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ABSTRACT 

 

 

 

 

Ground Penetrating Radar (GPR) is one of the trenchless technologies; widely 

used for subsurface utility detection and mapping.  However, in the context of subsurface 

utility mapping, constraints of achieving specific accuracy requirements so far have not 

been addressed by each system manufacturer and users.  This research investigates the 

utilization of GPR for subsurface utility mapping, with the following specific objectives: 

(i) to design and built a calibration site for analysing locational and detectability 

accuracies of GPR; (ii) to examine and analyse the effects of GPR data acquisition 

approaches to the locational and detectability accuracies; (iii) to characterize GPR 

backscatter for recognition of utility’s material based on digital image processing 

techniques for retrieving the uniqueness of backscatters from respective utilities, and (iv) 

to examine and model GPR backscatters constraints for detecting and mapping stacked 

subsurface utilities in both vertical and horizontal orientations.  Dual frequencies (250 

and 700 MHz) GPR system was used in this study, experimented in both lab controlled 

and in-situ environments with settings of the system and scene parameters.  Optimum 

values obtained in the lab for both system and scene parameters were then adopted for 

acquisition of data from in-situ measurement and also used in the Finite-Difference 

Time-Domain (FDTD) numerical modelling for validating the results of the study.  

Results of this study contributed three main findings: (i) the GPR locational and 

detectability accuracies for subsurface utility mapping are directly proportional to the 

data acquisition scanning techniques, where the ‘along-pipe’ scanning, which is rarely 

practised in the industry, yields the best locational and detectability accuracies, 

confirming to Quality Level A utility data; (ii) GPR backscatters with appropriate 

treatment can yield unique backscatter signature for recognition of utility’s material, 

hence, opening a platform for new valuable addition to the GPR application for utility’s 

material recognition besides utility detection and localization of buried utility; and (iii) 

the locational and detectability error trend and constraints of GPR measurements within 

crowded subsurface utility infrastructures yield a “best practice” procedure for 

determining the safe buffer zone for maintenance works; very crucial aspects in 

installation of new utility infrastructure and detecting aging utility.  
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 ABSTRAK  

 

 

 

 

Ground Penetrating Radar (GPR) adalah satu teknologi trenchless; digunakan 

secara meluas untuk pengesanan dan pemetaan utiliti bawah tanah.  Walau 

bagaimanapun, dalam konteks pemetaan utiliti bawah tanah, kekangan keperluan untuk 

mencapai ketepatan tertentu setakat ini masih tidak ditangani oleh setiap pengeluar 

sistem and penguna.  Penyelidikan ini menyelidiki penggunaan GPR untuk pemetaan 

utiliti bawah tanah.  Objektif spesifik penyelidikan ini adalah untuk: (i) merekabentuk 

dan membina satu tapak penentukuran bagi menganalisis ketepatan lokasi dan 

kebolehkesanan GPR; (ii) menguji dan menganalisis kesan pendekatan perolehan data 

GPR kepada ketepatan lokasi dan kebolehkesanan; (iii) mencirikan serak balik GPR bagi 

pengecaman bahan pembuatan utiliti berdasarkan teknik pemprosesan imej digital dalam 

memperoleh semula keunikan serak balik dari utiliti tertentu; (iv) menguji dan memodel 

kekangan serak balik GPR bagi pengesanan and pemetaan utiliti bawah tanah yang 

bertindan dalam kedua-dua orientasi menegak dan mendatar.  Dua frekuensi (250 dan 

700 MHz) sistem GPR telah digunakan dalam penyelidikan ini, dilaksanakan dalam dua 

persekitaran makmal terkawal dan di-lapangan dengan tetapan parameter sistem dan 

pandangan setempat.  Nilai optimum yang diperolehi di makmal untuk kedua-dua 

parameter sistem dan pandangan setempat, kemudiannya diterima pakai untuk perolehan 

data dari pengukuran di-lapangan dan digunakan dalam pemodelan berangka Finite-
Difference Time-Domain (FDTD) bagi pengesahan keputusan penyelidikan.  Hasil 

penyelidikan ini menyumbang tiga penemuan utama: (i) ketepatan lokasi dan 

kebolehkesanan GPR bagi pemetaan utiliti adalah berkadar terus dengan teknik 

pemgimbasan perolehan data, dimana pengimbasan “sepanjang-paip” yang jarang 

diamalkan dalam industri menghasilkan ketepatan lokasi dan kebolehkesanan yang 

terbaik, mengesahkan pada data utiliti Tahap Kualiti A; (ii) serak balik GPR dengan 

rawatan yang sesuai dapat menghasilkan tanda serak balik yang unik untuk pengecaman 

bahan pembuatan utiliti, justeru, menambah aplikasi baru yang berharga untuk aplikasi 

GPR bagi pengecaman bahan pembuatan utiliti selain pengesan dan mengenalpasti utiliti 

bawah tanah; dan (iii) pola ralat dan kekangan lokasi dan kebolehkesanan untuk 

pengukuran GPR dalam infrastruktur utiliti bawah tanah yang sesak dapat menghasilkan 

tatacara “amalan terbaik” untuk menentukan zon penimbal yang selamat bagi kerja-kerja 

penyelenggaran; aspek yang sangat penting dalam pemasangan infrastruktur utiliti baru 

dan pengesanan utiliti lama.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of the Study 

 

 

Utility infrastructure such as electricity, water, gas, sanitary sewers and 

telecommunication has played a significant role in facilitating agriculture, industrial, 

business activities and sustaining human's daily life since ancient civilization until 

present.  Rapid urbanization as well as fast paced urban population growth has caused 

the expansion of these utility infrastructures.  Since World War II, the utility 

infrastructure in United States (U.S) has increased approximately 14 million miles 

(GeoSpec LLC, 2002).  Whereas the electricity, treated water, and communication 

coverage in the rural areas of Peninsular Malaysia, Sabah and Sarawak is expected to 

reach almost 100% and 99% respectively by year 2015 (Economic Planning Unit, 2010).  

It is particularly essential to meet the demands of utility infrastructure in order to cater to 

the economic activities and luxurious life of the cities.  As such, this has resulted in 

booming of construction work in the utility industry to replace or maintain the aging 

utility infrastructure for expansion of utility services to the backward and underserved 

areas.   

 

 

In this context, utility owners adopt a measure to place their utility networks in 

the subsurface for space saving and have better design of the urban landscape (Jorge et 

al., 2010).  Moreover, by burying the utility pipeline in the subsurface, it can reduce the 
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use of unnecessary by-pass cables which may tarnish and jeopardize the city landscape.  

However, rapid development over the country has led to the limited use of surface land, 

property on the land and underground spaces.  Most of the densely populated countries 

especially the Hong Kong, Taiwan, Singapore and Japan are experiencing issue of land 

shortage.  The spaces within the subsurface are extremely limited; yet the utility owners 

still persistently placed their networks in the subsurface.  The shallow subsurface in 

urban, industrial and environmentally sensitive areas are now fully occupied by different 

utility networks; forming a labyrinthine network of utility networks (refers Figure 5.10).  

 

 

Under such utility congestion circumstance, it is exceedingly difficult and 

troublesome to map these buried utilities as they are invisible to the naked eye.  

Moreover, most of the utilities that have been buried since long ago, are generally not 

archived.  Even if, they are archived, the records are mostly in the form of two-

dimensional hardcopy map.  In this sense, mapping of buried utility has become more 

challenging task especially with deficiency of buried utility information.  It often 

contributes to the increment of utility damaging incidence and adverse impacts to the 

contractors, utility owners and even the public.  The impacts not only inconvenience the 

urban dweller, in the form of interruptions in electricity, telephone, traffic system, water 

and gas supplies, it may also causes explosions and mortalities when the workers 

accidentally hit the utility pipelines, especially the gas pipe or electrical cable.  

 

 

The numbers of utility damages are increasing rapidly in response with 

increasing numbers of construction work for utility maintenance and rehabilitation.  The 

costs of these damages are often notable and on the rise.  In each single year, 

approximately USD 12.9 billion has been expended by Malaysia government for 

construction work of utility maintenance caused by failed excavation.  In US, total loss 

of utility damages in year 1993 was exceeding USD 83 million and around USD 0.7 

million in year 1997 (Costello et al., 2007; Doctor et al., 1995; Economic Planning Unit, 

2006; Stinson, 1998). In UK, the spending for third party utility damages are USD 227.4 

million while the social expenses per year for street work due to traffic relocation, air 

pollution, business disruption, etc. is almost USD 77 billion (Costello et al., 2007; 

Doctor et al., 1995).  In fact, the cost of losses for utility damages is not little, because 
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the stakeholders often underreported the actual cost of losses due to utility damages.  

According to Heinrich (1996) and Lorenc and Bernold (1998), the originally 

construction cost for utility maintenance is expected to be twenty times more than the 

original costs that reported in the media.  

 

 

Subsurface Utility Engineering (SUE) - an engineering practise is developed to 

address the problems of inaccurate utility mapping.  It is the engineering survey that used 

to determine the position or location of the natural or manmade structure on, above or 

beneath the earth’s surface.  According to American Society of Civil Engineers (2002), 

SUE is the engineering practise that developed to manage the risks related to utility 

mapping under appropriate quality level, utility relocation, precise utility coordination, 

implementation of utility related policies and others responsibility related to utility 

sectors.  SUE, which comprises civil engineering practises, geophysical imaging 

technologies, surveying and data management skills, are widely used for acquiring good 

quality utility’s information in majority of the mapping projects (Jeong et al., 2003).  

With precisely locating the buried utility and presenting it in the form a map, it can ease 

the task of utility relocation and installation; avoid construction delays, incidents and 

damages to the third party utility networks.   

 

 

According to Metje et al., (2007), the Cable Avoidance Tool (CAT) is the 

conventional utility detection tool.  It contains a magnetic field sensor which operates in 

either the power, radio or generator mode.  Although CAT was commonly used in UK 

for detecting the buried utility, it still has limitation in detecting the utility which laid 

closely together, overlay or crossing among each other.  In an attempt to overcome this 

problem, development of technology has led to the innovation of new non-destructive 

system namely Ground Penetration Radar or Ground Probing Radar (GPR).  At present, 

GPR is one of the useful instruments in trenchless technology for examining the man-

made structure in determining its location and depth.  GPR is now the top sensing tool 

among all the equipment that is commercially available in today’s market due to its 

advantages in providing high resolution imagery, fast data acquisition and good 

interpretation results (Enes et al., 2010; Jeng et al., 2011; Jorge et al., 2010; Lester and 

Bernold, 2007; Millington et al., 2009; Ni et al., 2010; Roger et al., 2009).  It is highly 
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recommended for use in subsurface investigations, specifically for application of military, 

civil or environmental engineering, geology, geophysics or transportation studies in 

detecting subsurface utility, building rebar or cavities, spatial distribution of biogenic gas 

from peatland and also landmines (Bello and Kamarudin, 2012a; Ahmet and Mehmet, 

2011; Annan, 2005; Francke, 2011; Neal, 2004).   

 

 

The development of new technology such as broadband in modern civilized life 

has lead to increasing of new construction and expansion of subsurface utility networks.  

GPR is often used to determine the location of the buried utility infrastructure in a utility 

mapping project.  It is now an essential means to reduce the adverse impacts of utility 

damages before any construction work starts (Jeong et al., 2003).  Despite diligent efforts 

to detect these buried utility infrastructures before the excavation, the occurrences of 

utility damage during excavation work are still arising.  The losses due to these 

excavation accidents can reach astronomical numbers and have caused dangerous and 

hazardous effects to the environment and public.  In this sense, there is always 

unprecedented demand for precise and high efficiency subsurface utility mapping within 

the utility industry.  According to Common Ground’s study, determination of utility’s 

location and retaining of accurate mapping information is essential for preventing utility 

damages (refers Figure 1.1).  Securing reliable information of the buried utility is, hence, 

urgently required by current utility industry for preventing these excavation accidents to 

recur.  Therefore, mapping the attributes of subsurface utility features at the present time 

is a significant task in the utility industries, particularly for the expansion and upgrading 

the subsurface utility features (Balaogun et al., 2011; KPUP, 2006).   
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Figure 1.1:  Key Element to Damage Prevention (Source: Common Ground Alliance, 

1999) 
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1.2 Problem Statement 

 

 

GPR has been categorised as the best trenchless detection tool for subsurface 

detection and mapping.  However, the GPR signal is often affected by factors of the host 

material’s physical properties, soil moisture, congestion of utility networks, clutter due to 

non-targeted features and etc.  By using an uncalibrated GPR system to acquire data for 

the mapping subsurface features, it has led to problems of poor data quality and data 

interpretation, due to the high uncertainties in imprecise subsurface utility mapping.  In 

this sense, this lead to the risk of “vulnerable” errors and created uncertainties for buried 

utilities safety in most of the mapping projects.  GPR systems, hence, require calibration 

to minimise the risk of “vulnerable” errors before it can be used for subsurface utility 

mapping.  A practical calibration site is necessary to overcome the shortcomings of 

current GPR systems.  This is because real time GPR calibration is exceedingly costly 

and currently there is a lack of absolute calibration sites to assess the performance of the 

GPR equipment.  All the calibration for the commercially available GPR system is done 

relatively without any investigation; hence, the results are highly ambiguous for 

subsurface utility mapping and give rise to high ambiguity in the mapping industry.   

 

 

Despite the fact that GPR has been given considerable attention in subsurface 

investigation application, current utility industries still less exposed to extensive 

guidelines on proper procedures and accuracy requirement for subsurface utility mapping.  

As such, it has created a gap between engineering practises and mapping disciplines for 

understanding the GPR capabilities in subsurface utility mapping.  For this reason, 

“rather hit and miss” principle are practised widely by the street worker throughout the 

utility mapping projects.  With regard to this, “rather hit and miss” affair, it has 

contributed to increment of failed excavation cases due to insufficient acquainted with 

their duty of engineering survey (Costello et al., 2007; Lester and Bernold, 2007; Metje 

et al., 2007).  For every single year, many “dry hole” - the hole that digs during 

excavation but failed to detect any utility has been left behind as a result of failed 

excavation caused by imprecise subsurface utility mapping.  Thereby, proper mapping 

approach is essential for performing accurate subsurface utility mapping in order to 
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prevent “blind” excavation and undesirable consequences during construction works of 

utility maintenance and rehabilitation.   

 

 

Moreover, the stakeholders, like decision makers, utility owner, contractors, 

surveyors, and even excavators, often overlook the need to perform precise subsurface 

utility mapping because they assume that the utilities are usually buried in the subsurface 

and invisible to the naked eye.  The stakeholders even tend to underestimate the 

destructive power caused by utility damages due to failed excavation, hence, they often 

believe there is no need for accurately detect the position of the buried utilities (Koo and 

Ariaratnam, 2006).  The stakeholders did not giving priority attentions to the detection 

accuracy and the potential errors of mapping.  Additionally, to-date, there are not much 

published literature regarding GPR data acquisition approach effect on locational and 

detectability accuracies has been covering comprehensively.  With regard to this, a 

thorough investigation is required to be conducted for examining and analysing the 

effects of data acquisition techniques on locational and detectability accuracies, is 

needed urgently by current utility industry.  This is to solve the issue of failed excavation 

due to imprecise subsurface utility mapping which has been continuing to occur and 

exacerbated.   

 

 

Although GPR is established entirely for geophysical application in 

understanding the location and depth of the buried utilities within local coordinate 

system, it is somehow “underutilize” for understanding utility’s radiometric properties 

such as utility’s fabrication material, radius or diameter and utility’s condition.  At 

present, only limited utility’s geometric properties, such as planimetric location and 

depth, are being taken seriously by the stakeholders.  The industry actually 

misconception that GPR is only beneficial for extracting the geometric information of 

the buried utilities.  However, the reality is that backscatters from the object which 

acquired by the GPR has enormous potential to be used to report the physical properties 

of the object.  The “feature information” of the object such as its shape, size and 

condition, can be extracted from its backscatters.  In this sense, the issues of (i) object 

material recognition; (ii) object dimension estimation; and (iii) object size estimation are 

still remaining open for research because plenty of research that currently conducted are 
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focused on object detection and localization issue only.  However, complete details of 

the buried utilities in term of its geometric and radiometric properties is actually essential 

for the industry to perform civil engineering and surveying work, particularly excavation 

for utility installation and repair.  With these complete details, it will ensure safe 

excavation with minimal traffic flow and business disruption.   

 

 

The prerequisite for extracting buried utility’s geometry and radiometry physical 

properties is through accurate interpretation of backscatter image, so call radargram.  

Nowadays, GPR data processing and interpretation work are performed totally by 

commercial software that is associated with the GPR system.  This commercial software 

belongs to the Commercial Off-The-Shelf (COTS) product, where end-users are unable 

to configure any processing flow of the software for the necessity of their works.  In this 

context, most of the existing GPR software is aimed for commercial use and not for 

research (Vera et al., 2008).  The theory and source code that are used in the software is 

not disclosed to the end-users, due to trade secret, thereby, the processing and 

interpretation work can only be done in “black-box” manner.  For every individual 

processing and interpretation work done in the majority of the mapping projects, there is 

no statistical assessment.  This is because the results are depending mainly on the 

operator’s interpretation experience and prior knowledge regarding the structure of the 

subsurface features.  The purpose of good interpretation for retrieving information from 

the radargram which enables characterisation of subsurface physical or natural properties 

rather than just to “see something” in the radargram are never being practised in the 

industry.  Numerical modelling analysis which able to simulate subsurface properties and 

realistically represent the geometry and structure for subsurface feature and GPR antenna 

under varying complex environment is, therefore, ideal for extraction of subtle 

interpretation information from the radargram.   

 

 

Utility services are the foundation of modern living for supporting the industrial, 

agriculture and affluence life of the city.  In relation to population growth and increased 

of telecommunication technology such as the broadband services, it has causes many 

new construction, reconstruction and development of new subsurface infrastructure to be 

conducted around the world (Lester and Bernold, 2007).  The utility owners attempt to 
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accommodate their networks randomly stacked (both vertically and horizontally) in the 

first three meters of the subsurface, due to the deregulation of utility service.  As such, 

the shallow subsurface are now congested with different types of utility networks such as 

oil and gas, electricity, sewer, water, cable TV, traffic signals, sanitary sewer, street 

lighting circuit and even fibre optics.  Under such congestion situation, the works of 

utility maintenance and rehabilitation become difficult and often give rise to damage the 

third party utilities.  During the excavation, the machinery such as Horizontal Directional 

Drilling (HDD), backhoe excavators, and plows are often could not “see” the third party 

utilities when they are getting too close with it, unless remarkably precise location of the 

utilities is provided by the utility owners.  Herein, a uniform practice for alteration of an 

existing installation, relocation of utilities or new utility installation within the shallow 

subsurface is needed particularly to minimise the adverse effects on third party utility 

safety, operations and maintenance.  Therefore, all the problems mentioned above were 

apparently resulted in the needs of conducting this research.  
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1.3 Objectives of the Study 

 

 

The main aim of this study is to reconstruct ground penetrating radar backscatters 

for subsurface utility features utilizing three digital image processing techniques namely; 

image analysis, attribute analysis and modelling.  The specific objectives of this study 

are: 

 

i) To design and built a calibration site for analysing locational and detectability 

accuracies of GPR;  

 

 

ii) To examine and analyse GPR data acquisition approaches effect on locational 

accuracies and detectability of subsurface utility features; 

 

 

iii) To characterize GPR backscatter for recognition of utility’s fabrication material 

based on digital image processing technique of retrieving the uniqueness of 

backscatters from various utilities; and  

 

 

iv) To examine and model GPR backscatters constraints for detecting and mapping 

stacked subsurface utilities in both vertical and horizontal orientations.   
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1.4 Scopes of the Study 

 

 

The scopes of this study are as follows:  

 

 

1. A field-based test site for understanding the operation of GPR system and its 

reflection for utility’s fabrication material property characterization is required by 

the industry, especially for underground utility mapping, archaeological studies, 

civil engineering, geotechnical inspection and mine exploration.  This test site is 

designed uniquely in such a way, to mimic the real world’s subsurface civil 

infrastructure.  With such design, it can enable correlation between the existing 

civil engineering structure and the geophysical anomalies in the real world for the 

calibration of all frequencies GPR system and other non-destructive geotechnical 

instruments.  In this context, field-based test site is deliberately designed and 

built in this study, according to the existing civil engineering structure for 

calibrating the GPR system and providing a better understanding on the 

capability of GPR system for precisely locating the buried utilities particularly 

utilities that located in areas with complex pipelines network.   

 

 

2. The commonly used scanning technique for data acquisition in subsurface utility 

mapping is perpendicular to pipe scanning.  However, no related guideline has 

proved that perpendicular to pipe scanning is the most effective technique to be 

used.  Moreover, there is no evidence to show that other scanning techniques are 

not appropriate for utility mapping data acquisition.  In this sense, three GPR data 

acquisition scanning techniques that are regularly used for various subsurface 

investigation applications such as (i) perpendicular-to-pipe scanning; (ii) along-

pipe scanning and (iii) variation-angles scanning were used in this study to 

investigate the locational accuracy and detectability of subsurface utility features.   

 
 
3. GPR backscatter is not “fully utilized” in extracting the inherent elements of the 

subsurface utility features.  The inherent elements that can be retrieved are 

relating to its physical properties, including: (i) geometric characteristic 
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concerning with planimetric position and depth and (ii) radiometric 

characteristics for detection of utility’s fabrication material concerning of depth 

variation and host material variation.  For geometry properties extraction, 

planimetric position and depth of the buried pipe or cable are extracted from the 

hyperbola formed in the radargram.  Whilst for the radiometry properties, the 

fabrication material types (ductile iron, mild steel, clay, polyvinyl chloride and 

etc.) are extracted from the radargram using the GPR backscatters function.   

 

 

4. Modelling analysis is required for understanding the backscatter characteristic of 

the subsurface utility features.  In order to understand the relationship between 

subsurface utility features and its GPR backscatters, numerical modelling is 

needed.  A commonly used numerical modelling tool namely Finite-Difference 

Time-Domain (FDTD) model is used in the study to simulate theoretical data of 

the field-based physical model mentioned earlier.  The absolute value of the 

electrical properties such as dielectric permittivity (ε), magnetic permittivity (µ) 

and electrical conductivity (σ) of the subsurface civil structure are used as the 

input for FDTD numerical modelling for constructing field-based model data 

theoretically.  These field-based models data are reconstructed using different 

scene parameter such as typical utility’s fabrication material that used by current 

industry, position and depth of the utility as well as host medium that commonly 

used for construction.  Subsequently, the unique backscatter characteristic of each 

utility features can be identify from these reconstructed theoretical data and, 

therefore, can be used for validate the practical data acquire using GPR system.  
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1.5 Significance of the Study 

 

 

As mentioned earlier, the problems of inability in locating the buried subsurface 

utility features accurately without resorting to excavation are still there and have 

contributing serious social, economic and environmental consequences to the country.  

Moreover, the aim of utility mapping is not reached without extensive guideline because 

the work is just “trial and error”.  The unplanned strikes on buried utility due to ‘blind’ 

excavation still happen every year.  For this reason, this study conducted to assist the 

beneficiaries (surveyors, engineers, constructors, planners, municipalities, government 

agencies, utility companies, statutory bodies’ agencies, researcher, software and 

hardware developer and etc.) to solve their problems in the subsurface investigation 

industries, particularly the utility mapping industries.  The importance of this study to the 

field of utility mapping were from innovate field model for testing and calibrating GPR 

system, data acquisition, interpretation and result assessment.  Explanations for a series 

of benefits for this study are summarized below: 

 

 

In this study, a test site, which serves as the “testing or calibration device” for 

GPR system, was established.  Although there have been few test sites available on the 

market (refers Figure 2.1), the test site that is proposed in this study is distinct from 

others because it provides unique advantages, which can overcome the shortcoming of 

existing test sites.  With the special arrangement of the utility in the test site that 

deliberately designed in the manner of superimpose on one another, it can represent the 

actual civil engineering structure in the real world.  Through this design, it enables the 

actual civil engineering structure and the geophysical anomalies in the real world to be 

correlated with this test site with no doubt during research.  This is valuable for 

understanding either the performance of the GPR system or the GPR reflection for 

material property characterization, particularly for subsurface investigation applications 

such as utility mapping, archaeological studies, civil engineering, geotechnical 

investigation, and mine exploration.  Moreover, this test site is for experiment purpose, 

where its structure and host material can be randomly altered according to user personal 

preferences.  It is thus beneficial to the subsurface investigations related research for 

providing solutions to address the problems that currently faced by the utility industry.  



14 
 

As mentioned by Jol (2009), good data acquisition technique is the key parameter 

for producing good interpretation.  The data acquisition scanning technique is thus 

essential for producing precise subsurface utility mapping later.  In this regard, the 

locational and detectability accuracy for three commonly used data acquisition scanning 

techniques which reported in the finding of this study prove that precise utility mapping 

is essential to social and economic development for a country as the losses caused by 

utility damages can reach astronomical figures.  In this sense, by knowing the locational 

and detectability accuracy of each scanning technique, the stakeholder can have a better 

planning for construction work of utility installation, maintenance and rehabilitation.  In 

addition, the possibility of utility services disruption owing to misidentify or mislocate 

buried utility during construction work can be reduced also by using the good practises 

of data acquisition.  As such, the proposed scanning technique successfully creates a new 

benchmark for data acquisition using GPR in order to locate subsurface utility features 

precisely.  With such finding, it can be a reference to the authorities in preparing the 

standard operating procedures (see Section 3.2.5) for subsurface utility mapping in the 

future.  

 

 

Many practices have been committed to the production of typical utility map and 

maintenance of a database of subsurface structure.  There is lack of related publications 

studying the capabilities of GPR for utility mapping applications.  However, this study 

successfully explained the uncertainty and confusion in utility mapping application 

which claimed that GPR is only for geometric information retrieval.  The research 

finding proved that inherent elements of the subsurface utility feature can be retrieved 

from the radar backscatters recorded in the radargram.  As such, the finding of 

determining the fabrication material of the subsurface utility feature would be a 

significant step forward in the industries, regardless of surveying, civil engineering or 

software development engineering.  With continuous exploration in this aspect, the good 

agreement between the backscatter reflections of the GPR with specific subsurface utility 

feature in term its radiometry properties such as the fabrication material and condition, is 

useable for civil infrastructure management and maintenance.  Thereby, this advantages 

opening new platform for constructive addition to the application of ground penetrating 

radar with new material recognition facility in the near future aside from the established 

utility detection and localization facilities.  Moreover, the material property recognition 
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indicators produced from this study is ready for intake as feature recognition interface 

tool.  These indicators are needed for future research and development of GPR hardware 

or software which are crucial to the utility mapping applications.  

 

 

Even since, non-destructive testing technology is adopted in subsurface 

investigation work, the data processing and interpretation task are typically according to 

one’s experience and prior knowledge about the supervision site.  Sometimes, the 

judgement may be incorrect and lead to an inaccurate interpretation of data caused by 

poor data quality or interpretation.  Numerical modelling, which apply to link the 

subsurface properties with GPR data, was performed in this research.  In doing this, a 

model for the subsurface region can be created based on the electrical properties of the 

subsurface features as defined by the user, in order to simulate the data acquisition for a 

region of interest.  With the GPR model, users can have a better understanding for GPR 

imaging, especially the factors that affected the quality of data, how the spatial 

variability being captured or extracted from the GPR data, etc.  This model is, therefore, 

necessary to current mapping industries to solve the problems faced by the development 

of GPR technology, as a limitation of existing GPR often blocks advancement. 

 

 

At present, the subsurface spaces are buried with different types of utility features 

in order to support the growing demand for utility services.  The shallow subsurface 

currently saturated with a wide range of utility networks.  The utility owners often have 

difficulty in accurately determining the required utilities among a bunch of complicated 

utility networks.  In addition, current non-destructive technology only able to provide 

approximately location of the buried object, where the multiple stacked subsurface utility 

features in both vertical and horizontal orientations often being miss-out from the 

redundant or overlapping reflection in an image.  To date no study has successfully 

addressed the problem of detecting multiple stacked subsurface utility features.  In this 

regard, the method of combining field model that specifically designed to mimic the 

current subsurface civil structure and FDTD numerical modelling are presented in this 

research for attempting these problems.  The locational and detectability accuracy of the 

multiple stacked utility and the potential of GPR in detecting such multiple stacked 

utilities are tested.  Based on the finding from this study, a better understanding about the 
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potential and limitation of GPR system can be provided to the manufacturer.  The 

efficiency of GPR system in detecting the buried utility that located in an area that 

contains a wide range of utility networks is achievable with advancement from the 

findings of this research.  This is conducive to the development of a new GPR system in 

the future with inclusive of high precision sensing of buried utilities, particularly sensing 

in an area with complex utility networks.  

 

 

In short, this research has innovated a practical experimental test site which is 

ideal for testing and calibrating all types of frequency GPR system (see Table 3.2) 

available on the market for providing a solution to problems that faced by industries 

through persistent investigation or research.  Apart from this, some experiments have 

also been established to resolve the issue of imprecise mapping, explore the new 

capabilities of GPR and attempting to solve the limitation of current technology in 

sensing multiple stacked subsurface utility features by combining field model scanning 

and numerical modelling.  All the designated experiments that established in this study, 

are targeted to determine the locational and detectability accuracy of mapping subsurface 

utility features, improve GPR imaging, as well as to refine efficiency of GPR in 

characterisation of fabrication material for utility features, and in detecting buried utility 

in an area that contains a wide range of utility networks.  Therefore, this not only can 

improve the performance of GPR in locating buried utility features, but also can fully 

explain the excellent performance of the GPR, thereby promoting better development of 

the existing GPR technology.  
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1.6 Research Design 

 

 

Before developing the research plan, a thorough review of the literature was 

conducted to understand the current trends of utility mapping, in order to figure out 

research needs in the utility industry.  From the review, four main stages of procedure 

were scheduled for implementation: (i) design and built test site; (ii) investigate effects 

of GPR data acquisition approaches on locational accuracy and detectability of 

subsurface utility features; (iii) characterised GPR backscatter for material recognition, 

and (iv) detect and map stacked utilities.  Figure 1.2 depicts a flowchart indicating an 

overview of the sequence of research methodology in implementing these four main 

stages of the procedure.   

 

 

Based on the review, test site which allows absolute calibration of GPR system, 

was found to be particularly pertinent to current mapping application for testing the 

performance of the GPR equipment in terms of its locational accuracy and detectability.  

With this regard, a GPR test site which contains unique advantages, which can overcome 

the shortcoming of existing test site is designed and built in this research.  Then, field 

data was acquired using dual frequencies GPR system at the test sites with both lab 

controlled and in-situ environments with different system and scene parameter settings.  

The optimal value obtained in the lab was then adopted for in-situ measurement.  The 

same parameter was also used for reconstruction of theoretical data through numerical 

modelling like FDTD, to verify the results of the research.  These data were subsequently 

subjected to pre-processing, and followed by interpretation.  Feature detection was done 

to determine real reflection of each buried utility through the hyperbola reflection 

illustrated in the radargram.  These GPR backscatter with proper treatment can then yield 

unique backscatter signature for recognition of utility’s fabrication material, thereby 

opening a new facility, in addition, to current utility detection and localization facility.  

Consequently, three new main finding were contributed from this research:  

 

 

i) The locational accuracy and detectability of subsurface utility features using 

GPR in utility mapping are directly proportional to the data acquisition scanning 
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techniques. The rarely practiced scanning technique, ‘Along-pipe’ scanning 

produces the best locational and detectability accuracies of + 0.10 m equivalent 

to Quality Level A utility data;  

 

 

ii) Unique backscatter signature yielded from appropriate treatment is beneficial for 

recognition of utility’s fabrication material, thereby, opening new facilities for 

GPR application in subsurface investigations addition to current GPR utility 

detection and localization; and  

 
 
iii) The locational and detectability error trend and constraints of GPR 

measurements within crowded (such as in horizontal and vertically stacked) 

subsurface utility infrastructures yield a “best practice” procedure for 

determining the safe buffer zone for maintenance works; which is  crucial 

aspects in installation of new utility infrastructure and detecting aging utility.  
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Figure 1.2:  Research Plan Flowchart 

Literature Review & Research Plan Formation 

Review utility mapping related literature then formulate the problem and 
drawn out a comprehensive research plan 

Start 

Detecting & 
Mapping 
Stacked 
Utilities 

Utility’s 
Fabrication 

Material 
Recognition 

Image Thresholding 

Design and 

Built Test Bed 

Field Data 

Acquisition 

Scanning Technique 

Laboratory Experiment 

FDTD Numerical 
Modelling 

Pre-processing 

Assessment 

Conclusion & Recommendation  

Result: GPR 
locational & 
detectability 
accuracies  

Result: safe 
buffer zone 

Result: unique 
backscatter 
signature  

Data Acquisition  

Data Processing 

Interpretation 



20 
 

1.7 Organization of the Thesis 

 

 

 The theme of thesis is reconstruction of ground penetrating radar backscatter for 

subsurface utility features in utility mapping.  The backscatter of the subsurface utility 

feature which recorded by the GPR were reconstructed using different settings of (i) 

system parameter- instrument’s frequencies (250 MHz and 700 MHz) and data 

acquisition scanning techniques; and (ii) scene parameter- various types of utility 

features that commonly used in current industry (water pipe, electrical cable, gas and 

sewer pipe), utility’s fabrication material (mild steel, ductile iron, Polyvinyl chloride, 

medium and high density polyethylene), utility’s position and depth, and commonly used 

construction host material (sand, loam, rock etc.).  The overview of the research 

procedures involved for the successful implementation of the work were enumerates in 

the following thesis structure: 

 

 

Chapter 1:  Introduction to background of this research, problems currently faced by the 

utility mapping industries, the objective for achieving the aims of this research, the 

scopes of research, and overview of the research plan as well as the thesis structure 

which highlighted the importance, needs, value and urgency of this research to be 

conducted.  

 

 

Chapter 2:  Explanation to GPR calibration test site.  A field-based test site is designed 

and built to understand the scanning mechanism and data formation of any frequencies 

GPR system that commercially available on the market.  The steps involved in the 

construction of the test site and the benefits derived from this test site are clearly 

explained in this chapter.  

 

 

Chapter 3:  GPR data acquisition is the key parameter to determine the quality level and 

interpretation results of the utility data.  The importance of securing reliable locational 

information of the buried utilities to avoid “blind” excavation and third party’s utility 

pipeline damages was highlighted through materials and methods used to examine and 
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analyse the GPR data acquisition approaches effect on locational and detectability 

accuracies.  The main findings of this research indicating that GPR locational and 

detectability accuracies for utility mapping are directly proportional to the data 

acquisition scanning techniques is derived from this chapter.   

 

 

Chapter 4:  Utility’s fabrication material recognition is mistaken by current utility 

mapping industries as one of the impossible application.  The industry defined that 

application of GPR in the investigation of subsurface heterogeneities such as sandstone, 

rock, utility features and tunnels are only limited to extract geometry properties.  On the 

contrary, this is one of the foremost GPR capabilities which need to be discovered as the 

GPR backscatter with appropriate treatment can yield unique backscatter signature for 

recognition of its inherent radiometry properties.  Therefore, this research was conducted 

to exploit research gap in utility mapping industries focusing on utility’s fabrication 

material recognition using GPR backscatter.  This chapter enumerates in details the 

research procedure to achieve utility’s fabrication material recognition, hence, 

contributing a new platform for valuable addition to current GPR application for utility 

mapping.   

 

 

Chapter 5:  Detecting and mapping stacked subsurface utilities is an application that 

must be examined in current utility mapping industry.  More and more utility pipeline 

are being accommodate randomly stacked in both vertical and horizontal direction in the 

shallow subsurface.  This causes utility congestion in subsurface, hence, leading to 

difficulties in assessing the location or condition of the buried utility pipelines.  In this 

context, the “best practice” procedure which implemented in this chapter comprising of 

data reconstruction, interpretation, and assessment for yielding a safe buffer zone for 

utility maintenance work is essential for eliminating the locational and detectability 

constraints and error trend of GPR measurement within utility congestion condition.   

 

 

Chapter 6:  Conclusions and recommendations chapter summarised all the conclusions 

obtained in aforementioned chapters and highlighted recommendations which would be 

beneficial for future research based on these conclusions.   
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