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ABSTRACT 

 

 

 

The helicopter tail shake phenomenon is an area of great concern to 
helicopter manufacturers as it adversely affects the overall performance and handling 
qualities of the helicopter, and the comfort of its occupants. This study is intended to 
improve the understanding of the unsteady aerodynamic load characteristics 
triggered by the helicopter main-rotor-hub assembly wake that lead to this 
phenomenon by experimental and numerical investigations. In this research work, a 
simplified NASA standard fuselage model was mated to a main-rotor-hub assembly 
from a remote-control helicopter. Data of pressures and velocities inside the wake, as 
well as the aerodynamic drag, corresponding to the variations of helicopter’s 
advance ratios and pylon configurations were captured. This work had gained some 
useful information towards further understanding of this long running issue, with a 
potential to minimise the problem. The dynamic analysis, through the power spectral 
density, root-mean-square and probability density function analyses, was also 
conducted and had successfully quantified the frequency and unsteadiness of main-
rotor-hub assembly wake. Computational Fluid Dynamics (CFD) had also been 
carried out to model and simulate the wake dynamics, and were successfully 
validated using experimental results. The Sliding Mesh method was opted to 
simulate the rotation of main-rotor-hub assembly whilst the aerodynamic flow field 
was computed using the Large Eddy Simulation equations. As the CFD results were 
found to be in accordance with the experimental results, a reliable CFD modelling 
technique for the unsteady wake analysis of the helicopter main-rotor-hub assembly 
wake has thus been forwarded. Accordingly, this numerical modelling could be used 
to supplement experimental work. In addition, this research programme had also 
successfully proposed a modelling technique of simplified helicopter main-rotor-hub 
assembly viable for unsteady aerodynamic wake studies. 
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ABSTRAK 

 Fenomena getaran pada ekor helikopter merupakan suatu isu yang dipandang 
berat oleh para pengeluar helikopter kerana ia memberi kesan kepada prestasi 
keseluruhan dan kualiti kawalan helikopter, serta keselesaan penumpang. Kajian ini 
bertujuan untuk menambahkan lagi kefahaman ke atas ciri keracak aerodinamik 
tidak-tetap dari hab-rotor-utama helikopter yang merupakan sumber utama penyebab 
fenomena ini, melalui kerja-kerja penyelidikan secara ujikaji dan simulasi 
berkomputer. Model fiuslaj piawai NASA yang dipermudah digandingkan bersama 
hab-rotor-utama dari helikopter kawalan jauh untuk digunakan sebagai model kajian. 
Data tekanan dan halaju dalam keracak, serta daya seret aerodinamik pada pelbagai 
nilai nisbah-maju dan konfigurasi pelindung hab-rotor-utama helikopter, telah 
diperolehi. Kajian yang dijalankan ini telah berjaya  memberikan beberapa maklumat 
berguna yang mungkin berpotensi untuk mengurangkan  permasalahan yang telah 
berlanjutan sekian lama ini. Analisis dinamik, menerusi analisis terhadap ketumpatan 
spektra kuasa, punca min kuasa dua dan fungsi ketumpatan kebarangkalian, juga 
dilakukan dan berjaya mengenalpasti frekuensi serta ketidak-tetapan aliran keracak 
hab-rotor-utama helikopter. Simulasi dinamik bendalir berkomputer juga dilakukan 
untuk memodelkan dan mensimulasikan dinamik keracak dan telah berjaya di tentu-
sahkan dengan keputusan ujikaji. Kaedah Jejaring Gelangsar diaplikasikan untuk 
mensimulasikan  putaran hab-rotor-utama helikopter manakala medan aliran 
aerodinamik dikira menggunakan persamaan Simulasi Olakan Besar. Oleh kerana 
hasil simulasi ini sejajar dengan keputusan ujikaji, suatu teknik permodelan simulasi 
untuk analisis keracak tidak-tetap hab-rotor-utama helikopter telah berjaya 
dihasilkan. Justeru itu, simulasi  berkomputer ini juga boleh digunakan untuk 
melengkapkan lagi kerja ujikaji. Di samping itu, penyelidikan ini juga telah berjaya 
mencadangkan satu model bagi hab-rotor-utama helikopter dipermudah yang boleh 
digunakan bagi kajian keracak aerodinamik tidak-tetap. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview of Helicopter Tail Shake Phenomenon 

A helicopter is an aircraft that is lifted and propelled by one, or even more 

horizontal rotors, as is the case with the Boeing CH-47 Chinook, where each rotor 

consisting of two or more rotor blades. 

  The Interactional Aerodynamic (I/A) problems remain a long dragged issue 

in spite of numerous endeavours by a lot of companies (Waard and Trouvé, 1999). 

The statement is considerably supported by Hassan et. al (1999) which state the flow 

fields that govern the aircraft’s handling qualities and responsiveness have often 

baffled designers. One of the critical I/A problems is the helicopter tail shake 

phenomenon that adversely affected the overall performance, occupant comfort and 

handling qualities of helicopter (Roesch and Dequin, 1983; Waard and Trouvé, 

1999). According to Coton (2007), this phenomenon is a very complex problem and 

the European Helicopter Project (GO AHEAD) and French-Germany Project 

(SHANEL) are currently believed to look seriously at this phenomenon.  

Essentially, the phenomenon occurs as a consequence of interaction between 

the unsteady main-rotor-hub assembly wake and the vertical tail of the helicopter 

(Coton, 2009), as be illustrated in Figure 1.1.  
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       Figure 1.1: Schematic of tail shake phenomenon (Waard and Trouvé, 1999) 

 

In fact, the phenomenon is a dynamic response of the structure to the main- 

rotor-hub assembly wake (Eurocopter, 2006). According to Roesch and Dequin  

(1983), with more new faster helicopter be developed and raise in mission 

requirements (Hassan et al., 1999), the problems arising from the main-rotor-hub 

assembly's wake interactions with the tail surfaces have become more critical in 

such:  

 

(i) Additional drag and reduced performance due to the low energy wake 

triggered by the main-rotor-hub assembly’s wake.  

(ii) Penalties to vehicle stability characteristics in pitch and yaw occur 

when the horizontal tail, vertical tail or tail rotor are surrounded by the 

highly unsteady wake. The effectiveness of stabilizer as well be 

degraded due to the dynamic pressure loss inside the wake. 

(iii) Unsteady flow components in the turbulent wake may cause structural 

buffeting of the tail surfaces. According to Waard and Trouvé (1999), 

these vibrations will be transmitted to cockpit and may deteriorate 

occupant comfort, as well adversely affect crew efficiency. Figure 1.2 

illustrates the comfortless of the crew during tail shake phenomenon. 

Worked by Hassan et al. (1999) had also shared the same findings. 

 
Figure 1.2: Vibrations in the cockpit (Waard and Trouvé, 1999) 

Rotor hub wake Vertical tail
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(iv) In the case of the frequency of main-rotor-hub assembly's wake 

coincides with a natural frequency of the tail parts, strong 

amplification of the vibration would occur. Consequently, premature 

structural failure may happen due to fatigue problem. 

 

With these mentioned penalties, apparently extensive researches are much 

required to be done in this field in the hope to minimize the problems. 

1.2 The Needs of Vertical Tail 

 

Theoretically, the instant solution to this tail shake problem is to design a 

helicopter without the vertical tail. However, the vertical tail is required for two 

distinct purposes: 

 

(i) To house or mount the tail rotor - with a single main rotor helicopter, 

the creation of torque as the engine turns the rotor blades create a 

torque effect (Padfield, 1996) that causes the body of the helicopter to 

turn in the opposite direction of the rotor blades. Therefore, tail rotor 

is needed to produce yaw moment to compensate main rotor torque as 

be illustrated in Figure 1.3.  

 

 
 

Figure 1.3: Torque effect on a helicopter (Google Images, 2011) 
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(ii) For directional stability - in order to be statically stable in directional 

mode, the yawing moment derivative, Cnß must be a positive value 

(Nelson, 1998).  

 

Efforts had been made to replace tail rotor with different mechanisms that 

serve the same purpose. One of them is the NOTAR helicopter, an acronym for NO 

TAil Rotor as shown in Figure 1.4, which is a relatively new helicopter anti-torque 

system that eliminates the use of the tail rotor on a helicopter. It uses jet thrusters to 

produce side force, and thus yaw moment to counter act the main motor torque.  

 

 
Figure 1.4: MD Helicopters 520N NOTAR (Wikipedia, 2011)  

 

Nevertheless, NOTAR helicopters still need to have vertical tail for its 

directional stability; consequently it is still being exposed to tail shake phenomenon. 

Works done by Ishak et. al (2008) on a generic 14% scaled-down model of 

Eurocopter 350Z helicopter had shown without the vertical tail, the helicopter would 

not be statically stable in directional mode as the yawing moment derivative, Cnß 

becoming a negative value, as be demonstrated in Figure 1.5. It shows with the 

negative value of Cnß, the helicopter deviates more from its initial equilibrium 

position. For the note, Cn is taken positive in clockwise direction looking from the 

top. 
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Figure 1.5: Helicopter Directional Stability (Ishak et. al, 2008) 

 

This leads development of a helicopter which has neither vertical tail, nor tail 

rotor. It uses air-jet, positioned at the end of tail boom, for anti-torque and directional 

stability – this is made possible by adjusting the speed and amount of air jet in 

response of disturbance. However this kind of helicopter becomes very expensive 

and totally dependent on complex electronic control system, which its reliability 

could be an issue to some people. 

 

For these highlighted reasons, new helicopter design still needs to be 

equipped with vertical tail assembly and thus, tail shake phenomenon issue is still 

relevant and needs to be addressed appropriately. 

1.3 Review of Previous Related Tests 

 

Previous researches such as Moedersheim and Leishman (1995) had done 

some total pressure measurements on the rotor wake but the advance ratios of the 

works were very low, which were only up to 0.3. Consequently the wake did not 

impinge on the empennage region. According to Sheridan (1979) and Ghee and 

Elliott (1995), the rotor hub wake can have a considerable influence on the flow 

environment in the vicinity of tail parts at high advance ratios. Therefore it is a need 

to do the investigations at higher advance ratios beyond 0.3, and this research aims to 

fulfil it. 
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Very little information on tail shake is available in the open literature because 

such information is commercially sensitive to manufacturers (Coton, 2009; Roesch 

and Dequin, 1983). There are only a few public papers on this subject and to make 

worst, some specific data and results are omitted to avoid being used by others. 

Hence, the information of these papers is not completed and could not straightly be 

used. As for instance, the chapter of tail shake test in Documentation Training (2006) 

provided by Eurocopter France to UTM-Aerolab is not furnished with the details of 

test configurations and data analysis - believed to be due to the confidential issues. 

Therefore it is hope that the open literature of this work can contribute literatures and 

thus benefit the rotorcraft community. 

1.4 Research Key Area 

 

As stated by Eurocopter (2007), the helicopter tail shake phenomenon is still 

not fully understood, justifying more researches to resolve this phenomenon. This 

work has shown merit as it manages to attract the Eurocopter France to assign one of 

its aerodynamicists to advice during the preliminary stage of the research. 

 

Waard and Trouvé (1999) explain the helicopter tail shake phenomenon is 

being an interaction between the aerodynamic excitation, which is related to flight 

parameters, and the structural response, which is related to structure characteristics. 

As the aerodynamic excitation and structural response are two broadly diverse areas 

which are quite implausible to be covered in one merely PhD research, this study 

focused only on the aerodynamic excitation issue, in which works concentration will 

be on the hub wakes as it is believed to be the major contributor of the tail shake 

phenomenon (Cassier et al., 1994; Hermans et al., 1997; Eurocopter, 2007). Figure 

1.6 illustrates the schematic diagram of the main-rotor-hub assembly where the hub 

wake is originated. 
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     Figure 1.6: Helicopter main-rotor-hub assembly (inside the dotted-box) 

 

The core analysis of this research work is to quantify the unsteadiness of 

helicopter's main-rotor-hub assembly wake with regards to the changes of flight 

parameters (i.e. the forward flight speed and main rotor rpm) and pylon 

configurations. 

1.5 Problem Statement 

 

 Tail shake is very complex problem (Coton, 2007). It is one of the 

Interactional Aerodynamics (I/A) problems and remains, despite a considerable 

effort by different companies over the last two decades, difficult to predict with 

confidence before the first flight of a new helicopter (Waard and Trouvé, 1999). 

According to Eurocopter (2007), the helicopter tail shake phenomenon is an 

interesting problem to helicopters manufacturer but yet a very difficult subject to be 

understood.  

 

 As the helicopter main-rotor-hub assembly's wakes is believed to be the 

major contributor of the tail shake phenomenon (Cassier et al., 1994; Hermans et al., 

1997; Eurocopter, 2007), this project will concentrate on the research of the unsteady 

aerodynamic characters triggered by helicopter’s main-rotor-hub assembly wake. 

Moedersheim and Leishman (1995) had done some total pressure measurements on 

the rotor wake but the advance ratios of the works were only up to 0.3, which is too 

low for the hub wake to influence the flow environment in the vicinity of tail parts. 

Consequently it is a demand to do the investigations at higher advance ratios beyond 

Main-rotor-hub Assembly 
Main Rotor 
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0.3, and this research aims to cater the demand and thus giving additional 

information and contribution. 

1.6 Objective of the Research Program 

 

 The objective of this study is to improve the understanding of the unsteady 

aerodynamic loads characters triggered by the wake of the helicopter’s main-rotor-

hub assembly that lead to the helicopter tail shake phenomenon by proposing 

experimental and numerical investigations to gain useful information which has the 

potential to minimize the long dragged helicopter’s tail shake problem. 

1.7 Scope of Work 

 

This study concentrates on the aerodynamic loads fluctuation of the unsteady 

main-rotor-hub assembly wake that leads to helicopter tail shake phenomenon.  

 

The project needs to design and fabricate the appropriate experimental set-up, 

do the Computational Fluid Dynamic (CFD) modelling and simulation, develop the 

test procedure, instrumentations and data analysis that should be able to predict the 

unsteady aerodynamic loads fluctuation elicited by helicopter’s main-rotor-hub 

assembly wake.  
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