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ABSTRACT  
 

 

The growing demand for high-speed Broadband Wireless Access (BWA) 

applications has motivated the use of millimetre waves operation in Ka band, point-

to-multipoint fixed cellular with a large bandwidth of 0.5–1.55 GHz. This service is 

also known as Local Multipoint Distribution Service (LMDS). It has the advantages 

of rapid installation, scalability, high capacity, ease of deployment and low initial 

infrastructure costs; and could be an attractive alternative to other broadband access 

technologies. However, the service is limited up to 8 km of coverage area due to line 

of sight constraints. Co-channel interference and rain attenuation are major limitation 

factors to system performance. This study is conducted to analyse LMDS 

performance based on local rain cell profile. The long-term cumulative rainfall rate 

was obtained from weather radar data. This data is compared with ITU-R 

recommendation and data from rain gauge network. The influence of rain length 

distribution probability to different rain rate thresholds had been studied from the 

database for an area size of 25 km
2
. The target is to design LMDS that reaches up to 

5 km of cell size service with good availability. Four architectures of fixed BWA 

were investigated in terms of a carrier to interference ratio (C/I) using three types of 

modulations which are QPSK, 16-QAM and 64-QAM. The rain cell profile results 

shows that higher rain rates experience shorter rain length. The rain rates at 0.01 

percentage of time for radar data in UTM is 106.25 mm/hr and rain length was less 

than 0.46 km. Besides, during low rain rate events, the LMDS service coverage has 

better performance than clear sky. This is due to fact that the low rain rates present 

low attenuation to the desired signal but causes high attenuation to interfering base 

station signals, resulting in better C/I performance. During heavy precipitation, the 

effective service coverage area will reach to less than 2 km using QPSK in 

conventional architecture at 99.99% availability. In addition, the co-channel 

interference can be reduced by using certain design-rule for various architectures. 

Moreover, it was observed that by decreasing LMDS cell size, the service coverage 

performance would improve. Two methods had been proposed to improve the 

performance. One is to use different architectures namely conventional with 4 

frequency reuse, simplex ring relaying and dual ring relaying. The second method is 

to reduce the LMDS service size, i.e. to determine appropriate cell size which offers 

99.99% availability. It showed that, for conventional architecture, 3 km cell size was 

sufficient to reach the required availability based on local climate. In addition, 5 km 

service cell size for 99.98% availability can be achieved by using dual ring 

architecture. All the information are important to present BWA network architectures 

for Malaysian environment based on rain intensity distribution extracted from radar 

data.  
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ABSTRAK  
 

Permintaan yang semakin meningkat untuk aplikasi yong menggunakan Akses 

Jalur Lebar Wayarles (BWA) berkelajuan tinggi telah mendorong penggunaan 

gelombang milimeter beroperasi pada jalur Ka, iaitu selular talian tetap titik ke pelbagai 

titik dengan lebar jalur yang besar. Perkhidmatan ini juga dikenali sebagai Servis 

Pemancaran Pelbagai Titik Tempatan (LMDS) yang mempunyai pemasangan yang 

pantas, kebolehan untuk diskala, berkapasiti tinggi, kemudahan penempatan dan kos 

infrastruktur awal yang rendah dan boleh menjadi satu alternatif menarik kepada 

teknologi akses jalur lebar lain. Tetapi, perkhidmatan ini terhad sehingga 8 km dari 

kawasan liputan kerana kekangan garis sesaluran penglihatan. Gangguan saluran 

bersebelahan dan gangguan hujan adalah faktor utama yang menghadkan prestasi sistem. 

Maka, kajian telah dijalankan untuk menganalisa prestasi LMDS berdasarkan profil sel 

hujan tempatan. Kadar kumulatif hujan jangka panjang telah diperoleh daripada data 

radar cuaca. Data ini dibandingkan dengan syor ITU-R dan data dari rangkaian tolok 

hujan. Pengaruh taburan kebarangkalian panjang hujan ke atas kadar hujan yang berbeza 

telah dikaji dari pangkalan data bagi saiz kawasan seluas 25 km2. Sasaran adalah untuk 

mereka bentuk perkhidmatan LMDS yang mencapai sehingga 5 km dengan ketersediaan 

baik. Empat seni bina BWA tetap telah dilakukan berdasarkan nisbah pembawa kepada 

gangguan (C/I) menggunakan tiga jenis modulasi QPSK, 16-QAM dan 64-QAM. Sel 

hujan profil hasil kajian menunjukkan kadar tinggi hujan mempunyai saiz hujan pendek. 

Kadar hujan pada 0.01 peratus masa untuk data radar UTM adalah 106.25 mm/jam dan 

saiz hujan untuk kadar ini adalah kurang daripada 0.46 km. Tambahan pula, semasa 

kadar hujan rendah, liputan perkhidmatan adalah lebih baik berbanding keadaan tanpa 

hujan. Ini kerana kadar hujan yang rendah memberi kesan minimum kepada isyarat yang 

diingini tetapi menyebabkan rosotan yang besar kepada isyarat gangguan dari stesen asas 

yang memberikan prestasi yang C/I lebih baik. Semasa hujan lebat, kawasan liputan 

perkhidmatan berkesan akan menjadi kurang dari 2 km menggunakan QPSK dalam seni 

bina konvensional pada ketersediaan 99.99%. Sehubungan itu, gangguan saluran 

bersebelahan boleh dikurangkan dengan menggunakan peraturan reka bentuk tertentu 

untuk pelbagai seni bina. Tambahan pula, dengan mengurangkan LMDS saiz sel prestasi 

liputan perkhidmatan akan bertambah baik. Dua kaedah telah dicadangkan untuk 

meningkatkan prestasi. Satu adalah dengan menggunakan seni bina yang berbeza iaitu 

konvensional dengan 4 frekuensi guna semula, geganti gelung simpleks dan geganti 

gelung duaan. Kaedah kedua adalah mengurangkan saiz perkhidmatan LMDS, iaitu 

dengan menentukan saiz sel yang sesuai yang menawarkan ketersediaan 99.99%. 

Didapati bahawa bagi senibina konvensional, 3 km adalah saiz sel yang sesuai untuk 

mencapai ketersediaan yang diperlukan berdasarkan iklim tempatan. Di samping itu, saiz 

sel perkhidmatan 5 km pada ketersediaan 99.98% boleh dicapai dengan menggunakan 

seni bina gelung duaan. Semua maklumat ini adalah penting untuk seni bina rangkaian 

BWA mengikut iklim Malaysia berdasarkan pengagihan keamatan hujan yang diekstrak 

daripada data radar.  
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

 

There is a growing interest of using broadband wireless access (BWA) 

service, because it provides reliable transmission of information such as data and 

video (Ahamed, 2009). BWA utilizes large bandwidth and has low error rates for 

acceptable performance service to consumers, as compare to copper telephone wires 

or coax cable (Agne and Telenor, 2000). 

 

 

However, attenuation due to rain is a major limitation for terrestrial and slant 

path links especially at shorter wavelengths. The rain attenuation might cause 

temporary loss of signal therefore it is an important parameter in the design of 

telecommunication systems which relies on wavelengths above 1 GHz (Crane, 

1996). 

 

 

Reliable estimates of rain attenuation can be obtained through measurements 

taken from radar data (Adhikari et al., 2011; Akuon and Afullo, 2011; Yeo et al., 
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2012). Direct measurements like rain gauge or microwave link are not convenient for 

use, because of infrastructure and time constrain (Olsen, 1982; Seed et al., 1990; 

Lahaie et al., 1993). In addition, it is sometimes complicated to transfer the outcomes 

to other sites. Thus, there is growing interest in using indirect measurement 

techniques such as radar data. 

 

 

Radar (Radio detection and ranging) utilizes electromagnetic waves to 

“remote-sense” the location, determine velocity, and determine characteristic of 

targets. The primary reason for utilizing radar is the ability of this instrument to 

detect with great spatial detail of precipitation over large area in real time and with 

single installation. Radar data can be used principally to evaluate the propagation 

impairments through simulations (Battan, 1973), which is due to hydrometeors for 

any length of ground paths, any kind and complexity of radio system and for any 

frequency. However, the shortcoming is the radar reflectivity (Z), that is fundamental 

measurement for the meteorological target which can not be directly used, its 

conversion to rain intensity and depends mostly on Drop Size Distribution (DSD) 

(Capsoni and Caboni, 2003). 

 

 

With rapid growth of information technology (Murdock et al., 2012), there is 

a trend of using local Multipoint Distribution Service (LMDS) applications and 

evolution (Ahamed, 2009; Panagopoulos et al., 2007; Dimitris et al., 2011). This has 

led to the utilization and exploitations of high wavelengths band such as Ka band 

(20/30 GHz) and above. The spectrum at Ka band is essential for BWA services. 

This is so; due to relatively unused spectrum with essentially no congestion problem, 

that provides greater bandwidths, and ability of frequency reuse comparing with 

lower band frequency. 
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There are two kinds of interference in LMDS; first type is interference from 

other communication systems known as "inter-system interference" such as 

interference from other Ka-band communication systems (Bose et al., 2001). This 

can be solved with proper licensing of spectrum band. The second interference is 

known as "intra-system interference". This is essentially interference produced by the 

system itself, including adjacent channel interference (ACI) and co-channel 

interference (CCI). ACI could be resulted from signals which are adjacent within the 

frequency for that desired signal. CCI is the major concern in LMDS cellular 

architecture; the biggest problem is the consequence of interference of a single cell 

on others throughout heavy rain because of frequency reuse (Hakegard, 2000). 

Similarly, CCI sometimes happens due to crosstalk from two different radio 

transmitters using the same frequency which is unquestionably the worst issue in the 

coexistence. This study is devoted to CCI effect only.  

 

 

A modified rain models (ITU-R P.837-6, 2012; ITU-R P.530-14, 2012) 

according to local radar data measurements was used to identify the rain rate and rain 

attenuation distribution. In this work, the performance of LMDS has been evaluated 

in terms of carrier-to-interference ratio C/I under different rain conditions. Rain 

attenuation and inter cell interference (ICI) play a very important factor in LMDS 

planning techniques. 

 

 

 

 

 

1.2 Problem statement 

 

 

Wireless telecommunication world is very competitive; in view of that, power 

budget and fade margin requirements need to be studied extensively in designing 

Local Multipoint Distribution Service (LMDS). In any engineering discipline, pre-

implementation analysis is very much required for reliability. Predictions of reliable 
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local rain attenuation and path loss are necessary for service availability and quality 

of service. Previous researchers demonstrated that rain is the principal reason for 

system outage and service unavailability (Baldotra and Hudiara, 2004; Chu and 

Chen, 2005). The knowledge of rain attenuation at the frequency of operation is 

extremely required for design of reliable terrestrial and earth space communication 

link at particular location. 

 

 

Different LMDS architectures are proposed in this study. The performance 

was based on local rain cell profile which indicates that, each architecture has its own 

coverage limitations. For that, it is necessary to analyze and estimate the optimum 

distance for LMDS during heavy rain. Base on this analysis changing the service cell 

size coverage or system architecture is required to improve the link reliability. 

 

 

LMDS systems could offer high order modulation schemes such as 64-QAM 

which possess greater bandwidth efficiency (Lee et al., 1998). However, due to high 

interference in Multicell LMDS, 64-QAM is useful for limited coverage area, where 

it requires high data rate transfer close from the base station site (Ranjan Bose, 

2004). Therefore, it is necessary to increase the coverage range area by switching to 

a lower modulation plan like 16-QAM and QPSK. Furthermore, careful cell planning 

and antenna placement are required to enhance the coverage area with maximum 

scheme time available and reduce the interference. 

 

 

The proposed architectures for LMDS in this study includes: simplex and 

dual ring relay, which have already been applied in satellite but not performed yet in 

LMDS. 

 

 

 



5 

 

 

1.3 Research objectives 

 

 

The problem discussed earlier was the main challenge and focus in this 

research work. The objectives of this research could be divided into the followings: 

 

i. To estimate rain rate, and rain attenuation distribution for different path 

lengths by employing radar data obtained from Malaysian Meteorological 

Department. 

 

ii. To determine the optimum required separation distance for LMDS cell in 

Malaysia, to ensure system reliability. 

 

iii. To propose LMDS architectures based on local rain profile, which leads to 

higher LMDS availability. 

 

 

 

 

 

1.4  Scope of work 

 

 

In order to achieve the objectives, the research scope is as follows: 

 

i. In this work, meteorological radar data has been utilized. The collected data 

from Kluang meteorological radar station which is located with latitude 

2.020o and longitude 103.320o in Johor, Malaysia. This radar concerns the 

southern part of peninsular Malaysia. However, only data for the area which 

concerns was UTM-Skudai and Johor Bahru was considered in this study.  

 

ii. Duration of data collection lasted one year data (November 2006 – December 

2007). The study focused on terrestrial path; because of that, only 0.5o plan 

position indicator (PPI) scan elevation angle was considered. The available 
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range bin sizes were 500 m, 1000 m, and 2000 m. However, in order to obtain 

more detail cell profiling, the 500 meter range bin resolution was selected. 

 

iii. It is common to apply conventional architecture in LMDS (Chu and Chen, 

2005; Panagopoulos et al., 2007; Charilas et al., 2011). For this work four 

LMDS architectures had been investigated namely; conventional, 

conventional with 4 frequency reuse, simplex ring relay and dual ring relay. 

 

iv. In order to evaluate the performance of different LMDS architectures, the C/I 

of each architecture is considered. 

 

 

 

 

1.5 Contributions to knowledge 

 

 

Through this thesis, there are number of contributions present in FBWA field. 

These contributions are summarized as follows: 

 

i. Significant study based on local weather radar data has been performed to 

obtain rain intensity profiling and rain attenuation. The results were 

comparable with ITU-R model and rain gauge network, which validate the 

use of radar data for this study. 

 

ii. Four different LMDS architectures scenarios namely; conventional, 

conventional with 4 frequency reuse, simplex ring relay and dual ring relay 

architectures had been presented, and evaluated in terms of C/I ratio. 

 

iii. The optimum LMDS cell size for different architectures in Malaysia had been 

identified. It had been obtained that, the proposed architectures offer larger 

coverage area than conventional and conventional with 4 frequency reuse 

architectures. 
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1.6 Structure of the study work 

 

 

This thesis is divided into six chapters.  The first chapter is the introduction, 

problem statement, research objectives, scope of work, along with the layout of the 

thesis.  The second chapter contains the literature review, on meteorological radar, 

rain attenuation, LMDS configuration, and contains LMDS performance results from 

previous studies. The third chapter describes the procedure used to evaluating rain 

profile, the proposed LMDS architecture, and performance evaluations. The fourth 

chapter includes the results analysis for local rain rate and rain attenuation which will 

be used in chapter five. The fifth chapter essentially uncovers the optimum 

separation distance suitable for LMDS cells by employing local rain profile. It 

analyzes different scenarios to determine the LMDS performance. The last chapter 

presents the overall conclusions, the key contributions factors of the project and 

recommendations for future work. 
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