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Abstract

In the present work, by considering the artery as a prestressed thin-walled elastic tube with
a symmetrical stenosis and the blood as an incompressible viscous fluid, we have studied the
amplitude modulation of nonlinear waves in such a composite medium through the use of the
reductive perturbation method [23]. The governing evolutions can be reduced to the dissipative
non-linear Schrodinger (NLS) equation with variable coefficient. The progressive wave solution
to the above non-linear evolution equation is then sought.
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1. Introduction

Due to its applications in arterial mechanics, the propagation of pressure pulses in fluid-filled
distensible tubes has been studied by several researchers (Pedley [1] and Fung [2]). As far as
the biological applications are concerned, most of the works on wave propagation in compliant
tubes have considered small amplitude waves ignoring the nonlinear effects and focused on the
dispersive character of waves (see, Atabek and Lew [3], Rachev [4] and Demiray [5]). However,
when the nonlinear terms arising from the constitutive equations and kinematical relations are
introduced, one has to consider either finite amplitude, or small-but-finite amplitude waves,
depending on the order of nonlinearity.

Rudinger [6], Ling and Atabek [7], Anliker et al [8] and Tait and Moodie [9] observed the
propagation of finite amplitude waves in fluid-filled elastic or viscoelastic tube by using the
characteristics method to study the formation of shock. On the other hand, the propagation
of small-but-finite amplitude waves in distensible tubes has been investigated by Johnson [10],
Hashizume [11], and Yomosa [12] by employing various asymptotic methods.

Later, in a series of works of Demiray and Antar [13]-[15], they treated the artery as an
incompressible, prestressed, thin and isotropic elastic tube and the blood as an incompress-
ible inviscid, viscous or layered fluid. Then, by using the reductive perturbation method in
the long-wave approximation, they obtained KdV, Burgers’ and KdV-Burgers’ type equations,
respectively.

Recently, Tay and co-workers [16]-[18] studied the non-linear waves propagation in a pre-
stressed thin elastic tube with a symmetrical stenonis filled with inviscid, viscous and Newtonian
fluid with variable viscosity, they showed that the governing equations can be reduced to forced
Kortewed-de Vries, forced perturbed Kortewed-de Vries and forced Kortewed-de Vries-Burgers
equations, respectively.

The modulation of small-but-finite amplitude pressure waves in a fluid-filled distensible, lin-
ear elastic tube has been examined by Ravindran and Prasad [19]. They obtained the non-linear
Schrodinger (NLS) equation equation. The work of of non-linear waves modulation in a pre-
stressed thin elastic tube filled with inviscid or viscous fluid has been carried out by Demiray
and co-worker [20]-[22]. They showed that the governing equations can be reduced to NLS and
dissipative NLS equations, respectively. The NLS equation is the simplest representative equa-
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tion describing the self-modulation of one-dimensional monochromatic plane waves in dispersive
media. It has a balance between the nonlinearity and dispersion.

In the present work, considering the artery as an incompressible, prestressed, thin-walled
elastic tube with a symmetrical stenosis and the blood as an averaged viscous fluid, we have
studied the amplitude modulation of non-linear waves in such a composite medium by using the
reductive perturbation method [23]. We obtained the dissipative NLS equation with variable
coefficient. We then sought the progressive wave solution to the non-linear evolution equation
obtained.

2. Basic equations and theoretical preliminaries

In this section, we shall give the derivation of the field equations of an elastic tube, which is
considered to be a model for an artery, and a viscous fluid, which is assumed to be a model for
blood.

2.1 Equations of tube

In this sub-section, we shall derive the governing equations of an elastic tube filled with a
viscous fluid. Such a combination of a solid and a fluid is considered to be a model for blood
flow in arteries.

For a healthy human being, the systolic pressure is about 120 mm Hg, and the diastolic
pressure is around 80 mm Hg. This means that the arteries are subjected to a mean pressure
P0 = 100 mm Hg, and in the course of blood flow, a dynamical pressure increment ΔP = ±
20 mm Hg is added on this initial field. Moreover, experimental studies (Fung [2]) revealed
that the arteries are also subjected to an initial axial stretch λz, which is about λz = 1.6.
These observations show that the arteries are initially subjected to static deformation both in
the radial and the axial directions, and a dynamical pressure (or a radial displacement u∗ ) is
superimposed on this initial deformation. Due to the external tethering in the axial direction,
the effect of axial displacement is neglected.

Now, we consider a thin and long tube of circular cross-section with initial reference radius
R0 in the cylindrical polar coordinates (R∗, Θ, Z∗). Then, the position vector of a point on the
tube can be described by

R = R0er + Z∗ez, (1)

where er, eθ and ez are the unit base vectors in the cylindrical polar coordinates and Z∗ is the
axial coordinates of a material point in the natural state.

The arc lengths along the meridional and circumferential curves are given by

dSZ = dZ∗, dSΘ = R0dΘ. (2)

Motivated with the experimental observations (Fung [2]), we shall assume that the elas-
tic tube is subjected to an axial stretch ratio λz, and the static pressure P ∗

0 (Z∗). Then, the
deformation may be described by

r0 = [r0 − f∗(z∗)] er + z∗ez, z∗ = λzZ
∗, (3)

where z∗ is the axial coordinate at the intermediate configuration, r0 is the radius of the origin
after finite static deformation, and f(z) is the stenosis functions after the deformation. Thus
the arc lengths after static deformation along the meridional and circumferential directions are
given by

ds0
z = [1 + (−f∗′)2]1/2dz∗, dsθ = [r0 − f∗(z∗)] dθ, (4)

where a prime denotes the differentiation of the corresponding field variable with respect to z∗.
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Upon this initial static deformation, we shall superimpose a finite dynamical radial displace-
ment u∗(z∗, t∗), where t∗ is the time parameter, but, in view of the external tethering in the
axial direction, the axial displacement is assumed to be negligible. Then, the position vector r
of a generic point on the tube can be described by

r = [r0 − f∗(z∗) + u∗(z∗, t∗)]er + z∗ez. (5)

The arc lengths along the deformed meridional and circumferential curves are respectively given
by

dsz =

[
1 +

(
−f∗′ +

∂u∗

∂z∗

)2
]1/2

dz∗, dsθ = [r0 − f∗(z∗) + u∗(z∗, t∗)]dθ. (6)

Then, the stretch ratios along the meridional and circumferential curves in the final configuration
read, respectively, by

λ1 = λz

[
1 + (−f∗′ +

∂u∗

∂z∗
)2

]1/2

, λ2 =
1

R0
[r0 − f∗(z∗) + u∗(z∗, t∗)]. (7)

The unit tangent vector t along the deformed meridional curve and the unit exterior normal
vector n to the deformed membrane are given by

t =
(−f∗′ + ∂u∗

∂z∗ )er + ez

Λ
, n =

er − (−f∗′ + ∂u∗
∂z∗ )ez

Λ
, (8)

where the function Λ is defined by

Λ =

[
1 +

(
−f∗′ +

∂u∗

∂z∗

)2
]1/2

.

The material that we shall consider is assumed to be incompressible. This condition imposes
the following restriction on the thickness H, and h, before and after final deformation respectively

h =
H

λ1λ2
. (9)

Let T1 and T2 be the membrane forces along the meridional and circumferential curves,
respectively. Then, the equation of the radial motion of a small tube element placed between
the planes z∗ = const, z∗ + dz∗ = const, θ = const and θ + dθ = const may be given by

∂

∂z∗

[
T1

Λ
(r0 − f∗ + u∗)

(
−f∗′ +

∂u∗

∂z∗

)]
− T2Λ + Λ(r0 − f∗ + u∗)P ∗

r = ρ0
H

λz
R0

∂2u∗

∂t∗2
, (10)

where ρ0 is the mass density of the membrane material, and P ∗
r is the radial fluid reaction force

on the inner surface of the tube.
Let μΣ be the strain energy density function of the tube material, where μ is the shear

modulus. Then, the membrane forces T1 and T2 may be expressed in terms of the stretch ratios
as

T1 =
μH

λ2

∂Σ
∂λ1

, T2 =
μH

λ1

∂Σ
∂λ2

. (11)

Introducing equation (11) into equation (10), the equation of motion of the tube in the radial
direction takes the following form

μR0
∂

∂z∗

⎧⎨
⎩

(
−f∗′ + ∂u∗

∂z∗

)
Λ

∂Σ
∂λ1

⎫⎬
⎭ − μ

λz

∂Σ
∂λ2

+
ΛP ∗

r

H
(r0 − f∗ + u∗) − ρ0

R0

λz

∂2u∗

∂t∗2
= 0. (12)

Kim Gaik Tay et al/ International Journal of Engineering Science and Technology

ISSN: 0975-5462 710

Vol. 2(4), 2010, 708-723



2.2. Equations of fluid

In general, blood is known to be an incompressible non-Newtonian fluid. However, in the
course of flow in large arteries, the red blood cells in the vicinity of arterial wall move to the
central region of the artery so that hematocrit ratio becomes quite low near the arterial wall,
where the shear rate is quite high, as can be seen from Poiseuille flow. Experimental studies
indicate when the hematocrit ratio is low and the shear rate is high, blood behaves like a
Newtonian fluid (see [2, 6]). Therefore, for flow problems in large blood vessels, blood may be
treated as incompressible Newtonian fluid whose axially symmetric motion in the cylindrical
polar coordinates may be given by

∂V ∗
r

∂t∗
+ V ∗

r

∂V ∗
r

∂r
+ V ∗

z

∂V ∗
r

∂z∗
+

1
ρf

∂P̄

∂r
− μv

ρf

(
∂2V ∗

r

∂r2
+

1
r

∂V ∗
r

∂r
− V ∗

r

r2
+

∂2V ∗
r

∂z∗2

)
= 0, (13)

∂V ∗
z

∂t∗
+ V ∗

r

∂V ∗
z

∂r
+ V ∗

z

∂V ∗
z

∂z∗
+

1
ρf

∂P̄

∂z∗
− μv

ρf

(
∂2V ∗

z

∂r2
+

1
r

∂V ∗
z

∂r
+

∂2V ∗
z

∂z∗2

)
= 0, (14)

∂V ∗
r

∂r
+

V ∗
r

r
+

∂V ∗
z

∂z∗
= 0 (incompressibility), (15)

where V ∗
r , V ∗

z denote the radial and the axial velocity components, ρf is the mass density, P̄ is
the pressure function, μv is the viscosity of the fluid and rf = r − f∗ + u∗.

In general, it is quite difficult to deal with these exact equations of motion of a viscous fluid.
Therefore, we shall make some simplifying assumptions so called ”hydraulic approximations”.
In this approximation, it is assumed that the axial velocity is much larger than the radial one
and an averaging procedure with respect to the cross-sectional area is permissible. Applying the
averaging procedure to the equations (13)-(15), we have

∂A∗

∂t∗
+

∂

∂z∗
(Aw∗) = 0, (16)

∂w∗

∂t∗
+ w∗∂w∗

∂z∗
+

1
ρf

∂P ∗

∂z∗
− μv

ρf

(
∂2w∗

∂z∗2
− 8w∗

r2
f

)
= 0, (17)

where A denotes the inner cross-sectional area, i.e., A = πr2
f , rf = r− f∗ +u∗ is the final radius

of the tube after deformation and other quantities are defined by

Aw∗ = 2π

∫ rf

0
rV ∗

z dr, AP ∗ = 2π

∫ rf

0
rP̄ dr. (18)

Here w∗ is the averaged axial velocity and P ∗ is the averaged pressure of the fluid. In obtaining
(18), we have made use of the following assumption [24]:

A(w∗)2 = 2π

∫ rf

0
rV ∗2

z dr,
2μv

ρfrf

∂V ∗
z

∂r
|r=rf

= −8μvw
∗

ρfr2
f

. (19)

Introducing the expression of A into the equation (16) yields

2
∂u∗

∂t∗
+ 2w∗

[
−f

′∗ +
∂u∗

∂z∗

]
+ [r0 − f∗(z∗) + u∗]

∂w∗

∂z∗
= 0. (20)

For the present problem, the fluid reaction force P ∗
r takes the following form:

P ∗
r =

1
Λ

[
P ∗ − 4μv(−f∗′ + ∂u∗/∂z∗)w∗

r0 − f∗(z∗) + u∗

]
. (21)
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At this stage it is convenient to introduce the following non-dimensional quantities

t∗ =
(

R0

c0

)
t, z∗ = R0z, u∗ = R0u, f∗ = R0f,

w∗ = c0w, μv = c0R0ρf ν̄, P ∗ = ρfc2
0p, r0 = R0λθ,

c2
0 =

μH

ρfR0
, m =

ρ0H

ρfR0
, (22)

where λθ = r0/R0 is the initial stretch ratio, and c0 is the Moens-Korteweg wave speed.
Introducing (22) into the equations (12), (20) and (17), the following non-dimensional equa-

tions are obtained

p =
m

λz(λθ − f(z) + u)
∂2u

∂t2
+

1
λz(λθ − f(z) + u)

∂Σ
∂λ2

− 1
(λθ − f(z) + u)

∂

∂z

{
(−f ′ + ∂u/∂z)

[1 + (−f ′ + ∂u/∂z)2]1/2

∂Σ
∂λ1

}

+
4ν̄(−f ′ + ∂u/∂z)w

(λθ − f(z) + u)
, (23)

2
∂u

∂t
+ 2w

[
−f ′ +

∂u

∂z

]
+ [λθ − f(z) + u]

∂w

∂z
= 0, (24)

∂w

∂t
+ w

∂w

∂z
+

∂p

∂z
− ν̄

[
∂2w

∂z2
− 8w

(λθ − f(z) + u)2

]
= 0. (25)

The equations (23)-(25) give sufficient relations to determine the field quantities u, w, and p
completely.

3.0 Non-Linear Wave Modulation

In this section, we will examine the amplitude modulation of weakly non-linear waves in a
fluid-filled thin elastic with a stenosis whose non-dimensional governing equations are given in
equations (23)-(25). Considering the dispersion relation of the linearized field equations and the
nature of the problem of concern, which is a boundary-value problem, the following stretched
coordinates is introduced:

ξ = ε(z − λt), τ = ε2z, (26)

where ε is a small parameter measuring the weakness of nonlinearity and λ is a constant to be
determined from the solution. Solving z in terms of τ , we get

z = ε−2τ. (27)

Introducing (27) into the expression of f(z), we obtain

f(ε−2τ) = ĥ(τ). (28)

In order to take the effect of stenosis into account, f(z) must be of order of ε4. For the present
work, we shall assume that ĥ(τ) have the following form

ĥ(τ) = ε2h(τ). (29)

Introducing the following differential relations

∂

∂t
=

∂

∂t
− ελ

∂

∂ξ
,

∂

∂z
=

∂

∂z
+ ε

∂

∂ξ
+ ε2

∂

∂τ
, (30)
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into the equations (23)-(25), we obtain

p =
m

λz[λθ − ε2h(τ) + u]

[
∂2u

∂t2
− 2ελ

∂2u

∂t∂ξ
− ε2λ2 ∂2u

∂ξ2

]

+
1

λz[λθ − ε2h(τ) + u]
∂Σ
∂λ2

− 1
λθ − ε2h(τ) + u

[
∂

∂z
+ ε

∂

∂ξ
+ ε2

∂

∂τ

]
×⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(
−ε2 dh

dτ + ∂u
∂z + ε∂u

∂ξ + ε2 ∂u
∂τ

)
[
1 +

(
−ε2 dh

dτ + ∂u
∂z + ε∂u

∂ξ + ε2 ∂u
∂τ

)2
]1/2

∂Σ
∂λ1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (31)

2
[
∂u

∂t
− ελ

∂u

∂ξ

]
+ 2w

[
−ε2 ∂h

∂τ
+

(
∂u

∂z
+ ε

∂u

∂ξ
+ ε2 ∂u

∂τ

)]

+[λθ − ε2h(τ) + u]
[
∂w

∂z
+ ε

∂w

∂ξ
+ ε2 ∂w

∂τ

]
= 0, (32)

∂w

∂t
− ελ

∂w

∂ξ
+ w

(
∂w

∂z
+ ε

∂w

∂ξ
+ ε2 ∂w

∂τ

)
+

∂p

∂z
+ ε

∂p

∂ξ
+ ε2

∂p

∂τ

−ε2ν

[
∂2w

∂z2
+ 2ε

∂2w

∂ξ∂z
+ 2ε2 ∂2w

∂z∂τ
+ ε2 ∂2w

∂ξ2

+2ε3
∂2w

∂ξ∂τ
+ ε4

∂2w

∂τ2
− 8w

[λθ − ε2h(τ) + u]2

]
= 0. (33)

Here, in order to take the effect of viscosity into account, the order of viscosity is assumed
to be O(ε2), i.e. ν̄ = ε2ν. For the long wave limit, it is assumed that the field quantities may be
expanded into asymptotic series of ε as

u = εu1 + ε2u2 + ε3u3 + ...,

w = εw1 + ε2w2 + ε3w3 + ...,

p = p0 + εp1 + ε2p2 + ε3p3 + ...,

h(τ) = ε2h1(τ) + ε3h2(τ) + ... (34)

Introducing the expansions (34) into the equations (31)-(33), the following sets of differential
equations are obtained

O(ε) equations

p1 =
m

λθλz

∂2u1

∂t2
− α0

∂2u1

∂z2
+ β1u1,

2
∂u1

∂t
+ λθ

∂w1

∂z
= 0,

∂w1

∂t
+

∂p1

∂z
= 0, . (35)

Kim Gaik Tay et al/ International Journal of Engineering Science and Technology

ISSN: 0975-5462 713

Vol. 2(4), 2010, 708-723



O(ε2) equations

p2 =
m

λθλz

∂2u2

∂t2
− α0

∂2u2

∂z2
+ β1(u2 − h1)

−2mλ

λθλz

∂2u1

∂ξ∂t
− 2α0

∂2u1

∂ξ∂z
− m

λ2
θλz

u1
∂2u1

∂t2

−α1

(
∂u1

∂z

)2

−
(

2α1 − α0

λθ

)
u1

∂2u1

∂z2
+ β2u

2
1,

2
∂u2

∂t
+ λθ

∂w2

∂z
− 2λ

∂u1

∂ξ
+ λθ

∂w1

∂ξ
+ u1

∂w1

∂z
+ 2w1

∂u1

∂z
= 0,

∂w2

∂t
+

∂p2

∂z
− λ

∂w1

∂ξ
+

∂p1

∂ξ
+ w1

∂w1

∂z
= 0. (36)

O(ε3) equations

p3 =
m

λθλz

∂3u3

∂t3
− α0

∂2u3

∂z3
− 2mλ

λθλz

∂2u2

∂ξ∂t
− 2α0

∂2u2

∂ξ∂z

−α0

(
∂2u1

∂ξ2
+ 2

∂2u1

∂z∂τ

)
+

mλ2

λ2
θλz

∂2u1

∂ξ2
+ β1(u3 − h2)

− m

λ2
θλz

u1

(
∂2u2

∂t1
− 2λ

∂2u1

∂ξ∂t

)
− m

λ2
θλz

(u2 − h1)
∂2u1

∂t2

−2α1
∂u1

∂z

(
∂u2

∂z
+

∂u1

∂ξ

)
−

(
2α1 − α0

λθ

)
u1

(
∂2u2

∂z2
+ 2

∂2u1

∂z∂ξ

)

−
(

2α1 − α0

λθ

)
(u2 − h1)

∂2u1

∂z2
+ 2β2u1(u2 − h1)

+
m

λ3
θλz

u2
1

∂2u1

∂t2
−

(
α2 − α1

λθ

)
u1

(
∂u1

∂z

)2

−
(

α2 − 2α1

λθ
+

α0

λ2
θ

)
u2

1

∂2u1

∂z2
− 3

(
γ1 − α0

2

) (
∂u1

∂z

)2 ∂2u1

∂z2
+ β3u

3
1,

2
∂u3

∂t
+ λθ

∂w3

∂z
− 2λ

∂u2

∂ξ
+ λθ

∂w2

∂ξ
+ 2w1

(
∂u1

∂ξ
+

∂u2

∂z

)

+2w2
∂u1

∂z
+ λθ

∂w1

∂τ
+ u1

(
∂w2

∂z
+

∂w1

∂ξ

)
+ (u2 − h1)

∂w1

∂z
= 0,

∂w3

∂t
+

∂p3

∂z
− λ

∂w2

∂ξ
+

∂p2

∂ξ
+

∂p1

∂τ
+ w1

∂w2

∂z
+ w2

∂w1

∂z
+ w1

∂w1

∂ξ

−ν

(
∂2w1

∂z2
− 8w1

λ2
θ

)
= 0. (37)

Here the coefficients of α0, α1, α2, β0, β1, β2, β3 and γ1are defined by

α0 =
1
λθ

∂Σ
∂λz

, α1 =
1

2λθ

∂2Σ
∂λθλz

, α2 =
1

2λθ

∂3Σ
∂λ2

θλz
,

β0 =
1

λθλz

∂Σ
∂λθ

, β1 =
1

λθλz

∂2Σ
∂λ2

θ

− β0

λθ
, β2 =

1
2λθλz

∂3Σ
∂λ3

θ

− β1

λθ
,

β3 =
1

6λθλz

∂4Σ
∂λ4

− β2

λθ
, γ1 =

λz

2λθ

∂2Σ
∂λ2

z

. (38)
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Equation (38) are defined through series expansion of the stretch ratios λ1 and λ2, which
read

λ1 = λz

[
1 +

(
−ε4h′

1(τ) − ε5h′
2(τ) +

∂u

∂z
+ ε

∂u

∂ξ
+ ε2 ∂u

∂τ

)2
]1/2

,

λ2 = λθ + εu1 + ε2[u2 − h1(τ)] + ε3[u3 − h2(τ)]. (39)

3.1 Solution of the field equations

3.1.1 The Solution of O(ε) equations
Seeking the following type of solution to the differential equations (35):

u1 = (U1e
iθ + c.c),

w1 = (W1e
iθ + c.c),

p1 =
(
−mω2

λθλz
+ α0k

2 + β1

)
U1e

iθ + c.c, (40)

where U1 and W1 are unknown functions of the slow variables (ξ, τ), θ = ωt − kz is the phasor
and c.c is the complex conjugate of the corresponding expressions, ω is the angular frequency,
k is the wave number, we obtain

U1 = U(ξ, τ), W1 =
2ω

λθk
U, (41)

provided that the following dispersion relation holds true:

ω2 =
λθλzk

2(α0k
2 + β1)

2λz + mk2
. (42)

Here U(ξ, τ) is an unknown function whose governing equation will be obtained later.

3.1.2 The Solution of O(ε2) equations
Introducing the solutions (40)-41) into (37) gives

p2 =
m

λθλz

∂2u2

∂t2
− α0

∂2u2

∂z2
+ β1(u2 − h1) + 2

(
mω2

λ2
θλz

+ α1k
2 − α0k

2

λθ
+ β2

)
|U |2

+2i

(
α0k − mωλ

λθλz

)
∂U

∂ξ
eiθ +

(
mω2

λ2
θλz

+ 3α1k
2 − α0k

2

λθ
+ β2

)
U2e2iθ + c.c,

2
∂u2

∂t
+ λθ

∂w2

∂z
+ 2

(ω

k
− λ

) ∂U

∂ξ
eiθ − 6i

ω

λθ
U2e2iθ + c.c = 0,

∂w2

∂t
+

∂p2

∂z
+

(
−2

λω

λθk
− mω2

λθλz
+ α0k

2 + β1

)
∂U

∂ξ
eiθ − 4i

ω2

λ2
θk

U2e2iθ + c.c = 0, (43)

where |U |2 = UU∗, U∗ is the complex conjugate of U .
Seeking the following type of solutions

u2 = U
(0)
2 +

(
2∑

l=1

U
(l)
2 eilθ + c.c

)
,

w2 = W
(0)
2 +

2∑
l=1

W
(l)
2 eilθ + c.c,

p2 = P
(0)
2 +

2∑
l=1

P
(l)
2 eilθ + c.c, (44)
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to (43) yields:

P 0
2 = β1(U

(0)
2 − h1) + 2

(
mω2

λ2
θλz

+ α1k
2 − α0

λθ
k2 + β2

)
|U |2, (45)

2ωU
(1)
2 − λθkW

(1)
2 = 2i

(ω

k
− λ

) ∂U

∂ξ
, (46)

ωW
(1)
2 − k

(
−mω2

λθλz
+ α0k

2 + β1

)
U

(1)
2

= i

(
−2λω

λθk
− 2mωλk

λθλz
− mω2

λθλz
+ 3α0k

2 + β1

)
∂U

∂ξ
, (47)

P
(1)
2 = −mω2

λθλz
U

(1)
2 + α0k

2U
(1)
2 + β1U

(1)
2 + 2i

(
α0k − mωλ

λθλz

)
∂U

∂ξ
, (48)

2ωU
(2)
2 − λθkW

(2)
2 = 3

ω

λθ
U2, (49)

ωW
(2)
2 − k

(
−4mω2

λθλz
+ 4α0k

2 + β1

)
U

(2)
2

=
(

2ω2

λ2
θk

+
mω2k

λ2
θλz

+ 3α1k
3 − α0

λθ
k3 + β2k

)
U2. (50)

Taking U
(1)
2 = 0 and solving Eq.(46), we get

W
(1)
2 = i

2
λθk

λk
(
λ − ω

k

) ∂U

∂ξ
. (51)

Introducing Eq. (51) into Eq.(47) leads to[
λωk

(
2 +

mk2

λz

)
− (2ω2 + λθα0k

4)
]

∂U

∂ξ
= 0. (52)

In order to have nonzero solution for U , the coefficient of ∂U
∂ξ in (52) must vanish, that is

λωk

(
2 +

mk2

λz

)
− (2ω2 + λθα0k

4) = 0. (53)

or

λ =
λz(2ω2 + λθα0k

4)
ωk(2λz + mk2)

(group velocity). (54)

Solving Eqs (49)- (50) leads to

U
(2)
2 = Φ0U

2, W
(2)
2 =

2ω

λθk
U

(2)
2 − 3ω

λ2
θk

U2,

Φ0 =
3ω2

λθ
+ k2β1 + 3α1λθk

4 + λθβ2k
2

3(β1λθk2 − 2ω2)
. (55)

3.1.3 The Solution of O(ε3) equations
Introducing the following type of solutions

u3 = U
(0)
3 +

(
3∑

l=1

U
(l)
3 eilθ + c.c

)
,

w3 = W
(0)
3 +

3∑
l=1

W
(l)
3 eilθ + c.c,

p3 = P
(0)
3 +

3∑
l=1

P
(l)
3 eilθ + c.c, (56)
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to into O(ε3) equations (37), we obtain the zeroth- and first-order equations below:

−2λ
∂U

(0)
2

∂ξ
+ λθ

∂W
(0)
2

∂ξ
+

6ω

λθk

∂

∂ξ
|U |2 = 0,

−λ
∂W

(0)
2

∂ξ
+

∂P
(0)
2

∂ξ
+

4ω2

λ2
θk

2

∂

∂ξ
|U |2 = 0, (57)

P
(1)
3 =

(
α0k

2 − mω2

λθλz
+ β1

)
U

(1)
3 +

(
mλ2

λθλz
− α0

)
∂2U

∂ξ2
+ 2iα0k

∂U

∂τ

+
(

5mω2

λ2
θλz

+ 6α1k
2 − 5α0k

2

λθ
+ 2β2

)
U

(2)
2 U ∗(

mω2

λ2
θλz

+ 2α1k
2 − α0k

2

λθ
+ 2β2

)
(U (0)

2 − h1)U

+
[
−3mω2

λ3
θλz

+ 2α2k
2 − 5α1k

2

λθ
+

3α0k
2

λ2
θ

+ 3
(
γ1 − α0

2

)
k4 + 3β3

]
|U |2U,

2iωU
(1)
3 − ikλθW

(1)
3 + λθ

∂W
(1)
2

∂ξ
+

2ω

k

∂U

∂τ
− 6iω

λθ
U

(2)
2 U∗

−2i

(
kW

(0)
2 +

ω

λθ
U

(0)
2 − ω

λθ
h1

)
U = 0,

iωW
(1)
3 − ikP

(1)
3 − λ

∂W
(1)
2

∂ξ
+

∂P
(1)
2

∂ξ
+

(
−mω2

λθλz
+ α0k

2 + β1

)
∂U

∂τ

−2iω

λθ
W

(2)
2 U∗ − 2iω

λθ
W

(0)
2 U +

2νωk

λθ
U +

16νω

λ3
θk

U = 0. (58)

From the solution of the equations (57) and (45), results in

U
(0)
2 = Φ1|U |2 − Φ2h1, W

(0)
2 =

2λ

λθ
U

(0)
2 − 6ω

λ2
θk

|U |2,

Φ1 =
3λω
λθk + 2ω2

λθk2 + mω2

λθλz
+ α1λθk

2 − α0k
2 + λθβ2

λ2 − λθβ1

2

,

Φ2 =
λθβ1

2λ2 − λθβ1
. (59)

Finally, eliminating U
(1)
3 ,W (1)

3 and P
(1)
3 between Eq.(58) through the use of dispersion relation

(42), Eqs (48), (51), (55) and (59), we obtain the following dissipative NLS equation with variable
coefficient:

i
∂U

∂τ
+ μ1

∂2U

∂ξ2
+ μ2|U |2U − μ3h1(τ)U + iμ4U = 0, (60)
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where the coefficients μ1, μ2, μ3 and μ4 are defined by

μ =
2ω2

k
+ 3α0λθk

3 − mkω2

λz
+ λθβ1k,

μ1 = μ(−1)

[
−4λω

k
+

2ω2

k
+ 2λ2 +

mλ2k2

λz
− 3α0λθk

2 +
2mωλk

λz

]
,

μ2 = μ(−1)

{[
10ω2

λθ
+ λθk

2

(
5mω2

λ2
θλz

+ 6α1k
2 − 5α0k

2

λθ
+ 2β2

)]
Φ0

+
[
8ωλk

λθ
+

2ω2

λθ
+ λθk

2

(
mω2

λ2
θλz

+ 2α1k
2 − α0k

λθ
+ 2β2

)]
Φ1

−30ω2

λθ
+ λθk

2

[
−3mω2

λ3
θλz

+ 2α2k
2 − 5α1k

2

λθ
+

3α0k
2

λ2
θ

+ 3
(
γ1 − α0

2

)
k4 + 3β3

] }

μ3 = μ(−1)

{[
2ω2

λθ
+

8ωλk

λθ
+ k2λθ

(
mω2

λ2
θλz

+ 2α1k
2 − α0k

2

λθ
+ 2β2

)]
Φ2[

2ω2

λθ
+ λθk

2

(
mω2

λ2
θλz

+ 2α1k
2 − α0k

2

λθ
+ 2β2

)] }

μ4 = μ(−1)

[
2νω

(
k2 +

8
λ2

θ

)]
. (61)

Introducing the following change of variable:

U = V (ξ, τ) exp
[
−iμ3

∫ τ

0
h1(s)ds − μ4τ

]
, (62)

equation (60) reduces to the following conventional NLS equations:

i
∂V

∂τ
+ μ1

∂2V

∂ξ2
+ μ2|V |2V = 0. (63)

4 Progressive Wave Solution

In this subsection, we will present the progressive wave solution to the evolution equation
given in (63) of the following form :

V (ξ, τ) = F (ζ) exp [i(Kξ − Ωτ)] , ζ = ξ − cτ, (64)

where Ω, K and c are some constants and F (ζ) is a real-valued unknown function to be deter-
mined from the solution. Introducing (64) into (63), we have

μ1
∂2F

∂ζ2
+ i(2μ1K − c)

∂F

∂ζ
+ (Ω − μ1K

2)F + μ2F
3 = 0. (65)

By letting c = 2μ1K, the ∂F
∂ζ term can be eliminated and choosing Ω = μ1K

2 − μ2a2

2 , where a is
the amplitude of the wave, we obtain

μ1
∂2F

∂ζ2
− μ2a

2

2
F + μ2F

3 = 0. (66)

Multiplying the above equation (66) by 2∂F
∂ζ and then integrate it yields

μ1

(
∂F

∂ζ

)2

= A +
μ2a

2

2
F 2 − μ2

2
F 4, (67)
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where A is the integration constant. A special case that gives the single soliton is where
F (±∞) = 0 and A = 0 yields

μ1(
∂F

∂ζ
)2 =

μ2a
2

2
F 2 − μ2

2
F 4. (68)

By solving the equation (68), the soliton modulated wave solution to NLS equation (63) is given
by

V (ξ, τ) = a sech

[√
μ2

2μ1
(ξ − cτ)

]
exp[i(Kξ − Ωτ)], (69)

where the modulus of V (ξ, τ) will be given by

V (ξ, τ) = a sech

[√
μ2

2μ1
(ξ − cτ)

]
. (70)

Substituting the solution of standard NLS equation (69) into equation (62), we obtain the
solution of the dissipative NLS equation with variable coefficient (60) as

U(ξ, τ) = a sech

[√
μ2

2μ1
(ξ − cτ)

]
exp

[
i(Kξ − Ωτ − μ3

∫ τ

0
h1(s)ds) − μ4τ

]
, (71)

where the modulus of U(ξ, τ) is given by

U(ξ, τ) = a sech

[√
μ2

2μ1
(ξ − cτ)

]
exp [−μ4τ ] . (72)

The speed of the enveloping wave is constant and equal to 2μ1K. On the other hand, the
speed of the harmonic wave is given by

vp =
K

Ω + μ3h1(τ) − iμ4
. (73)

5 Numerical Results

For numerical calculation, we need the values of the coefficients α0, α1, α2, β0, β1, β2,
β3, γ1,μ1, μ2, μ3, μ4, In order to do that, we must know the constitutive relation of the tube
material. In this work, we will utilize the constitutive relation proposed by Demiray [25] for soft
biological tissues. Following Demiray [25], the strain energy density function may be expressed
as

Σ =
1
2α

{exp
[
α(λ2

θ + λ2
z +

1
λ2

θλ
2
z

− 3)
]
− 1}, (74)

where α is a material constant and I1 is the first invariant of Finger deformation tensor defined
by I1 = λ2

θ + λ2
z + 1/(λ2

θλ
2
z). Introducing (74) into equation (38), the explicit expressions of the
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coefficients α0, α1, α2, β0, β1, β2, β3 and γ1 are obtained as :

α0 =
1
λθ

(
λz − 1

λ2
θλ

3
z

)
G(λθ, λz),

α1 =
[

1
λ4

θλ
3
z

+ α

(
λz − 1

λ2
θλ

3
z

) (
1 − 1

λ4
θλ

2
z

)]
G(λθ, λz),

α2 =
[
2α2

λθ

(
λz − 1

λ2
θλ

3
z

) (
λθ − 1

λ3
θλ

2
z

)2

+
3α

λ3
θλ

3
z

(
1 − 7

3λ4
θλ

2
z

)

+
αλz

λθ
+

3
λ5

θλz

(
α − 1

λ2
z

) ]
G(λθ, λz),

β0 =
[

1
λθλz

(
λθ − 1

λ3
θλ

2
z

)]
G(λθ, λz),

β1 =

[
2α

λθλz

(
λθ − 1

λ3
θλ

2
z

)2

+
4

λ5
θλ

3
z

]
G(λθ, λz),

β2 =
[

2α2

λθλz

(
λθ − 1

λ3
θλ

2
z

)3

− 10
λ6

θλ
3
z

+
α

λθλz

(
λθ − 1

λ3
θλ

2
z

) (
1 +

11
λ4

θλ
2
z

) ]
G(λθ, λz),

β3 =
[

20
λ7

θλ
3
z

+
4α3

3λθλz

(
λθ − 1

λ3
θλ

2
z

)4

+
4α2

λθλz

(
1 +

3
λ4

θλ
2
z

) (
λθ − 1

λ3
θλ

2
z

)2

− 16α

λ6
θλ

3
z

(
λθ − 1

λ3
θλ

2
z

)
+

α

λθλz

(
1 +

3
λ4

θλ
2
z

)2

− 2α2

λ2
θλz

(
λθ − 1

λ3
θλ

2
z

)3

− α

λ2
θλz

(
λθ − 1

λ3
θλ

2
z

)
(1 +

11
λ4

θλ
2
z

)
]
G(λθ, λz),

γ1 =

[
αλz

λθ

(
λz − 1

λ2
θλ

3
z

)2

+
λz

2λθ
+

3
2λ3

θλ
3
z

]
G(λθ, λz), (75)

where the function G is defined by

G(λθ, λz) = exp
[
α

(
λ2

θ + λ2
z +

1
λ2

θλ
2
z

− 3
)]

. (76)

Right now, we need the value of the material constant α. For the static case, the present
model was compared by Demiray[25] with the experimental measurement by Simon et al [27]
on canine abdominal artery with the characteristics Ri = 0.31cm, R0 = 0.38cm and λz = 1.53
and the value of the material constant α was found to be α = 1.948. Using this numerical value
of the coefficient α, and for the initial deformation λθ = λz = 1.6, we obtain α0 = 78.6924,
α1 = 233.7666, α2 = 1563.4837, β0 = 49.1827, β1 = 296.1049, β2 = 991.4958, β3=2384.8778,
γ1 = 418.3605, ω = 41.6845, λ = 29.2660, Φ0 = −6.0631, Φ1 = 7.2986, Φ2 = 0.3823, μ1 =
0.003449, μ2 = 26.3303, μ3 = 7.3572, μ4 = 0.1082, provided m = 0.1, ν = 1, k = 2 and K = 2.
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Figure 1: The solution of modulus of NLS equation versus space τ

Figure (1) shows the solution of modulus of the NLS equation (63) versus space τ at different
time ξ. It shows that the modulus of the NLS equation admits solitary wave solution and
propagates to the right with same amplitude as time ξ increases.
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Figure 2: The solution of modulus of dissipative NLS equation with variable coefficient versus
space τ

The solution of modulus of the dissipative NLS equation with variable coefficient (60) versus
space τ at different time ξ is shown in Figure (2). It is shown that as time ξ increases, the initial
wave propagates to the right with decreasing amplitude due to the effect of the viscosity.
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Figure 3: The speed of harmonic wave

Figure (3) illustrates the speed of harmonic wave of the dissipative NLS equation with
variable coefficient versus space tau τ at different δ, where δ specify the sharpness of stenosis
function f(τ) = sech(δτ). The graph shows the speed is minimum at the center of stenosis and
increases to a constant value of 0.048 as it goes away from center of stenosis. If the shape of the
stenosis is sharp, the wave speed increase rapidly.
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