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ABSTRACT

The Szegö kernel and the Bergman kernel of a simply connected region

in the complex plane are kernel functions which are related to the Riemann

mapping function. An efficient method based on the Kerzman-Stein-Trummer

integral equation for computing the Szegö kernel has been known since 1986. In

1997, integral equation for the Bergman kernel which can be used effectively for

numerical conformal mapping has also been established. Both of these integral

equations have been solved by means of Nyström’s method. Our subject of

study is based on integral equation for Bergman kernel, where we had solved

this integral equation by means of Fourier method. Since integral equation for

Bergman kernel has not yet been solved using Fourier method, the numerical

results can also be used to compare with those obtained from Nyström’s

method. As a result, Fourier method is capable to produce approximations of

comparable accuracy to the Nyström’s method; where these approximations are

also suitable for numerical conformal mapping.
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ABSTRAK

Inti Szegö dan inti Bergman terhadap rantau terkait ringkas dalam

satah kompleks adalah fungsi inti yang berkaitan dengan fungsi pemetaan

Riemann. Suatu kaedah berkesan yang berdasarkan persamaan kamiran

Kerzman-Stein-Trummer untuk pengiraan inti Szegö sudah diketahui sejak

tahun 1986. Pada tahun 1997, persamaan kamiran untuk inti Bergman yang

dapat digunakan secara berkesan untuk pemetaan konformal berangka juga

telah dibentukkan. Kedua-dua persamaan kamiran ini telah diselesaikan dengan

menggunakan kaedah Nyström. Kajian ini adalah untuk membicarakan

persamaan kamiran untuk inti Bergman, yang telah kami selesaikan dengan

menggunakan kaedah Fourier. Memandangkan persamaan kamiran untuk inti

Bergman belum diselesaikan dengan kaedah Fourier, keputusan berangka yang

dihasilkan boleh juga dibandingkan dengan keputusan yang dihasilkan oleh

kaedah Nyström. Keputusannya, kaedah Fourier mampu menghasilkan

anggaran yang ketepatannya adalah setanding dengan kaedah Nyström dan

anggarannya juga sesuai untuk pemetaan konformal berangka.
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CHAPTER I

INTRODUCTION

1.1 Background of the Study

At the beginning of this section, we shall take a tour back in time to

recognize a few developments and achievements of complex variable theory in

the field of engineering in the past and in the present time. Secondly, we shall

like to express the relationship between conformal mapping and physical

problems, as well as the ideas and concepts lie behind the construction of

conformal mapping through numerical approach. Then, we may as well give a

brief discussion on the equivalence property between Fourier method and

Nyström’s method.

1
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1.1.1 Applications of Conformal Mapping: Past and Present

Conformal mapping has been an important and indispensable tool of

science and engineering since the development of complex analysis. The

applications of conformal mapping to the solution of problems in electrostatics,

fluid mechanics, and heat transfer must represent those of the great

achievements of complex analysis (Wunsch, 2005, p. 555). Yet surprisingly little

has been written on the history of this subject, perhaps because it is in the

realm of applied mathematics, which often escapes the historian’s interest. It is

not clear if any one mathematician had a moment of saying “Eureka” upon

realizing how useful mapping with analytic functions could be to the scientist or

engineer. It is evident that conformal mapping was used increasingly

throughout the 19th century to solve physical problems.

In Maxwell’s famous Treatise on Electricity and Magnetism,

published in 1873, the technique is used to great advantage to display electric

field lines and equipotential surfaces surrounding charged conductors (Wunsch,

2005, p. 555). Two Germans, H. A. Schwarz and E.B. Christoffel, are credited,

because of their work in the period 1869-1871, with greatly advancing the

subject of mapping in a way that would help the engineers or scientists. A

method of transformation bearing their names is sufficiently important to merit

in the field of complex analysis (Wunsch, 2005, p. 555). Other names associated

with the applications of conformal mapping are those of the German, Hermann

von Helmholtz, who used it in the 1860s to describe fluid flow as well as the
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Englishman, Lord Rayleigh (John William Strutt) who continued work on this

field a generation later (Wunsch, 2005, p. 555). These are several well-known

historical events in the past, and we are sure that there were others great

achievements which contribute to the growth of complex analysis.

At present, all of the significant problems solvable with conformal

mapping are probably done. Now and during the past generation, problems

that once would have been attempted in an idealized or simplified form with

conformal mapping have come to be solved more realistically with commercially

available numerical software packages for the computer.

1.1.2 Numerical Conformal Mapping

In the last section, we have mentioned some applications of conformal

mapping to the solution of several physical problems in electrostatics, fluid

mechanics, and heat transfer. However, we still wonder how does conformal

mapping technique is applied to these physical problems. In explaining this

idea, we need to interpret these physical problems as complex boundary value

problems.

Conformal mapping and complex boundary value problems are two

major branches of complex variable theory. The former is the geometric theory

of analytic functions and the latter is the analytic theory governing the close

relationship between the abstract theory and many concrete problems. Actually,



4

conformal mapping uses functions of complex variables to transform a

complicated boundary of a physical problem (or, boundary value problem) to a

simpler one. In various applied problems, by means of conformal maps,

problems for certain ‘physical regions’ are transplanted into problems on some

standardized ‘model regions’ where they can be solved easily (Henrici, 1974, p.

337). By transplanting back we obtain the solutions of the original problems in

the physical regions.

A physical illustration is the heat diffusion problem. Imagine that Ω is a

thin plate of heat-conducting metal (see Figure 1.1).

Figure 1.1 Dirichlet problem

A function φ describes the temperature at each point (x, y) in Ω. It is a

standard situation in engineering to consider heat sources that maintain fixed

values of φ on the boundary Γ. One wants to find the steady state heat

distribution on Ω which is determined by the given boundary conditions. If we
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let φ0 denote the temperature specified on the boundary Γ, then it turns out the

temperature in the interior satisfies (Krantz, 1999, p. 164)

∆φ =
∂2φ

∂x2
+

∂2φ

∂y2
= 0 in Ω,

φ = φ0 on Γ.

We assume that there is a conformal map w = f (z) of Ω onto the unit disc

|w| < 1 and that f is such that it can be extended to a continuous map of Ω

onto the closed disc |w| � 1. The transplanted solution then satisfies

∆ψ =
∂2ψ

∂u2
+

∂2ψ

∂v2
= 0, |w| < 1,

and its value on the boundary are

ψ (w) = ψ0 (w) = φ0

(
f−1 (w)

)
, |w| = 1.

This simple heat problem can be consider as the Dirichlet problem for the

region Ω with boundary data φ0.

A complex-valued function can be viewed as a mapping that transforms

one region of the complex plane onto another region. Some mapping functions

can be formulated using specific transformations method in complex variable

theory, while the rest can be formulated through composition of various

transformation formulas. For those who are familiar with complex analysis,

linear fractional transformation and Schwarz-Christoffel transformation are the

most common transformation methods. Linear fractional transformation is

usually applicable to regions whose boundaries are straight lines and generalized

circles, while Schwarz-Christoffel transformation usually maps half-plane to
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polygon (Saff and Snider, 2003, p. 443). However, the practical use of these two

transformations is severely limited to regions involving generalized circles and

polygons. A more powerful function for mapping regions of general shape is

described in the Riemann mapping theorem.

Riemann mapping theorem is a fundamental theorem which guarantees

the existence and uniqueness of a conformal map of a bounded simply

connected region of the complex plane onto the unit disc (Tutschke and

Harkrishan, 2005, p. 321). The complex-valued function which satisfies the

theorem is known as the Riemann mapping function, or often known as

Riemann map. This function is less rigid compared to linear fractional

transformation and Schwarz-Christoffel transformation. According to the

theorem, any simply connected region can be map onto a unit disc if there

exists a Riemann mapping function which does the job (Marsden and Hoffman,

1999, p. 321). Unfortunately, Riemann mapping theorem also has its own

weakness. The theorem does not suggest any formulas which map the simply

connected region onto the unit disc. So, it is a great challenge to discover

various numerical methods of computing the Riemann mapping function. In

Chapter II, we shall discuss the Riemann mapping theorem in more detail.

Currently, there are various methods to compute approximately the

Riemann mapping function. Some of these methods have been frequently

proposed in the literatures which draw our attention. They are: expansion

methods, integral equation methods, osculation methods, Cauchy-Riemann
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equations methods and methods of small parameter (Ali Hassan Mohamed

Murid, 1997, p. 2). Of these methods, two of them are usually encountered in

the literature and used by various researchers, namely, the expansion methods

and the integral equation methods (Ali Hassan Mohamed Murid, 1997, p. 2).

Common expansion methods are the Bergman and the Szegö kernels method,

and the Ritz variational methods. For some perspectives of expansion method

and integral equation method, see e.g. Henrici (1986) and Bergman (1970).

Integral equation methods are sometimes more effective for numerical conformal

mapping. Some well-known integral equation methods for computing the

Riemann mapping function are the integral equations of Symm, Gerschgorin,

and Kerzman-Stein-Trummer (see Henrici (1986) and Kerzman and Trummer

(1986)). For the discussion on the rest of these methods (that is osculation

method, Cauchy-Riemann equations method, and the method of small

parameter), see e.g. Henrici (1986) and Razali (1983).

The Riemann mapping function can be considered as a conformal

mapping of interior regions. There are also various integral equations and

expansion methods for the numerical conformal mapping of exterior and

multiply connected regions, (see Henrici (1986)). A region which is not simply

connected is called multiply connected region. A multiply connected region is a

region that contains ‘holes’ in it (Ahlfors, 1979, p. 146). The methods discussed

so far involve computing a conformal mapping from a problem region onto a

model region. Similarly, there also exist the problems of numerical conformal

mapping where we need to compute conformal maps from a model region to a



8

problem region. For surveys and various perspectives on numerical conformal

mapping see Henrici (1986), Kythe (1998), and Wegmann (2005). For

theoretical aspects of conformal mappings see, Hille (1962), and Henrici(1986).

1.1.3 Fourier Method and Nyström’s Method

It has been established that Fourier method and trapezoidal rule are

suitable to integrate periodic functions numerically. A function f (t) is said to

be periodic, of period p, if f (t + p) = f (t) (Franklin, 1949, p. 57). According to

Henrici (1974, p. 489), discrete Fourier transforms in Fourier method are

derived using trapezoidal rule, while Nyström’s method for solving integral

equations use trapezoidal rule as its quadrature formula (Razali et al., 1997).

Due to this similarity, Berrut and Trummer (1987) have shown that Fourier

method is equivalent to Nyström’s method for the numerical solution of

Fredholm integral equation. We shall present this subject in Chapter III of this

dissertation. However, Berrut and Trummer (1987) did not give any numerical

examples to support their findings. Furthermore, no numerical comparison has

also been given for the performance of the interpolation based on Fourier

method and Nyström’s method. So, it is necessary for us to provide relevant

numerical examples to fill up this gap.
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1.2 Statements of the Study

Our research problem aims to approximate a conformal map using

integral equation method. This conformal map will correspond to the Riemann

mapping function which maps a simply connected region onto a unit disc.

Later, Fourier method will apply to solve the integral equation. Numerical

results obtained by Fourier method also act as numerical examples to support

the findings by Berrut and Trummer (1987). Finally, these numerical results

will then be compared with the numerical results obtained by means of

Nyström’s method.

Our research problem is to compare numerically the performance of

Fourier method and Nyström’s method for solving numerically a Fredholm

integral equation of the second kind related to conformal mapping. Performance

of the interpolation formulas of both the Fourier method and Nyström’s method

will also be compared.

1.3 Objectives of the Study

The objectives of our study are listed as follows.

1. To study and understand the basic ideas and concepts of conformal

mapping, in particular the interior mapping.
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2. To study and understand the application of integral equation method by

deriving an integral equation of the second kind for the Bergman kernel.

3. To apply Fourier method for solving the integral equation via the

Bergman kernel.

4. To verify numerically that the Fourier method is equivalent to the

Nyström’s method with trapezoidal rule.

1.4 Scope of the Study

As we have stated in Section 1.2, we shall use integral equation method

to determine the numerical approximation of the Riemann mapping function.

In literature, the Szegö kernel and the Bergman kernel of a simply connected

region are related to the Riemann mapping function which maps a simply

connected region onto a unit disc (Henrici, 1986, p. 547, 553). Kerzman and

Trummer (1986) have developed an effective numerical method for computing

the Szegö kernel, by solving an integral equation now known as the

Kerzman-Stein-Trummer integral equation (briefly, KST integral equation).

Since there exists a relationship between the Szegö kernel and the Bergman

kernel, it is natural to ask whether an integral equation may also be developed

for the Bergman kernel. Eventually, in the more recent development, the

integral equation of the second kind for the Bergman kernel has been derived by

Razali et al. (1997).
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In this dissertation, we just state the KST integral equation without

deriving it. For the derivation of the KST integral equation, see Henrici (1986,

p. 560-564) and Kerzman and Trummer (1986). Later, we shall take a closer

look at the integral equation of the second kind for the Bergman kernel and

rederive it according to the approach given by Razali et al. (1997). This helps

us to study and understand the integral equation method even better. This

method will be used to compute the values of the conformal map on the

boundary. Once we have solved the integral equation, sup-norm error will be

computed to evaluate the efficiency of the integral equation. Razali et al. (1997)

have used Nyström’s method with trapezoidal rule to solve the integral

equation. In this dissertation, we use a different approach called the Fourier

method to evaluate the integral equation. On the other hand, Berrut and

Trummer (1987) have shown that Fourier method is equivalent to Nyström’s

method with trapezoidal rule. In view of this, we shall use Fourier method to

evaluate the integral equation for two main reasons: firstly, we want to see

whether Fourier method produces approximations of comparable accuracy to

the Nyström’s method with trapezoidal rule, and secondly, we want to provide

numerical examples for the findings of Berrut and Trummer (1987). So, we shall

compare the numerical results of Fourier method with the numerical results of

Nyström’s method. Also, this dissertation will focus only on the mapping of

simply connected region onto the unit disc. Last but not least, all the numerical

procedure and graphics related to the tested regions will be carried out by using

MATHEMATICA 5.0.
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1.5 Significance of the Study

The discovery of integral equation via the Bergman kernel is certainly

an encouraging effort done by Razali et al. (1997). It provides us another new

integral equation thereby enriching the integral equation methods for the

numerical conformal mapping of the interior region. This dissertation is also an

effort to conduct further research on the integral equation via the Bergman

kernel. At present, the integral equation via the Bergman kernel has only been

solved using the Nyström’s method with trapezoidal rule. Due to this condition,

more researches on various of method in solving the integral equation should be

carried out so that the integral equation can approximate better results under

these methods. So, we choose the Fourier method to solve the integral equation

instead of using the Nyström’s method with trapezoidal rule. Fourier method is

chosen because of its equivalence property to the Nyström’s method with

trapezoidal rule (Berrut and Trummer, 1987). Moreover, Fourier method is not

a direct method like the Nyström’s method with trapezoidal rule. The

computation procedure for Fourier method is rather tedious, where it involves

computing the coefficient of the Fourier series before computing the integral

equation in form of linear equation. Such procedures make the Fourier method

less attractive numerically. However, we still hope that Fourier method gives

approximation of comparable accuracy to the Nyström’s method with

trapezoidal rule. If it does, it will encourage researchers to implement Fourier

method in their study. As a conclusion, this dissertation is to use Fourier

method to solve integral equation via the Bergman kernel, and makes
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comparison with the results by means of Nyström’s method. Hopefully, we can

spot at least one or more significance features of using Fourier method to solve

integral equation via the Bergman kernel.

1.6 Outline of the Dissertation

In Chapter II, we review some basic facts about general mappings,

conformal mappings, Riemann mapping with boundary correspondence

function, and integral equations. Several papers which discuss the researches on

numerical conformal mapping using integral equation method are also presented

as the rationale for our study.

Chapter III is all about the discussion of Fourier method which we are

going to use to solve the integral equation of the second kind. This chapter

contains reviews on the basic facts of Fourier series, continuous Fourier

transform, discrete Fourier transform (one-dimensional and two-dimensional

transform), and trigonometric interpolation. The equivalence of Nyström’s

method and Fourier method for the numerical solution of Fredholm integral

equations is also presented by using the approach in Berrut and Trummer

(1987).
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In Chapter IV, we first introduce some fundamental facts about the

Bergman kernel, the Szegö and their relationships. The KST integral equation

is also stated at the beginning of the chapter as motivation to our derivation of

integral equation via the Bergman kernel. Next, we rederive the integral

equation of the second kind for the Bergman kernel by adapting the method

shown in Razali et al. (1997). The objective of deriving this integral equation is

to provide an alternative numerical method for computing the Riemann

mapping function.

After obtaining the integral equation of the second kind for the

Bergman kernel in Chapter IV, we can parametrize this integral equation and

solve it numerically. So, in Chapter V, we present how does Fourier method

solves this integral equation for some test regions. Thus, some related numerical

results are also presented.

Chapter VI contains a summary of the main results of the dissertation

and several recommendations.
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With the above summaries, conclusions and suggestions for further

studies, we conclude this dissertation.
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