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ABSTRACT 

 

 

 

 

Catalytic isomerization of n-alkane has been one of the important processes 

in petrochemical refining industry to increase the octane number of gasoline. This 

study investigates the catalytic activity of Ir/Pt-HZSM5 for n-pentane isomerization. 

The potential of iridium (Ir) as a catalyst for n-pentane isomerization was 

preliminarily investigated by using Ir-HZSM5. The result showed that Ir has a great 

potential to be used as a promoter, hence as a co-promoter for Pt-HZSM5.           

Ir/Pt-HZSM5 was prepared by impregnation of Ir on 0.1wt% Pt-HZSM5. The 

catalyst was characterized with X-Ray Diffraction (XRD), Surface Area Analyzer, 

Fourier Transformation Infra Red (FTIR), Nuclear Magnetic Resonance (NMR), 

Electron Spin Resonance (ESR) and X-Ray Photoelectron Spectroscopy (XPS). The 

acidity was determined by 2,6-lutidine adsorbed FTIR spectroscopy, while the 

catalytic activity was carried out in a microcatalytic pulse reactor. The results 

showed that Ir in the form of IrO2 was bonded to perturbed silanol groups. The 

presence of 0.1 wt% Ir slightly increased the acidity of Pt-HZSM5 and selectivity of 

isopentane. Ir enhanced the formation of protonic acid sites which participate in the 

isomerization, and inhibited the formation of hydroxyl groups which may participate 

in the enhancement of the cracking reaction. An increase in Ir loading (0-2.0 wt%) 

continuously decreased the acid sites. At low Ir loading, cracking process proceed 

through dimerization-cracking step, whereas high Ir loading reduces the contribution 

of dimerization-cracking step and promotes the contribution of hydrogenolysis. An 

increase in Si/Al ratio (23-280) decreased the number of strong acid sites which led 

to a decrease in the activity towards n-pentane isomerization. From the Response 

Surface Methodology (RSM) experiments, the optimum conditions for the n-pentane 

isomerization over Ir/Pt-HZSM5 were at treatment temperature of 723 K, treatment 

time of 6 h, reaction temperature of 548 K and flow of hydrogen over weight of 

catalyst, F/W of 500 ml g
-1

 min
-1

 in which the predicted value for the n-pentane 

conversion, isopentane selectivity and isopentane yield was 63.0%, 98.2% and 

61.9%, respectively. The catalytic activity studies confirmed that n-pentane 

isomerization over Ir/Pt-HZSM5 strongly depending on the promotive effect of 

hydrogen. Ir/Pt-HZSM5 exhibited high stability during the coke removal process 

which was shown by the high activity of Ir/Pt-HZSM5 in the n-pentane isomerization 

after 90 pulses (30 h).   
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ABSTRAK 

 

 

 

 

Pengisomeran bermangkin n-alkana telah menjadi salah satu proses penting 

dalam industri penapisan petrokimia untuk meningkatkan nombor oktana petrol. 

Kajian ini meneliti aktiviti pemangkin Ir/Pt-HZSM5 untuk pengisomeran n-pentana. 

Potensi iridium (Ir) sebagai pemangkin untuk pengisomeran n-pentana awalnya 

dikaji dengan Ir-HZSM5. Hasil menunjukkan bahawa Ir berpotensi besar untuk 

digunakan sebagai penggalak, justeru sebagai penggalak bersama untuk Pt-HZSM5. 

Ir/Pt-HZSM5 telah disediakan dengan pengisitepuan Ir ke atas 0.1wt% Pt-HZSM5. 

Pemangkin telah dicirikan dengan Pembelauan Sinar-X (XRD), Analisis Luas 

Permukaan, Transformasi Fourier Inframerah (FTIR), Magnet Nuklear Beresonans 

(NMR), Putaran Elektron Beresonans (ESR) dan Spektroskopi Fotoelektron Sinar-X 

(XPS). Keasidan telah ditentukan oleh spektroskopi FTIR jerap lutidina, manakala 

aktiviti pemangkin telah dijalankan dalam reaktor denyut microkatalitik. Keputusan 

menunjukkan bahawa Ir dalam bentuk IrO2 terikat kepada kumpulan silanol terkacau. 

Kehadiran 0.1wt% Ir meningkatkan sedikit keasidan Pt-HZSM5 dan kepemilihan 

terhadap isopentana. Ir meningkatkan pembentukan tapak asid berproton yang 

mengambil bahagian dalam proses pengisomeran, dan menghalang pembentukan 

kumpulan hidroksil yang boleh mengambil bahagian dalam peningkatan tindak balas 

keretakan. Penambahan beban Ir (0-2.0 wt%) terus mengurangkan tapak asid. Pada 

pembebanan rendah Ir, proses keretakan berlaku melalui langkah pendimeran-

keretakan, manakala pembebanan tinggi Ir mengurangkan sumbangan langkah 

pendimeran-keretakan dan menggalakkan sumbangan hidrogenolisis. Peningkatan 

nisbah Si/Al (23-280) mengurangkan bilangan tapak asid kuat yang membawa 

kepada penurunan dalam aktiviti pengisomeran n-pentana. Dari eksperimen 

Metodologi Respons Permukaan (RSM), keadaan optimum bagi pengisomeran          

n-pentana terhadap Ir/Pt-HZSM5 adalah suhu rawatan 723 K, masa rawatan 6 h, 

suhu tindakbalas 548 K dan aliran hidrogen bahagi berat pemangkin, F/W sebanyak 

500 ml g
-1

 min
-1

 di mana nilai yang diramalkan untuk penukaran n-pentana, 

kepemilihan isopentana dan hasil isopentana adalah 63.0%, 98.2% dan 61.9%, 

masing-masing. Kajian aktiviti pemangkin mengesahkan bahawa pengisomeran              

n-pentana terhadap Ir/Pt-HZSM5 amat bergantung pada kesan penggalakan daripada 

hidrogen. Ir/Pt-HZSM5 menunjukan kestabilan yang tinggi semasa process 

penyingkiran kok yang dibuktikan melalui aktiviti yang tinggi untuk Ir/Pt-HZSM5 

dalam pengisomeran n-pentana selepas 90 denyutan (30 j).  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Research Background 

 

 

 Recently, the increasing awareness in improving environmental protection 

and promoting efficiency of automotive motors encourages the formulation of new 

catalysts and development of new processes for gasoline production. The widespread 

removal of lead antiknock additive from gasoline and the rising demands of high-

performance internal-combustion engines are increasing the need for octane, or 

knock resistance, in the gasoline pool. Thus, the branched alkanes will play a major 

role as gasoline components due to the fact that they have higher octane number than 

linear alkanes. For example, research octane number (RON) of n-pentane is 62, while 

the isopentane is 92 (Ghosh et al., 2006). For this reason, the use of gasoline with 

higher branched alkanes proportions is an alternative to obtain the required properties 

of fuel and it can be achieved by isomerizing n-pentane and n-hexane, which are the 

main component of light straight run (LSR) gasoline (Wang et al., 2004). 

 

 

The catalysts commercially used for the earlier industrial isomerization 

process are Friedel Crafts catalysts such as AlCl3, SbCl3 and FeCl3. However, these 

catalysts do not exist anymore due to problems of corrosion of the reactor and the 

disposal of the used catalyst. Then, bifunctional catalysts containing metallic sites for 

hydrogenation-dehydrogenation and acid sites for skeletal isomerization via 

carbenium ions were used (Weitkamp, 1982).  It is known that platinum supported on 

chlorinated  alumina  was  effective  for  isomerization of  n-alkanes  and  capable   to  



2 

 

 
 

perform the isomerization at lower temperature of 370-470 K.  However, this catalyst 

causes corrosion and very sensitive to water and sulphur even in concentration as low 

as 10 ppm (Ono, 2003). 

 

 

More recently, bifunctional catalyst of metal supported on zeolite was 

developed and a high conversion which was near to equilibrium value was obtained 

upon the catalyst was used at medium temperature of 533-588 K (Zhang et al., 

1995). Zeolites have drawn much attention as support materials due to their high 

surface area, acidic nature and well-defined structure (Corma, 1997; Rahimi and 

Karimzadeh, 2011; Lima et al., 2011). In addition, some undesired side effects 

observed with other catalysts, such as corrosion, can be avoided. Among the 

available zeolites, a high-silica zeolite of the pentasil family, like HZSM5, has shown 

to be promising catalyst support for isomerization because of its acidity, shape 

selectivity, and thermal stability (Cañizares et al., 1997). The presence of promoters 

such as platinum (Fujimoto et al., 1992; Aboul-Gheit et al., 2011a; Chao et al., 2010; 

Aboul-Gheit et al., 2011b), gallium (Iglesia et al., 1992) and zinc (Biscardi et al., 

1998; Biscardi and Iglesia, 1999; Triwahyono et al., 2011) in zeolite may favour the 

activity and selectivity for isomerization. In particular, platinum supported on 

HZSM5 was found to be active and stable for the isomerization of n-alkanes 

(Fujimoto et al., 1992). 

 

 

It has been reported that the isomerization process over bifunctional 

heterogeneous catalysts was influenced by the hydrogen spillover phenomenon 

(Pajonk, 2000). The promotive effect of hydrogen has been interpreted by the 

generation of protonic acid sites, in which the hydrogen migrates or spills over from 

noble metal sites onto the acidic oxide support, during the reaction (Hattori, 1993). 

However, this hydrogen spillover effect has only been observed for a limited class of 

catalysts, including zeolite supported metal catalysts (Fujimoto et al., 1992; 

Triwahyono et al., 2011) and zirconia based acid catalysts (Ebitani et al., 1991; 

Hattori and Shishido, 1997; Triwahyono et al., 2003a; Triwahyono et al., 2006; 

Ruslan et al., 2011), with different mechanisms and rate formation of protonic acid 

sites (Conner and Falconer, 1995).  Therefore, the development of new catalysts with 
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a better hydrogen spillover phenomenon and higher activity is necessary for the 

isomerization process. 

 

 

In certain cases, the introduction of a second metal is sometimes necessary to 

increase the activity and stability of the support and suppress the production of 

cracked products (Blomsma et al., 1997a; Mao et al., 2000).  In addition to platinum, 

gallium and zinc, iridium has been used as a co-promoter to give these effects. In 

catalytic reforming, iridium species are well known co-promoters that are added to 

catalysts because of their stability during the coke removal process (Huang et al., 

1989; Sinfelt, 1976; Dees and Ponec, 1989). Yang and Woo (1992) reported that    

Pt-Ir/NaY enhanced the activity and stability for the n-heptane reforming reaction 

than the Pt/NaY catalyst due to a decrease in the formation of coke. Additionally, 

Aboul-Gheit et al. (2008a) reported that iridium loaded on Pt-HZSM5 enhanced the 

catalytic activity for n-hexane hydroconversion, most probably due to the higher 

hydrogenation activity.  

 

 

Although several studies have reported the isomerization of n-alkanes over 

iridium and platinum supported on zeolite catalysts, however, there is no detailed 

study on the interaction of iridium with the support and active sites that participate in 

the formation of active protonic acid sites from molecular hydrogen via hydrogen 

spillover phenomenon, as well as its relationship to the isomerization process over 

Ir/Pt-HZSM5 were reported. 

 

 

 

 

1.2 Problem Statement and Hypothesis 

 

 

Recently, parallel to the increasing awareness in improving environmental 

protection, the petrochemical refinery industry constantly reformulated their gasoline 

composition in order to improve their product quality while minimizing undesirable 

effects to human and environment.  The extensive removal of lead antiknock additive 

from gasoline and the rising demands of high-performance internal-combustion 

engines are increasing the need for octane, or knock resistance, in the gasoline pool. 
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Thus, the isomerization of n-alkanes to branched alkanes is a useful industrial 

process due to the fact that branched alkanes have higher octane number than linear 

alkanes. However, the production of branched alkanes is affected by the fierce 

competition between isomerization and cracking reaction, including another problem 

such as fast deactivation of the catalyst due to coke deposition. In order to overcome 

these problems, the need to design new modified catalyst with better properties 

which could possibly give a higher yield of branched alkanes is an imperative task. 

Among the metal present in nature, iridium was shown to be active for 

hydrogenolysis process and has been incorporated as a co-promoter in the naphtha 

reforming catalyst to minimize deactivation by coke deposition (Sinfelt, 1976; Dees 

and Ponec, 1989; Huang et al., 1989). In addition, it has been reported that the 

combination of iridium to platinum based catalyst increased the yield of the catalyst 

towards n-alkanes isomerization (Yang and Woo, 1992; Ali et al., 2001; Aboul-Gheit 

et al., 2008a). 

 

 

Although several studies have reported the isomerization of n-alkanes over 

iridium and platinum supported zeolite, no detail study on the hydrogen spillover 

phenomenon and its relationship to the isomerization process over this catalyst were 

discussed. Therefore it is desirable to study the hydrogen spillover phenomenon of 

Ir/Pt-HZSM5 for the n-pentane isomerization and its association to the enhancement 

in the isomerization process and inhibition in the formation of coke. It is expected 

that iridium species loaded on Pt-HZSM5 will form an interaction with Pt-HZSM5, 

simultaneously increase the number of strong Brönsted and Lewis acid sites and the 

number of protonic acid sites via hydrogen spillover phenomenon. According to the 

“hydrogen spillover phenomenon”, hydrogen molecules are dissociatively adsorbed 

on the metal sites to form hydrogen atoms, followed by the release of electrons near 

to the cus metal cations forming protonic acid sites. Then, electrons will interact with 

second hydrogen to form hydride ions. The protonic acid sites originated from this 

phenomenon will promote the isomerization reaction via acid catalyzed mechanism 

and thus enhance the isomerization process. Whereas, the interaction between 

hydride ions on Lewis acid sites is expected to suppress the formation of coke on the 

surface of catalyst. Hydrogen adsorption FTIR and ESR spectroscopy will be used to 

determine the properties-activity relationship of Ir/Pt-HZSM5. Moreover, the 
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optimum conditions of n-pentane isomerization over Ir/Pt-HZSM5 will be 

determined by Response Surface Methodology (RSM). 

 

 

 

 

1.3 Objectives of the Study 

 

 

The objectives of this study are: 

 

1. To prepare Ir/Pt-HZSM5 catalyst by impregnation method. 

2. To characterize the physical and chemical properties of Ir/Pt-HZSM5. 

3. To study the interaction of iridium species with Pt-HZSM5 as well as its 

relationship to the n-pentane isomerization. 

4. To study the effect of iridium loading on the properties and reaction 

mechanism of n-pentane isomerization over Ir/Pt-HZSM5. 

5. To study the effect of Si/Al ratio on the properties and catalytic activity of 

Ir/Pt-HZSM5. 

6. To study the optimum condition for n-pentane isomerization over            

Ir/Pt-HZSM5 by Response Surface Methodology (RSM). 

 

 

 

 

1.4 Scope of Research 

 

 

As the preliminary study, Ir-HZSM5 was used in order to investigate the 

potential of iridium metal for n-pentane isomerization. Ir-HZSM5 was prepared by 

wetness impregnation of HZSM5 with an aqueous solution of IrCl3∙3H2O, followed 

by drying at 383 K overnight and calcination at 823 K for 3 h in air. Then, the 

catalyst was characterized and subjected to n-pentane isomerization. 

 

 

For the preparation of Ir/Pt-HZSM5, firstly, Pt-HZSM5 were prepared by 

incipient wetness impregnation of HZSM5 with an aqueous solution of H2PtCl6∙H2O, 

followed by drying at 383 K overnight and calcination at 823 K for 3 h in air. The 

prepared catalyst was then impregnated with aqueous solution of IrCl3∙3H2O to 
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obtained Ir/Pt-HZSM5, followed by drying at 383 K overnight and calcination at 823 

K for 3 h in air. 

 

 

The physical and chemical properties of Ir/Pt-HZSM5 was characterized by 

using X-Ray Diffraction (XRD), Surface Area Analyzer, X-Ray Photoelectron 

Spectroscopy (XPS), Fourier Transform Infra Red spectroscopy (FTIR) spectroscopy 

of adsorbed 2,6-lutidine. 

 

 

The interaction of iridium species with Pt-HZSM5 was studied by Nuclear 

Magnetic Resonance (NMR), Fourier Transform Infra Red spectroscopy (FTIR) and 

hydrogen adsorption FTIR. The hydrogen adsorption on 2,6-lutidine preadsorbed 

FTIR and hydrogen adsorption ESR spectroscopy were used to determine the active 

sites that participate in the formation of active protonic acid sites and electron from 

molecular hydrogen, respectively. Then, Ir/Pt-HZSM5 was subjected to n-pentane 

isomerization under hydrogen atmosphere in order to study the role of hydrogen 

molecule-originated protonic acid sites on n-pentane isomerization. In this study, the 

amount of iridium was adjusted to 0.1 wt% and HZSM5 with Si/Al atomic ratio of 

23 was used as a support material. 

 

 

The effects of iridium loading on the properties and catalytic activity of   

Ir/Pt-HZSM5 were studied by varying the amount of iridium loading (0.1, 0.3, 0.5, 

1.0, 2.0 wt%).  HZSM5 with Si/Al atomic ratio of 23 was used as a support material. 

This study was conducted in order to elucidate the effects and limitation of iridium 

loading on the properties and catalytic activity of the catalyst towards n-pentane 

isomerization. In addition, the plausible reaction mechanisms of n-pentane 

isomerization over Ir/Pt-HZSM5 with different amounts of iridium loading were also 

studied.  The optimum loading of iridium observed in this study was used in the 

subsequent study. 

 

 

The effects of Si/Al ratio on the n-pentane isomerization over Ir/Pt-HZSM5 

were studied by varying the Si/Al atomic ratio of commercial HZSM5 (23, 50, 80 

and 280). This study was conducted in order to study the influence of Si/Al ratio on 
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the properties of Ir/Pt-HZSM5, and consequently on the performance of              

Ir/Pt-HZSM5 in n-pentane isomerization. The most potential catalyst observed in this 

study was used in the optimization study by Response Surface Methodology (RSM) 

analysis. 

 

 

Finally, the optimum conditions for n-pentane isomerization over            

Ir/Pt-HZSM5 was identified by RSM using Statsoft Statistica 8.0 software with   

face-centered central composite design (FCCD) method. The independent variables 

used in this study were treatment temperature, treatment time, reaction temperature 

and flow of hydrogen over weight of catalyst.  

 

 

  

  

1.5 Significance of Study 

 

 

 This study was conducted to prepare the catalyst of Ir and Pt promoted on 

HZSM-5 (Ir/Pt-HZSM5). A detailed investigation of the properties of the catalyst, 

the active sites that participate in the formation of active protonic acid sites from 

molecular hydrogen, as well as its relationship to the catalytic activity is conducted.  

This catalyst is expected to give high conversion and selectivity for isopentane and 

consequently will be beneficial for knowledge transfer and also in oil and gas 

industries. In addition, the understanding of the properties-activity relationship of 

Ir/Pt-HZSM5 becomes an archetype in the development of new type of catalyst for 

isomerization of n-alkane. 

 

 

 

 

1.6 Thesis Outline  

 

 

 This thesis is divided into five chapters.  In Chapter 1, introduction is given 

about the fuel processing demand and the importance of high research octane 

number, which cleared the vision of catalytic isomerization process. The 

conventional preparation methods of catalyst were also mentioned and the potential 



8 

 

 

of Iridium as second metal was highlighted. Problem statement of the current 

research was stated to give the clear objectives of the present study, and the scope of 

study covers the research work done to meet these objectives. 

 

 

Chapter 2 or literature review covers the detailed reviews of all the previous 

studies that have been done in order to get clear view in the synthesis of              

Ir/Pt-HZSM5, the characterization of the catalyst, and the effect of hydrogen on the 

n-pentane isomerization.  

 

 

Chapter 3 or experimental methodology describes the particulars of the 

materials and chemical reagents used in the present work, the procedure for catalyst 

preparation, characterization and n-alkane isomerization reaction which consists of 

experimental setup, and product analysis calculation. 

 

 

In Chapter 4, results and discussion was divided into four parts, (i) effect of 

iridium loading on HZSM5 for isomerization of n-pentane, (ii) IR study of iridium 

bonded to perturbed silanol groups of Pt-HZSM5 for n-pentane isomerization, (iii) 

Ir/Pt-HZSM5 for n-pentane isomerization: Effect of iridium loading on the properties 

and catalytic activity, and (iv) Ir/Pt-HZSM5 for n-pentane isomerization: Effect of 

Si/Al ratio and reaction optimization by response surface methodology. 

 

 

Finally, Chapter 5 covered the conclusions about the study. The 

recommendations for future studies were also given in this chapter. 
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