed thermal barrier coatings. *Surface and Coatings Technology*. 200 (20-21), 5863–5868.

- Liang. G.Y, Zhu. C, Wu. X.Y, Wu. Y (2011). The formation model of Ni-Cr oxides on NiCoCrAlY- sprayed coating. *Applied Surface Science*. 257 (15), 6468-6473.
- Saremi. M, Afrasiabi. A, Kobayashi. A (2007). Bond coat oxidation and hot corrosion behavior of plasma sprayed YSZ coting on Ni superalloy. *Transaction of JWRI*. 36 (1), 41-45.
- 35. Chen. H. C., Liu. Z. Y., Chuang. Y. C (1993). Degradation of plasma-sprayed alumina and zirconia coatings on stainless steel during thermal cycling and hot corrosion. *Thin solid Films*. 223(1), 56–64.
- Saremi. M, Keyvani. A, Sohi. M. H (2012). Hot corrosion resistance and mechanical behavior of atmospheric plasma sprayed conventional and nanostructured zirconia coatings. *International Journal of Modern Physics*. 5, 720–727.
- Chen. W. R, Wu. X, Marple. B. R, Lima. R. S, Patnaik. P. C (2008). Preoxidation and TGO growth behavior of an air-plasma-sprayed thermal barrier coating. *Surface and Coatings Technology*. 202 (16), 3787–3796.
- Afrasiabi. A, Saremi. M (2008). A comparative study on hot corrosion resistance of three types of thermal barrier coatings: YSZ, YSZ+Al₂O₃ and YSZ/Al₂O₃. *Materials Science and Engineering A*. 478 (1-2), 264–269.
- 39. Girolamo. G. Di, Marra. F, Blasi. C, Serra. E (2011). Microstructure, mechanical properties and thermal shock resistance of plasma sprayed nanostructured zirconia coatings. *Ceramics International*. 37 (7), 2711-2717.
- Hussian. M. S, Ababtian. M .A (2009). Nano-composites NiCrAl (MCrAl) ternary alloy powder synthesized by mechanical alloying. *Journal of Nano Research*. 6, 169-176.
- 41. Hussain. M. S., Swailem. S. A, A. Hala (2009). Advanced nano composites for high temperature aero-engine/turbine components. *Journal of Nano Manufacturing*. 4 (1-4), 248-256.
- Kewther. A, Yilbas. B. S, Hashmi. M. S. J (2001). Corrosion Properties of Inconel 617 Alloy after Heat Treatment at Elevated Temperature. *Materials Engineering and Performance*. 10 (1), 108-113.
- 43. Nesb. J. A (1990). Thermal response of various thermal barrier coatings in high heat flux rocket engine. *Surface and Coatings Technology*. 43/44 (part 1), 458-469.

- Bengtsson. P, Persson. C (1997). Modeled and measured residual stresses in plasma sprayed thermal barrier coatings. *Surface and coating technology*. 92 (1-2) 78-86.
- 45. Nicoll. A. R. Wahl. G (1991). The effect of alloying additions on M-Cr-Al-Y systems-An experimental study. *Thin Solid Films*. 95 (1), 21-34.
- 46. Kvernes. I, Lugscheider. E, Lindblorn. Y (1992). Protection materials: coatings for thermal barrier and wear resistance. *Proceedings of the 2nd European symposium engineering ceramics*. England, 280-285.
- 47. Smeggil. J. L (1987). Some comments on the role of yttrium in protective oxide scale adherence. *Materials Science Engineering*. 87, 261-265.
- 48. Ge. Q. L, Lei. T. C, Mao. J. F, Zhou. Y (1993). In situ transmission electron microscopy observations of the tetragonal-to-monoclinic phase transformation of zirconia in Al₂O₃-ZrO₂ (2 mol % Y₂O₃) composite. *Journal* of Materials Science Letters. 12, 819-822.
- Joshi. S. V, Sivatava. M. P (2000). On the thermal cyclic life of plasma sprayed Yttria-Stabilized Zirconia coatings. *Surface and Coating Technology*. 56, 215-224.
- Seo. D, Ogawa. K, Suzuki. Y, Ichimura. K, Shoji. T, Murata. S (2008). Comparative study on oxidation behavior of selected MCrAlY coatings by elemental concentration profile analysis. *Applied Surface Science*. 255 (5, part 2), 2581–2590.
- 51. Straussa, D, M[•]uller. U. G, Schumacher. G, Engelkob. V, Stammc. W, Clemensd. D, Quaddakersd. W. J (2001). Oxide scale growth on MCrAlY bond coatings after pulsed electron beam treatment and deposition of EBPVD-TBC. Surface and Coatings Technology. 135 (2-3), 196-201.
- Toscano. J, Vaben. R, Gil. A., Subanovic. M, Naumenko. D, Singheiser. L, (2006). Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC's. *Surface and Coatings Technology*. 201(7) 3906–3910.
- Choi. H, Yoon. B, Kim. H, Lee. C (2002). Isothermal oxidation of air plasma spray NiCrAlY bond coatings. *Surface and Coatings Technology*. 150 (2-3), 297–308.
- Evans. A. G, Mumm. D. R, J. Hutchinson. W, Meier. G. H, Pettit. F. S (2001). Mechanisms controlling the durability of thermal barrier coating. *Progress in Materials Science*. 46 (5), 505-553.

- 55. Fan. X. L, Xu. R, Zhang. W. X, Wang. T.J (2012). Effect of periodic surface cracks on the interfacial fracture of thermal barrier coating system. *Applied Surface Science*. 258 (24), 9816–9823.
- Wang. B, Gong. J, Sun. C, Huang. R.F, Wen. L.S (2003). The behavior of MCrAlY coatings on Ni₃Al-base superalloy. *Materials Science and Engineering A*. 357 (1-2), 39-44.
- 57. Khor. K. A, Gu. Y. W. (2000). Thermal properties of plasma-sprayed functionally graded thermal barrier coatings. *Thin Solid Films*. 372 (1-2), 104-113.
- Shilington. E. A. G, Clarke. D. R (1999). Spalling failure of a thermal barrier coating associated with aluminum depletion in the bond-coat. *Acta Materialia*. 47 (4), 1297-1305.
- Zhou. Z, Guo. H, Wang. J, Abbas. M, Gong. S (2011). Microstructure of oxides in thermal barrier coatings grown under dry/humid atmosphere. *Corrosion Science*, 53 (8), 2630-2635.
- Zhou. C, Wang. N, Xu. H (2007). Comparison of thermal cycling behavior of plasma-sprayed nanostructured and traditional thermal barrier coatings. *Materials Science and Engineering A*. 452–453, 569–574.
- Stiger. M. J, Yanar. N. M, Pettit. F.S, Meier. G. H, Hampikian. J. M, N. B. Dahotre (1999). Elevated Temperature Coatings: *Science and Technology III, The minerals. Metals & Materials Society.* San Diego, CA, 122-130.
- Ren. C, He. Y.D, Wang. D. R (2011). Preparation and characteristics of three-layer YSZ–(YSZ/Al₂O₃)–YSZ TBCs. *Applied Surface Science*. 257(15), 6837–6842.
- 63. Marginean. G, Utu. D (2012). Cyclic oxidation behavior of different treated CoNiCrAlY coatings. *Applied Surface Science*. 258(20), 8307–8311.
- Takahashi. S, Yoshiba. M, Harada. Y (2003). Nano-Characterization of Ceramic Top-Coat/Metallic Bond-Coat Interface for Thermal Barrier Coating Systems by Plasma Spraying. *Materials Transactions*. 44 (6), 1181 – 1189.
- 65. Hille. T. S, Suiker. A. S (2009). Micro-crack nucleation in thermal barrier coating systems. *Engineering Fracture Mechanics*. 76 (6), 813–825.
- Richer. P, Yandouzi. M, Beauvais. L, Jodoin. B (2010). Oxidation behavior of CoNiCrAlY bond coats produced by plasma, HVOF and cold gas dynamic spraying. *Surface and Coatings Technology*. 204 (24), 3962–3974.

- Keyvani. A, Saremi. M, Heydarzadeh Sohi. M (2011). Oxidation resistance of YSZ-alumina composites compared to normal YSZ TBC coatings at 1100°C. *Alloys and compounds*. 509 (33), 8370-8377.
- Picas. J. A, Forn. A, Ajdelsztajn. L, Schoenung. J (2004). Nanocrystalline NiCrAlY powder synthesis by mechanical cryomilling. *Powder Technology*. 148 (1), 20-23.
- Suryanarayana. C (2001). Mechanical alloying and milling. Progress in Materials Science. 46 (1-2), 1-184.
- 70. LIU. C. b, ZHANG. Z. M, JIANG. X. l, LIU. M, ZHU. Z. h (2009). Comparison of thermal shock behaviors between plasma-sprayed nanostructured and conventional zirconia thermal barrier coatings. *Transactions of Nonferrous Metals Society of China*. 19 (1), 99-107.
- Baia. Y, Hana. Z.H, Li. H.Q, Xua. C, Xu. Y. L, Wang. Z, Ding. C. H, Yang.
 J. F (2011). High performance nanostructured ZrO₂ based thermal barrier coatings deposited by high efficiency supersonic plasma spraying. *Applied Surface Science*. 257 (16), 7210–7216.
- 72. Wang. N, Zhou. C, Gong. S, Xu. H (2007). Heat treatment of nanostructured thermal barrier coating. *Ceramics International*. 33 (6), 1075–1081.
- 73. Wang. H, Zuo. D, Chen. G, Sun. G, Li. X, Cheng. X (2010). Hot corrosion behavior of low Al NiCoCrAlY cladded coatings reinforced by nano-particles on a Ni-base super alloy. *Corrosion Science*. 52 (10), 3561-3567.
- 74. Hong. Z, Bo. H, Jun. W, Bao. S (2007). Nanostructured yttria stabilized zirconia coatings deposited by air plasma spraying. *Transactions of Nonferrous Metals Society of China*. 17 (2), 389-393.
- Zeng. Yi, Lee. S. W, Gao. L (2002). Atmospheric plasma sprayed coatings of nanostructured zirconia. *European Ceramic Society*. 22 (3), 347–351.
- 76. Xu. Z, He. L, Mu. R, He. S, Huang. G, Cao. X (2010). Hot corrosion behavior of rare earth zirconates and yttria partially stabilized zirconia thermal barrier coatings. *Surface and Coatings Technology*. 204 (21-22), 3652 - 3661.
- Zhong. X. H, Wang. Y. M, Xu. Z. H, Zhang. Y. F, Zhang. J. F, Cao. X. Q (2010). Hot-corrosion behaviors of overlay-clad yttria-stabilized zirconia coatings in contact with vanadate sulfate salts. *European Ceramic Society*. 30 (6), 1401-1408.

- Ramachandra. C, Lee. K. N, Tewari. S. N (2003). Durability of TBCs with a surface environmental barrier layer under thermal cycling in air and in molten salt. *Surface and Coatings Technology*. 172 (2-3), 150–157.
- 79. Habibi. M. H, Wang. Li, Guo. S. M. (2012). Evolution of hot corrosion resistance of YSZ, Gd₂Zr₂O₇, and Gd₂Zr₂O₇ + YSZ composite thermal barrier coatings in Na₂SO₄ + V₂O₅ at 1050 °C. *European Ceramic Society*. 32 (8), 1635–1642.
- 80. Munz. D, Fett. T (1999). Mechanical properties, Failure behavior. *Materials selection. Berlin, Springer.* 9 (10), 135.
- Wu. Y. N, Ke. P. L, Wang. Q. M, Sun. C, Wang. F.H (2004). High temperature properties of thermal barrier coatings obtained by detonation spraying. *Corrosion Science*. 46 (12), 2925–2935.
- Shaw. L. L, Goberman. D, Ren. R, Gell. M, Jiang. S, Wang. Y, Xiao. T. D, Strutt. P. R (2000). The dependency of microstructure and properties of nanostructured coatings on plasma spray conditions. *Surface and Coatings Technology*. 130 (1), 1-8.
- Qiana. Y, Dua. b. L, Zhanga. W (2009). Preparation of Spherical Y₂SiO₅
 Powders For Thermal-Spray Coating. *Particuology*. 7 (5), 368–372.
- Garcia. E, Mesquita. J, Miranzo. P, Osendi. M. I, Wang. Y, Lima. R. S, Moreau. N (2009). Mullite and Mullite/ZrO₂-7wt.%Y₂O₃ Powders for Thermal Spraying of Environmental Barrier Coatings. *Thermal Spray technology*.19 (1-2), 286–293.
- Markinauskas. L (2010). Deposition of Alumina Coatings from Nanopowders by Plasma Spraying. Journal of Materials Science (MEDŽIAGOTYRA).16 (1), 47-51.
- Lima. R. S, Marple. B. R (2007). Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review. *Thermal Spray Technology*. 16 (1), 40-63.
- Lin. X, Zeng. Y, Lee. S. W, Ding. C (2004). Characterization of alumina–3 wt.% titania coating prepared by plasma spraying of nanostructured powders. *European Ceramic Society*. 24 (4), 627–634.
- 88. Pidani. R. A, Razavi. R. S, Mozafarinia. R, Jamali. H (2012). Evaluation of hot corrosion behavior of plasma sprayed ceria and yttria stabilized zirconia

thermal barrier coatings in the presence of $Na_2SO_4+V_2O_5$ molten salt. *Ceramics International.* 38(8), 6613–6620.

- Tsai. P.C, Lee. J. H, Hsu. C. S (2007). Hot corrosion behavior of laser-glazed plasma-sprayed yttria-stabilized zirconia thermal barrier coatings in the presence of V₂O₅. *Surface and Coatings Technology*. 201(9-11), 5143–5147.
- Nicholls. J. R, Lawson. K. J, Johnstone. A, Rickerby. D. S (2006). Methods to reduce the thermal conductivity of EB-PVD TBCs. *Surface and Coatings Technology*. 151–152, 383–391.
- Sharafat. S, Kobayashi. A, Ogden. V, Ghoniem. N. M (2000). Development of composite thermal barrier coatings with anisotropic microstructure. *Vacuum*. 59 (1), 185-193.
- 92. Kulkarni. A, Vaidya. A, Goland. A, Sampath. S (2003). Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings. *Materials Science and Engineering A*. 359 (1-2), 100-111.
- Rhys-Jones. T. N (1990). The use of thermally sprayed coatings for compressor and turbine applications in aero engines. *Surface and Coatings Technology*. 42(1), 1–11.
- 94. Ng. H. W, Gan. Z (2005). A finite element analysis technique for predicting as-sprayed residual stresses generated by the plasma spray coating process. *Finite Elements in Analysis and Design.* 41 (13), 1235–1254.
- 95. Nicholls. J. R, Deakin. M. J, Rickerby. D. S (1999). A comparison between the erosion behavior of thermal spray and electron beam physical vapor deposition thermal barrier coatings. *Wear*. 233–235, 352–361.
- 96. Antoua. G, Montavonb. G, Hlawkaa. F. O, Corneta. A, Coddetb. C, Machi. F (2004). Evaluation of modifications induced on pore network and structure of partially stabilized zirconia manufactured by hybrid plasma spray process. *Surface and Coatings Technology*. 180–181, 627–632.
- Ouyang. H, Sasaki. S (2002). Microstructural and tribological characteristics of ZrO₂-Y₂O₃ ceramic deposited by laser assisted plasma hybrid spraying. *Tribology International.* 35, 255-264.
- Lay. L. A (1991). Corrosion resistance of technical ceramics. Second edition, London, HMSO. 83.
- 99. Richerson. D. W (1982). *Modern Ceramic engineering*: properties, processing, and use in design. New York, Marcel Dekker. 37, 72 and 134.

- 100. Kingery. W. D (1976). *Introduction to ceramics*. 2nd edition. Wiley Interscience, New York.
- 101. Courtright. E. L (1994). A review of fundamental coating issues for high temperature compositions. *Surface and coatings Technology*. 68-69, 116-125.
- 102. Andritschky. M, Cunha. I, Alpuim. P (1997). Thermal stability of zirconia/alumina thin coatings produced by magnetron sputtering. Surface and coatings Technology. 94-95, 144-148.
- 103. Voort. G. F. V (2004). *Metallography and Microstructures of Heat-Resistant Alloys.* ASM Handbook: Metallography and Microstructures. 9, 820–859.
- Mobarra. R, Jafari. A. H (2006). Hot corrosion behavior of MCrAlY coatings on IN738LC. *Surface and Coatings Technology*. 201 (6), 2202–2207.
- 105. Sulzer Metco (2012). Nickel Chromium Aluminum Yttrium (NiCrAlY) Thermal Spray Powders.<u>www.sulzer.com/.../DSMTS 0102 0 NiCrAlY.pdf-Switzerland</u>.
- 106. Sulzer Metco (2012). 8% Yittria Stabilized Zirconia Agglomerated and HOSPThermalSprayPowders.www.sulzer.com/.../DSMTS_0001_2_8YOZrO HOSP.pdf-Switzerland.
- Bradford. S. A (2001). *Corrosion Control*. (2th Edition). Canada. CASTI Publishing (ISBN 1-894038-58-4). Chapter 10, 328-329.
- 108. Takeuchi. S, ITO. M, Takeda. K (1990). Modeling of residual stress in plasma sprayed coatings: effect of substrate temperature. *Surface and coatings Technology*. 43-44 (part 1), 426-435.
- Hashmi. M. S. J, Pappalettere. C, Ventola. F (1998). Residual stresses in structures coated by a high velocity oxy-fuel technique. *Journal of Materials Processing Technology*. 75 (1-3), 81-86.
- Ajdelsztajn. L, Picas. J. A, Kim. G. E, Bastian. F. L, Schoenung. J, Provenzano. V (2002). Oxidation behavior of HVOF sprayed nanocrystalline NiCrAlY powder. *Materials Science and Engineering A*. 338 (1-2), 33–43.
- Bolelli. G, Cannillo. V, Lusvarghi. L (2006). Glass –Alumina composite coatings by plasma spraying, part 1: Microstructural and mechanical characterization. *Surface and Coatings Technology*. 201(1-2), 458-473.
- 112. Schlichting K. W, Padture. N. P, Jordan. E. Gell. H. M (2003). Failure modes in plasma-sprayed thermal barrier coatings. *Materials Science and Engineering A*. 342 (1-2), 120-130.

- Seo. D, Ogawa. K (2012). Isothermal Oxidation Behavior of Plasma Sprayed MCrAlY Coatings. *Advanced Plasma Spray Applications*. In Tech.
- 114. Birk. N, Meier. G. H, Petit. F. S (1994). Forming continuous alumina scales to protect superalloys. *Oxidation of Metals*. 46 (12), 42-46.
- Brandon, J. R, Taylor. R (1991). Phase stability of zirconia-based thermal barrier coatings part II. Zirconia-ceria alloys. *Surface and Coatings Technology*. 46 (1), 91-101.
- 116. Jones. R. L (1997). Some aspects of the hot corrosion of thermal barrier coatings. *Thermal Spray Technology*. 6 (1), 77-84.
- 117. Wu. N, Chen. Z, Mao. S. X (2005). Hot Corrosion Mechanism of Composite Alumina/Yttria-Stabilized Zirconia Coating in Molten Sulfate–Vanadate Salt. *American Ceramic Society*. 88 (3), 675–682.
- 118. Chen Z, Yuan. F, Wang. Z, Zhu. S (2007). The oxide scale formation and evaluation on detonation gun sprayed NiCrAIY coatings during isothermal oxidation. *Materials Transactions*. 48 (10), 2695-2702.
- 119. Chen. X, Zhao. Y, Gu. L. B, Zou. N, Wang. Y, Cao. X (2011). Hot corrosion behavior of plasma sprayed YSZ/LaMgAl₁₁O₁₉ composite coatings in molten sulfate–vanadate salt. *Corrosion Science*. 53 (6), 2335–2343.
- 120. Li. S, Liu. Z. G, Ouyang. J. H (2010). Hot corrosion behavior of Yb₂Zr₂O₇ ceramic coated with V₂O₅ at temperatures of 600–800°C in air. *Corrosion Science*. 52 (10), 3568-3572.
- 121. Nusair Khan. A, Lu. J (2003). Behavior of air plasma sprayed thermal barrier coatings, subject to intense thermal cycling. Surface and Coatings Technology. 166 (1), 37–43.
- 122. Jamali. H, Mozafarinia. R, Razavi. R. S, Ahmadi-Pidani. R (2012). Comparison of thermal shock resistances of plasma-sprayed nanostructured and conventional yttria stabilized zirconia thermal barrier coatings. *Ceramics International.* 38 (8), 6705-6712.