GENERATION OF HOMOGENEOUS GLOW DISCHARGE USING A COMBINATION OF FINE WIRE MESH AND PERFORATED ALUMINIUM ELECTRODE

NORAIN BINTI SAHARI

A project report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Electrical-Power)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

Special for:

My beloved parents

And my beloved husband

Dedicated, in thankful appreciation for support, encouragement and understandings to my supervisor

Assoc. Prof. Dr Zolkafle bin Buntat

ACKNOWLEDGEMENT

I would like to express my profound gratitude to my supervisor Associate Professor Dr. Zolkafle Bin Buntat for overwhelming help, support and guidance throughout my graduate studies.

I am grateful for the financial support from Universiti Tun Hussein Onn that I received during my graduate study. I am also thankful to the staffs of Institute of High Voltage (IVAT) for providing excellent graduate education and friendly environment.

Lastly, I am very grateful to all my friends, relatives and especially to my husband for his patience, support and contribution throughout this project.

ABSTRACT

Nowadays, a gas discharge plasma applications has rapidly extended due to the greatest chemical freedom offered by the non-equilibrium aspects of the plasma. Among the applications of gas discharge plasma are surface treatment, air pollution control, lasers, lighting, plasma displays, ozone generation and biomedical applications. The most commonly used in plasma industry is the glow discharge plasma. It is known to be generated under high vacuum condition. At low pressure glow discharge plasma, the producing of surfaces and thin films are more effectives and good quality. But, this technique gives disadvantages due to the large cost to maintain at low pressure condition. However, there were many researches that have been done to produce glow discharge at atmospheric pressure. This glow discharge can be stabilize at atmospheric pressure if three simple requirements are fulfilled: (i) use of source frequency of over 1 kHz, (ii) insertion of a dielectric plates between the two metal electrodes, (iii) use of helium dilution gas. Used of helium gas is impractical due to its high cost. In order to generate glow discharge at atmospheric pressure in any gases, it was found that fine wire mesh and perforated aluminium can maintain a stable glow discharges. This thesis focus on the production of homogeneous glow discharge by using a combination of fine wire mesh and perforated aluminium as electrodes. A study was also made to determine the effect of a frequency and gap spacing on the stability of glow discharge.

ABSTRAK

Pada masa kini, penggunaan penyahcasan gas plasma telah berkembang pesat disebabkan aspek bebas kimia yang terdapat pada plasma tidak-seimbang ini. Antara penggunaan penyahcasan gas plasma adalah rawatan permukaan, kawalan pencemaran udara, lazer, pencahayaan, tatapan plasma, penghasilan ozon dan penggunaan perubatan. Kebanyakan plasma yang digunakan dalam industri plasma adalah penyahcasan plasma pijar. Ia dikenali untuk dihasilkan dibawah keadaan vakum yang tinggi. Pada tekanan yang rendah, penghasilan permukaan dan filem nipis adalah lebih efektif dan mendapat kualiti yang bagus. Tetapi, teknik ini tidak memberi faedah kerana ia memerlukan kos yang tinggi untuk kekal pada keadaan tekanan yang rendah. Walaubagaimanapun, banyak kajian telah dijalankan untuk menghasilkan plasma gas ini pada tekanan atmosfera. Penyahcasan gas ini boleh kekal dalam keadaan stabil sekiranya tiga syarat-syarat ini dipenuhi: (i) penggunaan sumber frekuensi melebihi 1 kHz, (ii) penggunaan lapisan dielectric diantara elektrod, (iii) menggunakan gas helium. Penggunaan gas helium tidak praktikal kerana kosnya yang tinggi. Untuk menghasilkan penyahcasan gas ini pada tekanan atmosfera dalam apa jua gas, ia telah dijumpai bahawa penggunaan wayar 'mesh' and aluminium yang berlubang boleh mengekalkan kestabilan penyahcasan gas ini. Tesis ini fokus kepada penghasilan penyahcasan gas yang seragam menggunakan gabungan wayar 'mesh' dan aluminium yang berlubang sebagai elektrod. Kajian juga dibuat utnuk menentukan kesan frekuensi dan jarak elektrod pada kestabilan penyahcasan gas ini.

TABLE OF CONTENT

CHAPTER		TITLE	PAGE
	DEC	LARATION	i
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABST	ГКАСТ	v
	ABST	FRAK	vi
	TABI	LE OF CONTENTS	vii
	LIST	OF TABLES	xi
	LIST	OF FIGURES	xii
	LIST	OF ABBREVIATIONS	XV
	LIST	OF SYMBOLS	xvi
	LIST	OF APPENDICES	xvii
1	INTR	ODUCTION	
	1.1	Research background	1
	1.2	Problem Statement	3
	1.3	Objectives	4
	1.4	Scope of work	4
	1.5	Methodology of project	5
	1.6	Thesis outline	7
2	LITE	RATURE REVIEW	
	2.1	Introduction to glow discharge plasma	8
	2.2	Electrical breakdown of gases	10
	2.2.1	Townsend mechanism of electric breakdown	

	of gas	es	10
2.3	Dielec	ctric barrier discharge	12
	2.3.1	Overview of the dielectric barrier discharge	12
	2.3.2	Properties of the dielectric barrier discharge	14
	2.3.3	Atmospheric pressure low discharge	15
2.4	Pulsec	l glow discharge	18
	2.4.1	Pulsed and RF glow discharge in Helium	
		Atmosphere	19
2.5	Effect	of Principal parameters on glow discharge	
	Genera	ation	20
	2.5.1	Gas dilution	21
		2.5.1.1 Helium gas	21
		2.5.1.2 Neon gas	23
		2.5.1.3 Nitrogen gas	24
	2.5.2	Dielectric barrier	25
	2.5.3	Arrangement of discharge electrode	26
		2.5.3.1 Multipoint-to-plane configuration	27
		2.5.3.2 Wire mesh as an electrode	28
		2.5.3.3 Perforated Aluminium as electrodes	29
	2.5.4	Frequency applied	31
2.6	Applie	cation of glow discharge	32
	2.6.1	Surface modification	32
	2.6.2	Lamps	33
	2.6.3	Plasma displays	34
	2.6.4	Ozone generation	36
	2.6.5	Increasing the surface energy of films and fabrics	37

EXP	ERIMENTAL METHODS AND APPARATUS	
3.1	High frequency power supply	38
	3.1.1 Pulse generator	39
	3.1.2 Components of pulse generator	40
3.2	Operation of pulse generator	42
	3.2.1 Software implementation of pulse generator	43
	3.2.2 Hardware implementation of pulse generator	44
	3.2.3 Ignition coil	45
3.3	Operation Principles of Ignition coil	47
3.4	Hardware implementation of ignition coil	48
3.5	Glow discharge chamber design	48
	3.5.1 Material selection of glow discharge chamber	48
EXP	ERIMENTAL RESULTS AND ANALYSIS	
4.1	Experimental set-up	50
4.2	Results and Analysis of high frequency power supply	51
4.3	Generation of glow discharge	53
	4.3.1 Characterictics of applied voltage and discharge	
	Current	54
	4.3.2 Case I: Influence of frequency	55
	4.3.2.1 Configuration I	55
	4.3.2.2 Configuration II	56
	4.3.3 Case II: Influence of gap spacing	57
	4.3.3.1 Configuration I	58
	4.3.3.2 Configuration II	59
4.4	Discussion	60

CONCLUSION AND FUTURE DEVELOPMENT

5.1	Conclusion	62
5.2	Future development	63

5.2.1 Uniformity of glow discharge system	63
5.2.2 Efficiency of glow discharge plasma system	64

REFERENCES		
------------	--	--

APPENDICES A-C	69-89
APPENDICES A-C	69-

65

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Numerical parameters A and B for calculation of	
	Townsend coefficient	12
3.1	Timing chart values of C1 and C2 for the time machine	40
3.2	List of component for pulse generator	40

LIST OF FIGURES

TITLE

PAGE

1.1	Flow chart of the project	6
2.1	Schematic overview of the basic plasma processes in	
	a glow discharge	9
2.2	Illustration of the Townsend breakdown mechanism	11
2.3	Common dielectric-barrier discharge configuration	13
2.4	The storage phosphor image of filaments in the	
	dielectric-barrier discharge gap in air	14
2.5	Transition from a glow discharge to an arc discharge	16
2.6	A schematic representation of the apparatus	17
2.7	Diffused discharge in between the gap	19
2.8	V-I waveform	19
2.9	Several emissions spectral lines for various applied	
	potential using pulse and sinusoidal supply	20
2.10	Schematic diagram for the measurement Lissajous	
	figure of glow discharge in Helium	22
2.11	Glow discharge at 1.01 kV peak-to-peak and 11.8 kHz	
	frequency at 2.5mm gap distance under atmospheric	
	pressure	22
2.12	Pseudoglow discharge at 2.39 kV peak-to-peak and	
	11.8 kHz frequency at 2.5mm gap distance under	
	atmospheric pressure	23
2.13	Filamentary discharge at 20.09 kV peak-to-peak and	
	11.8 kHz frequency at 2.5mm gap distance under	

	atmospheric pressure	23
2.14	Experimental set-up	24
2.15	Typical waveform of the first breakdown and	
0.16	stable diffuse	24
2.16	Schematic diagram for the experimental system	25
2.17	Schematic diagram of the experimental system	27
2.18	Photograph of corona discharge, glow discharge	
	and spark discharge	27
2.19	Current discharge and Lissajous Figure of SED	
	in pure Argon without wire mesh	28
2.20	Current discharge and Lissajous Figure of SED	
	in pure Nitrogen with wire mesh	28
2.21	Experimental set-up	29
2.22	Voltage and discharge current waveform for	
	steel wire mesh	30
2.23	Voltage and discharge current waveform for	
	perforated aluminium	30
2.24	Different steps in making an IC	33
2.25	Schematic diagram of the working principal	
	of a fluorescent lamp	34
2.26	Schematic representation of a coplanar-electrode	
	a.c plasma displays panel	35
2.27	Schematic representation of a plasma-activated	
	liquid crystal	36
2.28	Scanning electron micrographs of polypropylene	
	fibers	37
3.1	Elements of the high frequency power supply	38
3.2	Schematic diagram of the time machine	39
3.3	The operation of pulse generator	43
3.4	Schematic diagram of pulse generator in Proteus	
	Simulation	44

3.5	The hardware designed for pulse generator	45
3.6	Output waveform of pulse generator on	
	Oscilloscope	45
3.7	Ignition coil with three terminals	46
4.1	Complete experimental set-up for the generation	
4.0	of glow discharge	50
4.2	Output waveform of pulse generator after connected	
	to ignition coil	51
4.3	Graph of output high voltage versus frequency of	
	power supply	52
4.4	Physical structure of perforated aluminium and	
	fine wire mesh	53
4.5	First configuration with the arrangement of two	
	Materials	54
4.6	Second configuration of electrode	54
4.7	Circuit to record discharge current waveform	55
4.8	Voltage and discharge current wavefrom for first	
	configuration at 1mm gap distance	56
4.9	Voltage and discharge current waveform for second	
	configurations at 1mm gap distance	57
4.10	Voltage and discharge current waveform for first	
	configuration at various gap distances	59
4.11	Voltage and discharge current waveform for second	
	configuration at various gap distances	60
5.1	Schematic diagram of glow discharge reactor with	
	matching circuit	64

LIST OF ABBREVIATIONS

Hz	-	Hertz	
ICP	-	Inductive Coupled Plasma	
RF	-	Radio Frequency	
DC	-	Direct current	
CO2	-	Carbon dioxide	
H2	-	Hydrogen	
N2	-	Nitrogen	
Не	-	Helium	
Ar	-	Argon	
DBD	-	Dielectric Barrier Discharge	
APGD	-	Atmospoheric Pressure Glow Discharge	
SED	-	Silent electric discharge	
Al_2O_2	-	Alumina Ceramic	
CRT	-	Cathode Ray Tube	
PDP	-	Plasma display panel	
PALC	-	Plasma adressed liquid crystal	
LC	-	Liquid crystal	
PP	-	Polypropylene	

LIST OF SYMBOLS

E	-	Electric field
V	-	Voltage
d	-	distance
i ₀	-	low initial current
μ_{e}	-	electron mobility
α	-	Townsend coefficient
λ	-	secondary emission coefficient
cm	-	centimetre
А	-	Ampere
kW	-	kilowatt
X	-	thickness of dielectric
р	-	power dissipated
f	-	frequency
C _D	-	dielectric capacitance

LIST OF APPENDICES

APPENDIX NO.TITLEPAGEADatasheet of 555 Timer69BDatasheet of IRFZ44N80CDatasheet of Series Voltage Regulator89

CHAPTER 1

INTRODUCTION

1.1 Research background

In recent years, a gas discharge plasma applications has rapidly extended due to the great chemical freedom offered by the non-equilibrium aspects of the plasma. Gas discharge plasma present considerable interest for a wide range of applications such as surface treatment, air pollution control, lasers, lighting, plasma displays, ozone generation and biomedical applications [1].

The most commonly used in plasma spechtrochemist is the glow discharge plasma. Glow discharge plasmas are known to be generated under a so-called high vacuum condition. The producing of surfaces and thin films are more effectives and relatively good quality under low pressure glow discharge plasma technique. However, this technique gives disadvantages in its production process since it is necessary to maintain at low pressure condition and therefore, a large amount of cost is necessary to keep the system air-tight.

In general, the glow plasma is thought to be stable only in a low pressure discharge. This is because the discharge concentrates on one point a pressure of about 100 Torr. When the pressure is rising, the discharge shifts to sparks and arc at about atmospheric pressure and thus, making it impossible to uniformly process an object [2]. But, glow discharge is possible to stabilize at atmospheric pressure if three simple requirements are fulfilled: (i) use of source frequency of over 1 kHz, (ii)

insertion of a dielectric plate (or plates) between the two metal electrodes, (iii) use of helium dilution gas [3,4]. Used of helium as dilution gas is able to produce a stable and homogeneous glow discharge at atmospheric pressure is due to its low breakdown stress and thus, makes it easy to produce the small avalanches that are required [5]. On the other hand, the use of helium as dilution gas is impractical due to its high cost. It is increases in interesting of researchers to use other low-cost of gases. In this field, a new technique of stabilizing the homogeneous glow discharge at atmospheric pressure in any gases by a 50 Hz source is proposed [6]. This method used a fine wire mesh as a discharge electrodes and it is found that fine mesh electrodes can maintain a stable glow discharges in any type of gases. In [7], it has been confirmed that wire mesh is very important in increasing the possibility of the existence of glow discharge plasma at atmospheric pressure. They also suggested that the mesh could influence the discharge by its electrical resistance which is higher than metallic electrodes. Besides fine mesh wire, perforated aluminium sheet electrode is introduced for comparison with the well-known fine stainless steel wire mesh. From this work, it was found that perforated material electrode can produce a homogeneous glow discharge as an alternative of the well established fine steel wire mesh [8].

This thesis focuses on the production of homogeneous glow discharge by using a combination of fine wire mesh and perforated aluminium as electrodes. A study of the relevant literature has confirmed that uniform and stable glow discharge also dependent on the material of electrodes used. Uniformly distribution of the electric field strength throughout the electrode surface may be due to the shape and size of the holes, as well as the material used. However, the reason why glow discharge has different stability when different configuration of material used as electrodes is not clear. For this reason, further study on the effect of material used as electrodes is proposed in this project. Combination of these two materials as electrodes is introduced instead of using these two materials as electrodes separately. A study was also made to determine the effect of a frequency and pulse of the input voltage on the stability of glow discharge.

1.1 Problem Statement

Nowadays, the use of plasma which is generated by discharge has widely applications including surface treatment of semiconductor, formation of thin films, ozone generation, biomedical applications etc. Glow discharge is well-known generated under low-pressure condition but it is costly in order to maintain at lowpressure state. Thus, many researchers have worked out to introduce techniques which can generate glow discharge plasma under atmospheric pressure to replace the conventional low pressure glow discharge method. In order to achieve a stability of glow discharge at atmospheric pressure, it depends on the feed gas, the dielectric barrier material, the discharge electrode structure, the pulsed supply frequency, the gap spacing and the humidity of the gas.

Homogeneous glow discharges can be established at atmospheric pressure by using special kinds of electrode material and configuration. In [6], it has shown that with wire mesh as electrodes behind the dielectric barriers homogeneous discharge can be obtained with any gas at atmospheric pressure. This result also has been confirmed by [7], and it has also been found that fine mesh electrodes produce a more stable glow than coarse mesh electrodes.

Furthermore, for comparison with well established fine wire mesh, perforated aluminium electrode was introduced into reaction chamber [8]. It has been found that perforated aluminium with small holes can generate a homogeneous glow discharge compared to fine wire mesh electrode. Initially, perforated aluminium is expected to produce higher electric field strength than fine wire mesh due to its sharp edges holes. Higher electric field strength can cause ionization that will produce more micro-discharges near the electrodes. It further, will give a discharge that fills up the whole volume of the discharge chamber.

Nevertheless, simulation results on the observation of electric field strength between these two materials showed that wire mesh configuration produced higher electric field strength than perforated aluminium. This result proved that electric field strength does not influence the stability of the glow discharge. Thus, it makes the reason why the glow discharge produced by the configuration with perforated aluminium has better stability than the wire mesh is unclear.

In this present study, production of glow discharge by using a combination of fine wire mesh and perforated aluminium as electrodes will be investigated. In addition, the effect of frequency and pulse supply on the stability of glow discharge also will be studied.

1.2 Objectives

The aim of this project is to study on the effect of new configuration and combination of two materials on the generation of glow discharge. This aims will be met through these objectives:

- 1. To develop glow discharge chamber which having different configuration consist of a combination of fine wire mesh and perforated aluminum electrodes.
- 2. To develop input driver of pulsed voltage that will be used as a supply for the chamber.
- 3. To conduct an experiment to study the effect of each discharge configuration on glow discharge characteristics.
- 4. To study the effect of glow discharge stabilization when frequency and gap distance of electrode is varied.

1.4 Scope of work

The scope of this project in generating a stable glow discharge is stated as follows:

 Several glow discharge chamber with different configuration of a combination of fine wire mesh and perforated aluminum electrodes will be developed.

- 2. Input driver of pulsed voltage will be developed.
- 3. An experimental work will be conducted to study the effect of each discharge configuration on glow discharge characteristics.
- 4. The glow discharge generated will then be detected and then will be analyzed in order to identify the homogeneity of the discharge.

1.5 Methodology of Project

This project is done in sequence in order to ensure that the project will be done in a specific time. The flow of this project is as shown below:

Figure 1.1 Flow chart of the project

This thesis is divided into five chapters. Each chapter is briefly described as below:

Chapter 1 is the introduction of this project including brief description on background of study, problem statements, objectives, scopes of work and methodology of this project.

In chapter 2, the literature review on glow discharge is being discussed. Several sources of information consist of research papers, journal and reference books that help the implementation of this project are further elaborated.

In chapter 3, the methodologies and apparatus of the project are being discussed. It consists of two main parts, the high frequency power supply and the glow discharge chamber.

The results and analysis of the project are discussed in chapter 4. Two types of results are covered in this chapter which are influences of frequency and influences of gap spacing.

Chapter 5 is the conclusion and future development of this project. Some suggestions are provided in this chapter for further improvement of this project.

REFERENCES

- 1. Bogaerts A, Neyts E, Gijbels R, Mullen J V D, "*Gas discharge plasma and their applications*", Spectrochimica Acta Part B 57, pp. 609-658 (2002)
- Okazako S, Kogoma M, "Method for monitoring atmospheric pressure glow discharge plasma using current pulse-count and/or Lissajous figure", United States Patent.(1996)
- 3. Kanazawa S, Kogoma M, Moriwaki T and Okazaki S, "*Stable glow plasma at atmospheric pressure*", J.Phys. D: Appl.Phys., Vol 21, pp. 838-840.(1988)
- Yokoyama T, Kogoma M, Moriwaki T and Okazaki S, "The mechanism of the stabilisation of glow plasma at atmospheric pressure", J.Phys. D : Appl.Phys., Vol. 23, pp. 1125-1128. (1990)
- 5. Raizer Y P, "Gas Discharge Physics", (Berlin, Springer) (1991)
- 6. Okazaki S, Kogoma M, Uehara M and Kimura Y, "Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source", J.Phys. D: Appl.Phys., Vol 26, pp. 889-892. (1993)
- 7. Trunec D, Brablec A and Buchta J, "Efficiency of ozone production in atmospheric pressure glow and silent discharges", Proc. of Int. Symp. On

High Pressure, Low Temperature Plasma Chemistry, Hakone VII, Greifwald, Germany, pp. 313-317. (2000)

- Buntat Z, Smith I R, Noor. A. M. Razali, "Generation of a Homogeneous Glow Discharge: A Comparative Study between the Use of Fine Wire Mesh and Perforated Alumunium Electrodes", Applied Physics Research, Vol. 3, No. 1, May 2011.
- W.O Walden, W. Hang, B.W. Smith, J.D Winefordner, W.W. Harrison, *"Microsecond-pulse glow discharge atomic emission"*, Fresenius J. Anal. Chem. 355 (1996) 442-446
- 10. Kekez M M, Barrault M R and Crags J D, 1970, *J. Phys. D: Appl. Phys.* 3 1886.
- 11. Kogoma M and Okazaki S, "Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure", J.Phys. D : Appl.Phys., Vol 27, pp. 1985-1987.(1994)
- F. Tholin, D. L. Rusterholtz, D. A. Lacoste, D. Z. Pai, S. Celestin, J. Jarrige, G. D. Stancu, A. Bourdon, C. O. Laux, "Images of Nanosecond Repetitively Pulsed Glow Discharge between Two Point Electrodes in air at 300 K and at Atmospheric Pressure", IEEE Transaction on Plasma Science, Vol.39, No.11, November 2011.
- Tepper J and Lindmayer M, "Investigations on two different kinds of homogeneous barrier discharges at atmospheric pressure", Proc. of Int. Symp. On High Pressure, Low Temperature Plasma Chemistry, Hakone VII, Greifwald, Germany, pp. 38-43.(2000)

- 14. P.Zheng and U.Kortshagen, "Atmospheric Pressure Glow Discharge Initiation From a Single Electron Avalanche", IEEE Transaction on Plasma Science, Vol 33, No 2, pp 318-319 (2005)
- 15.Hood J L Int. Conf. on Gas Discharges and their Applications, Edinburgh, 86 (1990)
- 16. Kogelschatz U, Eliasson B, Egli W, J. Physique IV, Vol. 7, Colloque C4, October 1997, C4-47 to C4-66.
- 17.Klemenc A, Hinterberger H and Hofer H 1937 Z. Elektrochem. 43 261
- 18. J.Reece Roth, IEEE Fellow, Prospective Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma
- P. Gulati, U.N.Pal, N. Kumar, V Srivastava, R. Prakash and V. Vyas, "Pulsed and RF glow discharge in Helium Atmosphere", International Symposium on Vacuum Science on Vacuum Science & Technology and its Application for Accelerators (2012)
- 20. X. L. Wang, Y. P. Hao and L. Yang, "Lissajous Figure Characteristics of High Frequency Homogeneous Dielectric Barrier Discharge in Helium at Atmospheric Pressure", International Conference on High Voltage Engineering and Applications, November 9-13 (2008)
- 21. J. Ran, H. Luo and X. Wang, "A dielectric barrier discharge in neon at atmospheric pressure", Journal of Physics D: Applied Physics, 5pp (2011)
- 22. H. Luo, Z. Liang, X. Wang, Z. Guan and L. Wang, 2010 "Homogeneous dielectric barrier discharge in nitrogen at atmospheric pressure", Journal of Physics D: Applied Physics, March 2010

23. R. Vertriest, R. Morent, J. Dewulf, C. Leys and H. V. Langenhove, 2003
"Multi-pin-to-plate atmospheric glow discharge for the removal of volatile organic compounds in waste water", Plasma Source science and technology, June 2003