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   ABSTRACT 

 

 

Blended learning is proposed as a sufficient environment in supporting 

students’ mathematical learning based on mathematical thinking. This research 

explores a blended learning model for teaching and learning of multivariable calculus 

in fostering students’ mathematical thinking based on the data gained through the 

preliminary investigation, the existing model, and integrating creative problem 

solving. The main purpose of this research is to identify the effectiveness of the 

blended learning in developing and supporting students’ thinking powers in the 

construction of mathematical knowledge, problem solving, and in reducing their 

difficulties in multivariable calculus course. The theoretical foundation of the three 

worlds of symbolic, embodied, and formal mathematics was adopted to develop 

strategies for mathematical knowledge construction and to enhance students’ 

mathematical thinking. Sixty two first year engineering students participated in this 

study. Data were collected via think-aloud verbal protocols, students’ written 

solutions to assessments, semi-structured interview, students’ web comments, and 

semi-structured questionnaire. The findings revealed that the students’ mathematical 

knowledge construction and problem solving had improved. They could overcome 

their difficulties in the learning of multivariable calculus. The data collected also 

showed that students used mathematical thinking activities and multiple 

representations of mathematics worlds, especially the symbolic and the embodied 

worlds, when solving the problems.  

 

 

 

 

 

 

 

 



vi 
 

ABSTRAK 

 
 

Pembelajaran sebati dicadangkan sebagai persekitaran yang mencukupi 

dalam menyokong pembelajaran matematik pelajar berdasarkan pemikiran 

matematik. Kajian ini meneroka model pembelajaran sebati dalam pengajaran dan 

pembelajaran kalkulus berbilang pembolehubah kearah memantapkan pemikiran 

matematik. Model ini direkabentuk berasaskan dapatan daripada kajian awal, model 

pembelajaran pemikiran matematik yang sedia ada serta penyelesaian masalah 

kreatif. Tujuan utama kajian ini adalah untuk mengenal pasti keberkesanan 

pembelajaran sebati membentuk dan menyokong daya pemikiran dalam pembinaan 

pengetahuan matematik, penyelesaian masalah dan mengurangkan kesukaran dalam 

kursus kalkulus berbilang pembolehubah. Tiga dunia matematik iaitu simbolik, 

termaktub, dan matematik formal yang diutarakan diaplikasikan untuk membangun 

strategi pembinaan pengetahuan matematik serta memantapkan pemikiran 

matematik. Enam puluh dua pelajar kejuruteraan tahun satu merupakan sampel 

kajian ini. Data diperolehi melalui kaedah protokol mengutarakan fikiran, hasil 

penyelesaian bertulis pelajar dalam penilaian, penilaian struktur bersepara serta 

komen atas talian  dan soal selidik struktur bersepara. Dapatan kajian menunjukkan 

pembinaan pengetahuan matematik pelajar dan penyelesaian masalah bertambah 

baik. Pelajar didapati berkemampuan mengatasi kesukaran dalam pembelajaran 

kalkulus berbilang pembolehubah. Data yang dikumpul juga menunjukkan bahawa 

pelajar menggunakan aktiviti pemikiran matematik dan pelbagai perwakilan dunia 

matematik, terutama dunia simbolik dan termaktub, apabila menyelesaikan masalah. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Introduction 

 

 

Calculus is one of the most important courses for engineering students that is 

offered as a prerequisite course to other advanced mathematics or even engineering 

courses. The importance of calculus learning for engineering students is to provide 

them with ways of working with several mathematical ideas and various 

representations and also use this knowledge in their engineering fields (Roselainy, 

Yudariah, and Sabariah, 2007). The lack of understanding of concepts in calculus 

may hinder the understanding of other concepts or even subjects. In other words, 

mathematics, in particular calculus, enables engineering students in learning to apply 

a wide range of mathematical techniques and skills in their engineering classes and 

later in their professional work (Croft and Ward, 2001). However, for most 

undergraduate students, specifically engineering students, calculus is one of the most 

difficult courses in their fields of study (Schwarzenberger, 1980; Morgan, 1988; 

Cornu, 1991; Eisenberg, 1991; Artigue and Ervynck, 1993; Tall, 1993a; Yudariah 

and Roselainy, 2001; Willcox and Bounova, 2004; Kashefi, Zaleha, and Yudariah, 

2010d, 2011a).  

 

 

Various problem learning areas have been identified in basic and 

multivariable calculus. Some of these were, the difficulty of learning some specific 

mathematical topics, the difficulty in algebraic manipulation, assimilating complex 

new ideas in a limited time, recalling of factual knowledge, students’ beliefs and 
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learning styles, poor problem solving skills and the inability to select and use 

appropriate mathematical representations (see Tall and Schwarzenberger, 1978; 

Smith, 1979; Orton, 1983a, b; Morgan, 1988; Artigue and Ervynck, 1993; Tall, 

1993a; Tall and Razali, 1993; Norman and Pritchard, 1994; Yudariah and Tall, 1999; 

Hirst, 2002; Yudariah and Roselainy, 2004; Sabariah, Yudariah, and Roselainy, 

2008; Roselainy, 2009; Kashefi, Zaleha, and Yudariah, 2010d, 2011a). 

 

 

Studies on students’ learning have found various methods that can support 

students in the learning of calculus. Promoting mathematical thinking with or 

without computer is one of the most important methods to support students in the 

learning of calculus. There is quite an extensive study on promoting mathematical 

thinking in calculus such as works by Dubinsky (1991), Schoenfeld (1992), Watson 

and Mason (1998), Yudariah and Tall (1999), Gray and Tall (2001), Mason (2002), 

Tall (1986, 1995, 2004), and Roselainy (2009).  

 

 

Mathematical thinking is a dynamic process which expands students’ 

understanding with highly complex activities, such as abstracting, specializing, 

conjecturing, generalizing, reasoning, convincing, deducting, and inducting (Mason, 

Burton, and Stacey, 1982; Tall, 1991; Yudariah and Roselainy, 2004). Authors like 

Tall and Dubinsky and their colleagues, endeavored to support students’ 

mathematical knowledge construction and mathematical thinking in calculus 

especially basic calculus through the use of computers. In a study of multivariable 

calculus, Roselainy and her colleagues (Roselainy, 2009; Roselainy, Yudariah, and 

Mason, 2007; Roselainy, Yudariah, and Sabariah, 2007) presented a model of active 

learning in face-to-face (F2F) multivariable calculus classroom. The model was 

based on invoking students’ mathematical thinking powers, supporting mathematical 

knowledge construction, and promoting generic skills such as communication, 

teamwork, and self-directed learning.          

 

 

Generic skills such as problems solving, communication, and teamwork skills 

play important roles in supporting students to think mathematically. Creative 

Problem Solving (CPS) as a problem solving framework which invokes students’ 

generic skills such as communication and teamwork can support students in the 
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learning of engineering, science, and even mathematics courses through computer 

tools (Lumsdaine and Voitle, 1993a; Lumsdaine and Lumsdaine, 1995b; León de la 

Barra et al., 1997; Pepkin, 2004; Cardellini, 2006; Wood , 2006; Gustafson, 2006; 

Kandemir and Gür, 2009; Williamson, 2011). CPS is a multi steps method for 

solving problems in various disciplines that not only use analytical, creative, and 

critical thinking in the most appropriate sequence but can also use the capabilities of 

computers (Lumsdaine and Lumsdaine, 1995b; Forster, 2008; Chen and Cheng, 

2009; Robertson and Radcliffe, 2006, 2009; Maiden et al., 2010).  

 

 

The literature as well as the preliminary investigation (see Chapter 3) showed 

that many students struggle as they encounter new mathematical ideas and objects in 

multivariable calculus course. There are very few researches that investigate on how 

to develop and support students’ thinking powers in the construction of mathematical 

knowledge in multivariable calculus by using computers. Moreover, not many 

studies were done that involve effective communication, teamwork, and problem 

solving in mathematics courses specifically multivariable calculus by CPS and 

computer tools. Thus, in this study, we shall explore and propose a model of teaching 

and learning of multivariable calculus that enhance students’ thinking powers by 

using computer which also involves generic skills via CPS steps based on 

mathematical thinking activities. Blended learning that integrates the benefits of both 

F2F and computer-based environment is proposed as a sufficient environment in 

supporting students’ mathematical learning based on mathematical thinking.  

 

 

 

 

1.2   Background of the Problem 

 

 

The literature reviewed on students’ difficulties and the various efforts to 

improve the situations which showed a general trend, moving away from remedial 

classes towards teaching to increase understanding (Roselainy, 2009). Improving 

students’ learning through the enhancement of their problem solving and 

mathematical thinking skills as well as through using technological tools to support 

conceptual understanding and problem solving methods are now thought to be more 
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appropriate to enable them to cope with the mathematics needed for their engineering 

problems. In order to characterize engineering students’ use of mathematics, it is 

crucial to recognize not only the mathematical content knowledge that engineering 

students apply in engineering contexts but also other generic skills that engineering 

students learn from mathematics courses (Cardella, 2006). 

 

 

CPS is a framework designed to assist problem solver in invoking 

communication and teamwork skills and using computer tools to support students’ 

thinking powers and overcome obstacles. The roots of CPS are found in Alex 

Osborn’s classic book, Applied Imagination, (1953). The CPS are refined and 

extended by many researchers over the past six decades (Parnes, 1967; Isaksen and 

Treffinger, 1985; Isaksen and Dorval, 1993; Isaksen, Treffinger, and Dorval, 1994). 

Through CPS, some researches (Lumsdaine and Voitle, 1993a; León de la Barra et 

al., 1997; Cardellini, 2006; Gustafson, 2006; Wood , 2006; Williamson, 2011) tried 

to support students’ learning and thinking powers in engineering, science, and even 

mathematics courses. However, there is very little literature reporting on the use of 

CPS to help engineering students in the learning of calculus and in using computer 

tools (Lumsdaine and Lumsdaine, 1995b; Pepkin, 2004; Gustafson, 2006; Wood , 

2006; Kandemir and Gür, 2009).  

   

 

Researchers, by promoting mathematical thinking with computer or without 

it, try to support students in understanding mathematical concepts and solving real 

problems in F2F classroom. Encouraging mathematical thinking and supporting 

students’ mathematical knowledge construction can help to reduce their difficulties 

in calculus. Researchers like Dubinsky and Tall and their collaborators, have been 

trying to support students’ mathematical thinking powers and overcome students’ 

difficulties in basic calculus by using computers.  

 

 

Dubinsky (1991) used Action–Process–Object–Schema theory, better known 

as APOS theory, to describe certain mental construction for learning mathematical 

concepts. In this theory, the Actions are routinized as Processes, encapsulated as 

Objects and embedded in a Schema of knowledge. In short, the APOS theory is used 

to describe what it means to understand a concept and how students can make that 
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construction (Breidenbach et al., 1992; Dubinsky and Yiparaki, 1996). Dubinsky and 

Yiparaki (1996) noted several specific pedagogical strategies for helping students to 

make the mathematical knowledge constructions. The main strategies used for this 

method are ACE (Activities, Class discussion, and Exercises) teaching cycle, 

cooperative learning groups to engage students in problem solving activities and the 

use of ISETL (Interactive SET Language) as an interactive mathematical 

programming language (Dubinsky and Yiparaki, 1996; Asiala et al., 1996). 

 

 

Gray and Tall (see Gray and Tall, 1994, Gray et al., 1999) had introduced a 

similar cycle of mental construction as in APOS theory, called “procept” which is the 

amalgam of three components namely a process which produces a mathematical 

object, and a symbol which is used to represent either a process or an object. 

Reflecting on the theoretical development on the construction of mathematical 

knowledge in elementary and advanced mathematics, Gray and Tall (2001) then 

proposed three distinct types of mathematics worlds to describe certain mental 

construction for learning mathematical concepts. They suggested three different 

ways of constructing mathematical concepts from perception of objects (as occurs in 

geometry), actions on objects (as in arithmetic and algebra) and properties of objects 

that lead to formal axiomatic theories.  

 

 

In a further study, Tall (2004) pointed out that there are not only three distinct 

types of mathematics worlds; there are in fact three significantly different worlds of 

mathematical thinking: conceptual-embodied, proceptual-symbolic, and axiomatic-

formal. This theory underlies the creation of computer software which Tall called 

generic organizer and used it in his researches (Tall, 1986, 1989, 1993b, 2000, 2003) 

to support students’ mathematical construction and to build embodied approach to 

mathematical concepts. However, the generic organiser does not guarantee the 

understanding of the concept and Tall (1993b, 1997) reported some cognitive 

obstacles faced by students when using this organiser. Tall believed that learners 

require an external organising agent in the shape of guidance from a teacher, 

textbook, or some other agency. In this way, Tall suggested that the combination of a 

human teacher as guide and mentor using a computer environment for teaching, pupil 

exploration, and discussion can support students’ mathematical knowledge 
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construction and prevent misleading factors (Tall, 1986). In fact, Tall tried to support 

all modes of reality building (experience, communication, and creativity) and reality 

testing (experiment, discussion, and internal consistency) of Skemp’s theory to 

construct mathematical concepts. 

 

 

In the study of multivariable calculus, Roselainy and her colleagues 

(Roselainy, 2009; Yudariah and Roselainy, 2004; Roselainy, Yudariah, and Mason, 

2005, 2007; Roselainy, Yudariah, and Sabariah, 2007) adopted the theoretical 

foundation of Tall (1995) and Gray et al. (1999) and used frameworks from Mason, 

Burton, and Stacey (1982) and Watson and Mason (1998) to develop the 

mathematical pedagogy for classroom practice. They highlighted some strategies to 

support students to empower themselves with their own mathematical thinking 

powers thus help them in constructing new mathematical knowledge and generic 

skills, particularly, communication, teamwork, and self-directed learning (Yudariah 

and Roselainy, 2004). In the classroom activities, they used themes and mathematical 

processes through specially designed prompts and questions to invoke students’ use 

of their own mathematical thinking powers and to further develop these powers 

according to the complexity of the mathematical concepts (Roselainy, Yudariah, and 

Mason, 2005). In this way, students’ attention was focused and directed to the 

prompts and questions in the beginning until the students became aware of the type 

of questions faced (Sabariah, Yudariah, and Roselainy, 2008). 

 

 

In general, researchers used F2F classroom and technology-based in teaching 

and learning to enhance and support student’ thinking powers and skills. According 

to White (2001), both of the learning environments above offer some advantages that 

the other cannot replace. Since both methods have their own strengths, some 

researchers suggest using the blended learning (Garnham and Kaleta, 2002; 

Osguthorpeand and Graham, 2003) which will provide the optimal “mix” between 

computer-based, in particular online learning and traditional F2F learning (Black, 

2002; Aycock, Garnam, and Kaleta, 2002). The blended learning that incorporates 

the best characteristics of both the traditional and online classroom settings (Reay, 

2001; Black, 2002; Aycock, Garnam, and Kaleta, 2002) can be used to support 

students’ learning in mathematics subjects.  
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1.3   Statement of the Problem 

 

 

Both Dubinsky and Tall in their research used special mathematics software 

and programming language that are difficult to use in the formal calculus class. 

Moreover, they have not focused much on supporting students’ thinking and 

knowledge construction in multivariable calculus. The Dubinsky method was based 

on some strategies like computer activities as mathematical programming language, 

class discussion and team working, and problem solving activities. In this approach, 

Dubinsky and his colleagues used visual tools after knowing the mathematics and 

algebraic manipulation. The most challenging aspect in their method was very few 

engineering students at the freshman or sophomore level that learnt a mathematical 

programming language can write program and use this skill in their college study. 

Furthermore, only students with career goals in programming need to study these 

languages (Lumsdaine and Lumsdaine, 1995b).  

 

 

In the study of multivariable calculus, Roselainy and her colleagues 

(Roselainy , 2009; Roselainy, Yudariah, and Mason, 2007; Roselainy, Yudariah, and 

Sabariah, 2007) focused on supporting engineering students’ thinking powers, 

mathematical knowledge construction and generic skills in multivariable calculus. 

Using prompts and questions as an important strategy in Roselainy method focuses 

more on the symbolic world of mathematical thinking. Moreover, in their model of 

active learning, they did not use computer tools to support students’ learning and 

thinking powers. The findings of the preliminary investigation (see Chapter 3) 

indicated that although Roselainy et al.’s method helps in making students aware of 

their mathematical thinking processes, students still have difficulties when they 

encounter new mathematical ideas and concepts (Kashefi, Zaleha, and Yudariah, 

2010d, 2011a). 

 

 

The methods that were used by Dubinsky, Tall, and Roselainy and their 

colleagues try to support students’ mathematical knowledge construction; however, 

they do not make use of robust tools to support them. For example, all methods used 

communication between students and teacher, but these communications were not 

supported by current tools such as online and offline computer facilities that can be 
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used as synchronous and asynchronous communication. Moreover, in the case of 

multivariable calculus, Roselainy and her colleagues did not use any computer 

facilities such as animations, web-based tools, and visual aids in lecturers to support 

students’ visualization. There is few established literature on using computer tools 

and generic skills such as communication, teamwork, and problem solving via CPS 

steps to develop and support students’ thinking powers based on mathematical 

thinking in multivariable calculus. Thus, the most important purpose of this study is 

to investigate the potential of blended learning as an approach to develop and support 

students’ thinking powers and knowledge construction by using computer tools. It 

also tries to invoke generic skills via CPS steps, especially in the learning of 

multivariable calculus. 

 

 

 

 

1.4   Objectives of the Study 

 

 

This study will design and develop a model that conceptualized a framework 

for supporting students’ mathematical learning in multivariable calculus by using 

computer tools and generic skills based on mathematical thinking through a blended 

learning environment. The main goal of this study is to determine the effectiveness 

of the blended learning multivariable calculus course on the students’ knowledge 

construction and problem solving specifically in reducing students’ difficulties. 

 

 

The three objectives of this research are: 

1. To design an alternative blended learning approach in fostering students’ 

mathematical thinking in multivariable calculus course. 

2. To construct and implement a multivariable calculus course in the blended 

learning environment based on the designed model. 

3. To identify the effectiveness of the blended learning multivariable calculus course 

in developing and supporting students’ thinking powers in the construction of 

mathematical knowledge, problem solving and in reducing their difficulties. 
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1.5 Theoretical Framework 

 

 

It is widely believed that to make significant progress in an area of research, 

there is a need for a structured theory of learning (Stewart, 2008). The theory should 

be used to explain the specific successes and failures of students in learning 

mathematics. In addition, the theory must be extensible and applicable to other 

phenomena, different from the ones that it was developed from. 

 

 

Previously most theories in mathematics education came from general 

educators and psychologists such as Piaget (1965), Bruner (1966) and Skemp (1979), 

who only had something to say that was particularly related to mathematics (Tall, 

2004d). Today research in mathematics education is based on theoretical 

perspectives and mathematics education owns many theories which are directly 

related to aspects of mathematics (Stewart, 2008). This section will firstly attempt to 

identify the theoretical reasons for selecting blended learning to promote 

mathematical thinking in calculus based on the both types of theories. Secondly, 

Tall’s theory of the three worlds of mathematical thinking will be highlighted as a 

theory that has formed this research. 

 

 

According to the theory of three modes of representation of human 

knowledge (Bruner, 1966), enactive, iconic and symbolic are three forms of 

representation in mathematics. Tall (1995) noted that the various forms of symbolic 

representation are: verbal (language, description), formal (logic, definition), and 

proceptual (numeric, algebraic etc). In further studies, Tall (2004, 2007) based on 

Bruner’s theory stated that there are not only three distinct types of mathematics 

worlds; there are actually three significantly different worlds of mathematical 

thinking namely conceptual-embodied, proceptual-symbolic, and axiomatic-formal 

(see Figure 1.1). The three distinct types of mathematical thinking: embodied, 

symbolic, formal are also particularly appropriate in calculus (Tall, 2007). 
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Figure 1.1: The relation between three Bruner’s modes  

and three worlds of mathematical thinking 

 

 

Skemp (1979) identifies three modes of building and testing conceptual 

structures as shown in Table 1.1. Skemp’s theory notes that in the process of 

mathematical knowledge construction, one, two, or three modes of reality building 

can be used in combination with one, two, or three modes of reality testing (Skemp, 

1979). 

 

 

Table 1.1 Reality construction 

 

 

 

 

 

According to Skemp, pure mathematics relies on Mode 2 and 3, but it is not 

at all based only on Mode 1 (Tall, 1986). Tall showed that how computer 

environment brings a new refinement to the theory of Skemp and extended Skemp’s 

theory to four modes: Inanimate, Cybernetic, Interpersonal, and Personal.  The last of 

these corresponds to Skemp’s Mode 3. The interpersonal mode of building and 

testing concept also corresponds to Skemp’s Mode 2, whilst the first two are a 
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modification of Skemp’s Mode 1 (Tall, 1989, 1993b). In fact, the computer provide 

an environment and that give a new way for building and testing mathematical 

concept by supporting all modes. Therefore, computer environment can be used in all 

these modes and learners also may build mathematical concepts by considering 

examples (and non-examples) of process in interaction with this environment 

especially in the embodied world of mathematics (Tall, 1986). 

 

 

In other words, computer environment provides not only a numeric 

computation and graphical representation; it also allows manipulation of objects by 

an enactive interface (Tall, 1986) that by using them we can support students’ 

knowledge construction and help them to overcome their difficulties in the embodied 

world of mathematics. Tall (1989) by combination of a human teacher as guide 

(organizing agent) and using a computer environment (generic organiser) for 

teaching tried to support students’ mathematical knowledge construction. In Tall’s 

method, teachers as organizing agent do not have a directive role and they only 

answer questions which may arise in the course of the student investigations through 

a Socratic dialogue with them (Skemp’s Mode 2) which is enhanced by the presence 

of computers (Tall, 1986, 2004). See Figure 1.2.  

 

 

 

 

 

Figure 1.2: The relation between the theories of Bruner, Tall, and Skemp  

 

 

According to Chew, Jones, and Turner (2008), blended learning researchers 

today seem to have an emphasis toward practices without a clear understanding of or 
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underpinned educational theories. Hence, the need to explore educational theory and 

its relationship with technology is essential. There is growing agreement that there is 

not, and probably never will be, one great unified General Theory of Adult Learning 

that will solve all our problems (Carman, 2005). Rather, blended learning offerings 

should be based on an appropriate blend of learning theories, such as those put 

forward by Piaget (1969), Bloom (1956), Vygosky (1978), Gagné (1985), Keller 

(1987), Merrill (1994), Clark (2002), and Gery (1991) . See Figure 1.3.  

 

 

 

 

 

Figure 1.3: A blend of learning theories 

 

 

There are many definitions of blended learning in the literature review; 

however, the term is still vague (Oliver and Trigwell, 2005; Graham, 2006; Hisham 

Dzakiria et al., 2006). The three common definitions of blended learning are: the 

integrated combination of instructional delivery media, the combination of various 

pedagogical approaches, and the combination of F2F and online instruction (Oliver 

and Trigwell, 2005; Graham, 2006; Huang, Ma, and Zhang, 2008). In this study, the 

blended learning is defined as the integration of traditional learning activities with 

some technological aids which is familiar with the third one (Reey, 2001). The 

definition of blended learning as the combination of F2F formats and web-based 

formats identified an environment that includes two important components of Tall’s 

method: generic organizer (computer) and organizing agent (teacher) (Figure 1.4) 

(Kashefi, Zaleha, and Yudariah, 2010a). In fact, blended learning by supporting all 

Skemp’s modes can support students’ mathematical knowledge construction.  
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Figure 1.4: The relation between the theories of Tall, Skemp and blended learning  

 

 

Current learning theories support the notion that learning occurs through an 

individual’s interaction with others in the context of a real world event. These 

theories support the teacher’s role as one of facilitator, not lecturer or director. In 

other words, learning occurs as students develop knowledge, construct meanings, and 

test out their theories in their community and social environments (Giddens and 

Stasz, 1999). Blended learning by employing online and offline computer has the 

potential as a social environment to support students’ learning by invoking generic 

skills. Fahlberg-Stojanovska and Stojanovski (2007) noted that the best learning can 

takes place when all three primary senses of seeing (visual), hearing (audio) and 

doing (enactive) are involved in an interactive environment. They proposed links 

between these senses and two components of blended learning as shown in the 

following figure (see Figure 1.5): 

 

 

 

 

 

Figure 1.5:  The relation between three primary senses and blended learning 

 

 

Moreover, based on repeated studies Muir (2001) reported that students learn 

in different ways such as reading, hearing, seeing and doing, but the best learning 
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occurs when students learn through the combination of these senses. Blended 

learning has the potential to involve all these senses better than using computer or 

lecture separately. Therefore, due to the relation between Bruner’s modes and 

primary senses on one hand and also the relation between primary senses and 

blended learning on the other hand we can see a link between Bruner’s theory and 

the components of blended learning (Kashefi, Zaleha, and Yudariah, 2010a). See 

Figure 1.6. 

 

 

 

 

 

Figure 1.6:  The relation between Bruner’s modes,  

primary senses, and blended learning 

 

 

The theoretical framework constructed provide a comprehensive 

representation of relationships between mathematical thinking (Tall’s theory), three 

modes of representation of human knowledge (Bruner’s theory), and three modes of 

building and testing conceptual structure (Skemp’s theory) to justify the use of 

blended learning to support students’ mathematical learning development (Kashefi, 

Zaleha, and Yudariah, 2012a). This theoretical model takes the form as shown in 

diagram Figure 1.7. 
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Figure 1.7: Theoretical framework of the Study 

 

 

Tall’s theory of the three worlds of mathematical thinking suggested a 

framework for the development of mathematics from childhood to the research 

mathematicians (Stewart, 2008). As many multivariable calculus concepts have 

embodied, symbolic and formal representations, based on Tall’s point of view for 

university students it would be helpful to present them with the embodied aspects of 

concepts, before focusing on the formal ideas. However, the preliminary 

investigation revealed that the embodied ideas were often missing in lectures and 

students’ course books. Thus, in this study it was decided to apply the theory of Tall, 

by firstly examining students’ thinking in the preliminary investigation, and secondly 

applying it in teaching multivariable calculus concepts. 

 

 

 

 

1.6   Conceptual Framework 

 

 

According to Lester (2005), a research framework is “a basic structure of the 

ideas that serves as the basis of phenomenon that is to be investigated.”  The research 

framework of this study is constructed based on the purpose and research questions 

of the study, as shown in Figure 1.8. 
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Figure 1.8: Conceptual framework of the study 

 

 

The conceptual framework shows the six variables identified in this study, 

namely mathematical knowledge construction, mathematical thinking, students’ 

difficulties in the learning of multivariable calculus through Roselainy model, 

generic skills, CPS, and blended learning and how they are interconnected. 

 

 

The preliminary investigation of this research was implemented to determine 

the effectiveness of Roselainy et al.’s method in supporting students’ learning based 

on mathematical thinking approach. Moreover, knowing students’ difficulties in the 

learning of multivariable calculus through this method and looking for ways of 

improving them from the students and lecturers’ perspectives were among the aims 

of the preliminary investigation. 

 

 

Based on the findings in the preliminary investigation, Roselainy et al.’s 

model with its mathematical thinking strategies, blended learning, and CPS, a 

blended learning multivariable calculus course is designed and created as an 
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alternative learning approach that considers the advantages of both e-learning and 

F2F environments. 

 

 

Then, how the blended learning multivariable calculus course can support 

students’ mathematical thinking powers in the construction of mathematical 

knowledge, doing problem solving and in reducing students’ mathematical 

difficulties are investigated.  

 

 

 

 

1.7 Research Questions 

 

 

In particular, the research would answer questions that include: 

1. How an alternative approach in fostering students’ mathematical thinking and 

generic skills in multivariable calculus can be designed based on the preliminary 

investigation, the existing model, integrating CPS, and blended learning?  

2. How appropriate mathematical experiences for multivariable calculus course can 

we adapted, modified and/or created in a blended learning environment? 

3. How effective is the blended learning multivariable calculus course in developing 

and supporting students’ thinking powers in the construction of mathematical 

knowledge, problem solving, and in reducing their difficulties. 

 

 

 

 

1.8    Importance of the Study 

 

 

The findings of this study will verify the modeling and designing of a blended 

learning multivariable calculus course based on mathematical thinking approach and 

CPS strategies. This model refines and enhances the Roselainy et al.’s model by 

supporting mathematical thinking by using computer tools and invoking generic 

skills via CPS steps in blended learning environment. The preliminary investigation 

work on the ways of improving students’ difficulties in multivariable calculus based 

on students and lecturers’ perspectives was considered in designing the model for 

multivariable calculus course. 
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This study may evoke awareness among mathematics educators that CPS can 

be integrated in mathematics problem solving with the potential of using computer 

and invoking generic skills in its processes. Through CPS, different generic skills 

such as communication, teamwork, and problem solving skills can be invoked to 

develop and support students’ mathematical knowledge construction and problem 

solving ability through technology tools. Moreover, applying this model in calculus 

provides opportunities for students to familiarize themselves with the CPS and to be 

able to use it in their engineering subjects or even later in their professional works. 

 

 

 

 

1.9 Chapter Summary 

 

 

Section 1.1 of this chapter gave the introduction of this study where the 

importance of calculus was briefly mentioned. This is followed by the ways 

researchers try to help students to overcome their difficulties in multivariable 

calculus by supporting mathematical thinking with or without computer in F2F 

classroom. This section ends with a discussion on the implementation of CPS to 

support students’ mathematical knowledge construction in their mathematics class. 

 

 

Section 1.2 briefly clarified the background of this study that was started by 

three studies concerned using mathematical thinking for supporting students in 

mathematical knowledge construction and also overcoming their difficulties in 

calculus were quoted. The blended learning considered as environment that has tools 

and potentials in supporting learning and teaching of mathematics and students’ 

generic skills. 

 

 

Section 1.3 provided the statement of problem. It initially focused on the 

strength and weakness of studies by Dubinsky, Tall, and Roselainy that used 

mathematical thinking to help students in calculus with or without computer in F2F 

classroom. This section also highlighted an emphasis on the lack of literature on the 

use of computers in multivariable calculus to develop and support students’ 

mathematical knowledge construction based on mathematical thinking and CPS. 
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Following from the statement of the problem was Section 1.4 where the objectives 

for this study were stated. 

 

 

Section 1.5 discussed the components in the theoretical framework of this 

study.  The discussion began with the relation between the theory of the three worlds 

of mathematical thinking by Tall (2004) and Bruner’s theory (1966). This led to the 

way of empowering students’ mathematical thinking by using computer based on 

Skemp’s theory (1979) and introducing blended learning (Piaget, 1969; Gagné, 1985; 

Gery, 1991) as a relevant environment to support students’ mathematical thinking.   

 

 

Section 1.6 presented the construction of conceptual framework and the 

relation between all possible variables in this study. Following this are the 

formulations of the research questions of this study (Section 1.7). 

 

 

Section 1.8 highlighted the importance of the study by discussing how the 

findings of this study could be used to develop and support students’ mathematical 

thinking powers by promoting mathematical thinking and CPS in blended learning 

environment. This chapter ends with Section 1.9 which gives a summarized outline 

for the whole chapter. The next chapter will present and discuss related literatures 

pertaining to the identified variables and methodology of this study. 
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