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ABSTRACT

The glass samples of composition 10K2CO3  (90  x) H3BO3 with 10 ≤ x ≤
30, 20Li2CO3  10K2CO3  (70  x) H3BO3  xCu with 0.05 ≤ x ≤ 1.0 and 20Li2CO3
 10K2CO3  (69.9  x) H3BO3  0.1Cu  xSnO2 with 0.05 ≤ x ≤ 0.2 have
successfully been prepared by melt-quenching technique. The samples were analyzed
by X  ray diffraction spectrometer to confirm that the sample is amorphous.  The
energy band gap measurements of the glass samples reveal that, introducing copper
into lithium borate glass reduce the energy band gap of the samples, while the
addition of SnO2 into Cu-doped sample increase the energy band gap. The impact of
SnO2 gives an enhancement in the luminescence intensity by almost 3 times when
0.1 mol% SnO2 was added to 0.1 mol% Cu-doped borate glass.  The peaks shapes
shifted from blue luminescence to blue and green luminescence for Cu-doped and
co-doped samples respectively. The thermoluminescence (TL) properties of Cu-
doped and co-doped with SnO2 glass were investigated in this work. The glow curves
position of Cu-doped and co-doped with SnO2 glass were recorded at 205C and
215C respectively at a heating rate of 20Cs1. In addition, the optimum annealing
procedure of Cu-doped and co-doped with SnO2 glass was 20 min at 400 C and 30
min at 400C respectively. The highest TL intensity of Cu-doped sample was
recorded at Cu concentration of 0.1 mol%. The highest TL intensity for co-doped
with SnO2 glass was observed at SnO2 concentration of 0.1 mol%. The linear
relationship of doseTL intensity was observed for both glass samples for different
doses ranging from 0.5 to 4.0 Gy subjected to 6, 10 and 12 MV X-ray photon
energies and Co60 gamma ray.  The co-doped with SnO2 glass has always higher
TL response compared to Cu-doped glass. The study of fading characteristics shows
that co-doped with SnO2 glass has lower fading compared to Cu-doped glass.
Reproducibility study of both types of glasses show the thermoluminescence
intensity of Cu-doped glass are slowly decreasing about 1.6% with the repeating
readout and about 1.3% for co-doped with SnO2. Study on the TLD sensitivity shows
that the co-doped with SnO2 glass is almost 6 times more sensitive than the Cu-
doped glass.  The TL sensitivity was found as 75 C g1Gy1 and 266 Cg1 Gy1 for
Cu-doped and co-doped with SnO2 glass respectively. The relative energy response
of Cu-doped and co-doped with SnO2 glass have been calculated theoretically for
photon energies up to 1.25 MeV and it is found that the theoretical calculations are in
good agreement with the experimental results. The average value of activation
energy and the average frequency of Cu-doped and co-doped with SnO2 glass are
calculated.
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ABSTRAK

Sampel kaca dengan komposisi 10K2CO3  (90  x) H3BO3 dengan 10 ≤ x ≤ 30,
20Li2CO3 10K2CO3  (70  x) H3BO3  xCu dengan 0.05 ≤ x ≤ 1.0 dan 20Li2CO3
10K2CO3  (69.9  x) H3BO30.1Cu  xSnO2 dengan 0.05 ≤ x ≤0.2 telah berjaya
dihasilkan menggunakan teknik pelindapan lebur. Sampel dianalisis menggunakan
spektrometer pembelauan sinar-X bagi mengesahkan sampel adalah amorfus.
Pengukuran jurang jalur tenaga menunjukkan bahawa penambahan unsur kuprum ke
dalam sampel kaca litium borat mengurangkan jurang jalur tenaga, manakala jurang
jalur tenaga meningkat selepas SnO2 ditambah dalam sampel kaca. Impak SnO2
meningkatkan keamatan luminesens kepada hampir tiga kali ganda apabila 0.1
mol% SnO2 ditambahkan kepada kaca borat yang didopkan dengan 0.1 mol% Cu.
Bentuk puncak masing-masing teranjak daripada luminesens biru kepada luminesens
biru dan hijau bagi kaca yang didopkan dengan Cu dan diko-dop dengan SnO2. Ciri
termoluminesen (TL) bagi sampel yang didopkan dengan Cu dan yang diko-dopkan
dengan SnO2 dikaji dalam kajian ini. Kedudukan puncak lengkung pijar bagi kaca
yang didopkan dengan Cu dan yang diko-dopkan dengan SnO2 masing-masing
direkodkan pada suhu 205C dan 215C pada kadar pemanasan 20Cs1. Tambahan
lagi, prosedur sepuhlindap optimum bagi kaca yang didop dan yang diko-dop
masing-masing adalah 20 minit pada 400C dan 30 minit pada suhu 400C.
Keamatan TL tertinggi bagi kaca yang didopkan dengan Cu diperhatikan pada
kepekatan Cu 0.1 mol%. Keamatan TL tertinggi bagi kaca yang diko-dopkan dengan
0.1 mol% SnO2 diperolehi pada kepekatan SnO2 0.1 mol%.  Hubungan linear antara
dos-keamatan TL dikaji bagi kedua-dua sampel kaca bagi dos dalam julat 0.5 hingga
4.0 Gy yang didedahkan dengan foton sinar-X bertenaga 9, 10, dan 12 MV dan sinar
gama dari sumber Co-60. Kaca yang diko-dopkan dengan SnO2 sentiasa mempunyai
respon TL yang lebih tinggi berbanding dengan kaca yang didopkan dengan Cu.
Kajian ciri kepudaran menunjukkan kaca yang diko-dopkan dengan SnO2
mempunyai sifat kepudaran yang lebih baik berbanding dengan kaca yang didopkan
dengan Cu. Kajian kebolehgunaan semula bagi kedua-dua jenis kaca menunjukkan
keamatan TL bagi kaca yang didopkkan dengan Cu berkurang secara perlahan kira-
kira 1.6% dan 1.3% bagi kaca yang diko-dopkan dengan SnO2. Kajian kepekaan TL
terhadap kaca menunjukkan kaca yang diko-dopkan dengan SnO2 adalah 6 kali lebih
peka berbanding dengan kaca yang didopkan dengan Cu. Nilai kepekaan masing-
masing adalah 75 Cg1Gy1 and 266 Cg1 Gy1 bagi kaca yang didopkan  dengan
Cu dan yang diko-dopkan dengan SnO2. Respon tenaga relatif bagi kaca yang
didopkan dengan Cu dan diko-dopkan dengan SnO2 telah dikira secara teori bagi
tenaga foton sehingga 1.25 MeV dan didapati nilai teori mempunyai persamaan yang
yang baik berbanding hasil eksperimen. Nilai purata tenaga pengaktifan dan
frekuensi purata bagi kaca yang didopkan dengan Cu dan yang diko-dopkan dengan
SnO2 juga dikira dalam kajian ini.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Thermoluminescence (TL) is a luminescence phenomenon of an insulator or

semiconductor which can be observed when the solid is thermally stimulated. TL

process should not be confused with the light spontaneously emitted from a

substance when it is heated to incandescence. At higher temperatures a solid emits

(infra) red radiation of which the intensity increases with increasing temperature.

This is thermal or black body radiation. TL, however, is the thermally stimulated

emission of light following the previous absorption of energy from radiation. From

this description the three essential ingredients necessary for the production of TL can

be deduced. Firstly, the material must be an insulator or a semiconductor metals do

not exhibit luminescent properties. Secondly, the material must have at some time

absorbed energy during exposure to ionizing radiation. Thirdly, the luminescence

emission is triggered by heating the material (McKeever, 1985). The stored energy is

released in the form of visible light when the material is heated.

The first description of thermoluminescence was given by Boyle on 28

October 1663, where he observed strange ‘glimmering light’ when he warmed a

diamond in the darkness of his bedroom.  Oldenberg, in 1705 described the

phenomenon of thermoluminescence in mineral and fluorite. He also described other

properties of such phosphors.  In 1883, Pearsall gave a description of the effects of

electricity upon minerals which luminescence upon heating. Becquerel described in
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his work the effect of thermoluminescence on measurement of infrared spectra in

1883. Wiedemann and Schmidt, in 1895, used the physical process for the thermal

release of stored radiation induced luminescence (thermoluminescence) for the

detection of ionizing radiation. In 1925, Wick, from Vassar College described the

effects of X–ray in modifying and producing thermoluminescence. Many

researchers have benefited from this phenomenon and have used it in many

applications (Becker, 1973).

Daniels and his co-workers in the late 1940s, used thermoluminescence to make

quantitative measurements of radiation exposure, for example, examining the glow

peak structure and isothermal fading of alkali halides.  They concluded that lithium

fluoride (LiF) from Harshaw Chemical Company was most suitable for measuring

ionizing radiation exposure.  For some studies of LiF in 1960, Harshaw incorporated

titanium and other elements in the LiF to produce phosphor with high TL sensitivity.

This material is the basis of what is now generally regarded as the ‘standard’ TL

phosphor: Harshaw TLD 100 (McKinlay, 1981).

Nakajima et al. (1978) described the preparation and properties of a highly

sensitive LiF dosimetry, incorporating Mg, Cu, and P as dopant. Mg and Cu doping

alone gives the 'usual' emission near 410 nm, but the addition of P increases emission

at 340 nm (Oberhofer, 1981).

Now, there are a few commercially available thermoluminescence dosimeters

(TLD). LiF: Mg, Ti (TLD-100), LiF: Mg, Cu, P (TLD–700H), Li2B4O7: Cu, Ag, P

(TLD–800), CaSO4: Dy (TLD–900), CaF2: Dy (TLD–200) and Al2O3 (TLD–500) as

examples of the commercially thermoluminescence materials (Driscoll et al., 1984,

Fox et al., 1988 and Noh et al., 2001). Extensive research is being carried out to

improve their dosimetric properties (Sahare et al. 1990, Dhoble et al., 1993, Prokic,

2001, Lakshmanan et al., 2002, Shinde et al., 2001 and Kim et al., 2004). Most of

the commercial thermoluminescence dosimeters are polycrystalline, as they can be

manufactured with ease (McKeever et al., 1995).
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Dosimetric materials have to have some specific properties that all

thermoluminescence dosimeters are expected to fulfill. These specific features can

be given as follows (Pradhan, 1981, Furetta et al., 1999; 2001 and Kortov, 2007).

i) A thermoluminescence dosimeter should give a simple and single glow peak

around (180–250 °C). If several glow peaks are present, at least the main peak

should be well resolved. However, for this type of thermoluminescence

dosimetry, dosimeter heating protocol is complicated.

ii) The dosimeter should have high gamma ray sensitivity. High sensitivity is

important especially for use in personnel and medical dosimetry. The dosimeter

is expected to have high response per unit of absorbed dose.

iii) Dosimeters ought to have low fading property which is the ability to store

dosimetric information for a long time.

iv) The thermoluminescence dosimeter should be mechanically strong, resistant

against humidity, gases, moisture, and organic solvents.

v) The thermoluminescence material should have high light resistivity.

vi) Especially for thermoluminescence dosimeter used in personnel and medical

dosimetry, it should has effective atomic number close to that of the human

tissue.

vii) The luminescence spectrum should match the maximum spectral sensitivity of

the photomultiplier.

viii) The thermoluminescence materials should able to be reused several times and

they should have simple annealing process.

ix) They must be cheap and non-toxic in case of in-vivo use.

However, all the commonly used phosphors do not have all the above stated

characteristics at one shot, it will not be ideal (Salah et al., 2007, Kortov, 2007 and

Berger et al., 2008). For example, CaSO4: Dy has a good sensitivity but poor tissue

equivalence. Its effective atomic number is 16.7 (Spurny, 1980 and Lakshmanan,

2001). On the other hand, LiF-TLD 100 is tissue equivalent but it has a poor TL
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response. Its TL response is nearly ten times less than that of CaSO4: Dy (Salah et

al., 2007). In addition, LiF compound has a complex glow curve (Horowitz, 1984)

and LiF: Mg, Cu, P is very sensitive to thermal treatments (Barbina et al., 1981).

MgB4O7: Dy/Tm exhibits high batch to batch variation (Mahesh et al., 1989).

Li2B4O7: Mn has low sensitivity (Busuoli et al., 1977) and Li2B4O7: Cu has high

optical fading (Prokic, 1980) and they have poor reproducibility (Mc Keever et al.,

1989), BeO has high fluctuation of the TL signal at low doses (Prokic 1993). Li2SO4:

P, Dy and Li2SO4: P, Eu phosphors have high effective atomic (Zeff=11.19) number

(Dhoble et al., 2003). Therefore, research is going on to prepare new phosphors with

better TL characteristics or to improve the existing dosimetric materials, for instance,

B2O3–Li2O: Mg glass (Elkholy, 2010), Li2B4O7:Cu single crystals (Tiwari et al.,

2010), Li2B4O7:Mn, Ag, P and Mg (Kayhan et al., 2011), CaSO4: Dy or Tm: Li co-

dpoed (Wang et al., 2011) and Li2B4O7:Cu, Ag, In (Pekpak et al., 2011).

1.2 Statement of the Problem

Dosimetric materials should have several characteristics like near tissue

equivalence, excellent stability, high sensitivity, simple glow curve structure which is

ideally a single glow peak at about 200°C and simple annealing procedure for

reproducibility. There are some dosimetric materials which are used in industry and

also a lot of new compounds produced by researchers, but none of them have all the

above stated properties. Therefore, there have always been attempt to either prepare

new dosimetric materials with better thermoluminescence characteristics or simply

improve upon the already existing dosimetric materials by varying the concentration

of the impurities or by co-doping of the phosphor with other elements or doping new

impurities in new matrices. This research focused on the study of Cu dopes and co-

doped of SnO2 nanoparticle of lithium potassium borate glass as TL material

subjected to photons and Co-60 gamma ray. This study is concerned with the

linearity of dose-TL response relationship, fading characteristics, energy response,

sensitivity, optical bleaching, reproducibility and dose threshold.
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1.3 Objectives of the study

The objectives of the research are as follows:

1. To prepare and determine the optical properties of Cu-doped lithium

potassium borate glass and co-doped SnO2 nanoparticles of Cu-doped

lithium potassium borate glass.

2. To study the optimum setting of TLD Reader such as annealing

temperature and heating rate for the sample under investigation.

3. To investigate the fundamental thermoluminescence properties of Cu-

doped lithium potassium borate subjected to 6, 10 and 12 MV photon

and Co60 gamma irradiation.

4. To investigate the fundamental thermoluminescence properties of co-

doped SnO2 nanoparticles of Cu-doped lithium potassium borate

subjected to 6, 10 and 12 MV photon and Co60 gamma irradiation.

1.4 Scope of the Study

This work may provide a principle for employing TL phenomena in several

dosimetric situations. Two types of samples were prepared in this work, i.e. Cu-

doped and co-doped SnO2 nanoparticles of lithium potassium borate glass. Their

general properties, which include linearity, energy response, reproducibility, re-use

and fading characteristics, sensitivity and effective atomic number, may provide

doped and co-doped lithium potassium borate glass for the introduction of new TL

material. These samples may be useful for several of applications especially in

radiation therapy.
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The irradiation on the doped and co-doped lithium potassium borate glass

systems have been conducted at different dose levels from 0.5–4.0 Gy of ionizing

radiation sources. These samples were irradiated with 6, 10 and 12 MV photon

beams and 60Co gamma ray. Moreover, this present work has also been carried out to

determine the effective atomic number, Zeff of doped and co-doped lithium potassium

borate glass systems using a scanning electron microscope (FE-SEM).

This thesis contains 5 Chapters. Chapter 1 provided an introduction to the

phenomenon associated with TL mechanism, offered the objective of the study and

statements of hypotheses. Chapter 2 addresses the mathematics of

thermoluminescence and methods of analyzing the TL glow curve. This chapter also

discussed several method of analysis to calculate the values of kinetic parameters

(activation energy, E and frequency factor, s). Important TL characteristics were

highlighted including annealing condition; glow curves parameters, energy

dependence, relative energy response, dose rate effect, heating rate effect and optical

bleaching. Chapter 3 describes the methodology and procedures in samples

preparation. In addition, it also explain all the equipments used in this study. In

Chapter 4, the results obtained are presented and discussed in details. Chapter 5

summarizes the findings of this investigation, and provides an outlook for future

studies in this area.
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