DETERMINATION OF SILICA AEROGELS NANOSTRUCTURE CHARACTERISTICS BY USING SMALL ANGLE NEUTRON SCATTERING TECHNIQUE

TAN CHIER FANG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Science (Physics)

> Faculty of Science Universiti Teknologi Malaysia

> > MARCH 2006

To my beloved parents, brothers and friends

ACKNOWLEDGEMENT

My period as a graduate student at hiversiti Teknologi Malaysia has provided me with great opportunities from many aspects. I wish to extend my hearty thanks to all those whom I am indebted for supporting me as I complete this thesis.

An especially thanks are to *Prof. Dr. Noorddin Ibrahim*, as my supervisor for all his support, guidance, providing the time to discuss my work and helpful discussions.

I also thank the research officers at MINT (Malaysia Institute of Nuclear Technology Research), namely *Dr. Abdul Aziz Mohamed*, *Encik Adnan* and *Encik Razali Kasim* who have given me an opportunity to have the use of equipments and for all their assistance and co-operation.

In addition, I am grateful to *Dr. Edy Giri R. Putra* from BATAN (Badan Tenaga Nuklir Nasional), Indonesia and *Dr. Robert Knott* from ANSTO (Australian Nuclear Science and Technology Organization) for their kind assistance in experimental, constructive ideas and valuable suggestions.

I wish to thank my parents for making me who I am as well for their love and guidance through all my years of schooling and to my brothers and friends for all their encouragement.

Finally, I would also like to express my gratitude to the university for providing a research scholarship (PTP).

ABSTRACT

Small angle neutron scattering (SANS) technique has been widely employed in probing the microstructure of amorphous materials in the nanometer range (1 to 100 nm). In this study, small angle neutron scattering was used to study the structure of the silica aerogels and titanium containing silica aerogels by using SANS facility at MINT, Malaysia and BATAN, Indonesia. Besides scattering method, imaging technique such as transmission and scanning electron microscopy (TEM and SEM) can be used to provide real-space structure. However, microscopy image may include artifacts and may not be truly representative of the sample. While SANS does not provide real space structure directly, the technique does probe the sample in its entirety. In this work, the aerogels physical properties such as particle size and fractal dimension as a function of pH were studied. In a typical scattering experiment, an incident neutron beam is bombarded to the sample and is elastically scattered. The scattered intensity is measured as a function of the scattering angle which occurs at small angle of less than 10° . Reactor was used as our neutron source. The monochromated neutron beam has a wavelength of 0.5 Å. The sample which is in powder form is filled into a quartz cell with a 2 mm pathlength. A complete data set consists of three measurements; scattering measured from the sample, scattering from the empty sample holder and scattering from the dark counts due to complete absorber in sample position. The scattered neutrons were detected by a 128 X 128 array area sensitive, gas-filled proportional counter, which is known as Position Sensitive Detector (PSD). A personal computer which is linked to the PSD neutron counting system is used for data collection. SANS neutron counting system programs include the display of scattered neutron data in two and three dimensional isometric view. The resulting 2D scattering pattern is reduced to 1D profile for further analysis. Plots of I(Q) vs Q were derived. Results show that as pH decreases fractal dimension decreases from 3.60 to 2.44. On the other hand, particle size increases from 9.87 nm to 11.26 nm with decreasing pH of the aerogels. Titanium containing silica aerogels has bigger fractal dimension and smaller particle size compared to silica aerogels.

ABSTRAK

Teknik penyerakan neutron sudut kecil telah banyak diaplikasikan dalam mengukur microstruktur bahan amorfus dalam julat nanometer (1 hingga 100 nm). Dalam kajian ini, serakan neutron sudut kecil digunakan untuk mengkaji struktur aerogels silika dan aerogels silica yang mengandungi titanium dengan menggunakan instrumen serakan neutron sudut kecil di MINT, Malaysia dan BATAN, Indonesia. Selain kaedah penyerakan, teknik pengimejan seperti mikroskopi transmisi elektron (TEM) dan mikroskopi pengimbasan elektron boleh digunakan untuk memperoleh struktur ruang nyata. Walaubagaimanapun, imej mikroskopi mungkin merangkumi artefak dan mungkin tidak dapat mewakili sampel sebenar itu sepenuhnya. Walaupun teknik penyerakan sudut kecil tidak memberi struktur ruang nyata secara langsung, ia dapat mengkaji sampel tersebut secara keseluruhan. Sifat fizik aerogels seperti saiz zarah dan dimensi fraktal dalam fungsi pHlikaji. Dalam eksperimen penyerakan, satu sinar neutron ditujukan kepada sampel and sinar neutron tersebut diserak secara kenyal. Kamatan serakan diukur sebagai fungsi kepada sudut serakan yang berlaku pada sudut kecil kurang daripada 10⁰. Reaktor digunakan sebagai sumber neutron. Sinar neutron yang dimonokromatkan mempunyai panjang gelombang 0.5 ÅSampel dalam bentuk serbuk diisi ke dalam sel kuartz dengan ketebalan 2 mm. Satu set data yang lengkap terdiri daripada tiga set pengukuran iaitu serakan daripada sampel tersendiri, serakan daripada pemegang sampel yang kosong dan juga serakan daripada bilangan latar belakang disebabkan penyerap neutron yang terletak di kedudukan sampel. Neutron yang terserak dikesan oleh 128 XI28 jalur dan baris kawa san sensitif, pembilang perkadaran yang berisi gas, juga dikenali sebagai Pengesan Sensitif Kdudukan (PSD). Satu komputer disambung kepada sistem pembilangan neutron untuk pengumpulan data. Program sistem pembilangan neutron meliputi paparan data serakan neutron dalam pandangan isometri dua dan tiga dimensi. Data penyerakan dalam dua dimensi ditukar kepada satu dimensi untuk dianalisis. Heil kajian menunjukkan ba hawa apabila nilai pHnenurun, dimensi fraktal juga berkurangan daripada 3.60 kepada 2.44. Saiz zarah meningkat daripada 9.87 nm kepada 11.26 nm apabila nilai pHme nurun. Aerogels silika yang mengandungi titanium mempunyai dimensi fraktal yang lebih besar dan saiz zarah yang lebih kecil berbanding dengan aerogels silika.

CONTENTS

CHAPTER	TITLE	PAGE
	TITLE	i
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiii
	LIST OF SYMBOLS	xvi
	LIST OF APPENDICES	xix
1	INTRODUCTION	

1.1	Research Background	3
1.2	Research Problem	5
1.3	Research Objective	6
1.4	Scope of Studies	6
1.5	Organization of Thesis	7

2 LITERATURE REVIEW

THEORY 3

3.1	Introd	uction		13
3.2	Funda	mental Aspect Of Small Angle Scattering		15
	3.2.1	Scatterin	ng Vector	15
	3.2.2	Scatterin	ng Length, Scattering Length	
		Density	and Contrast Term	
		3.2.2.1	Scattering Length	18
		3.2.2.2	Scattering Length Density	19
		3.2.2.3	Contrast Term	19
	3.2.3	Scatteri	ng Cross section	
		3.2.3.1	Microscopic Cross Section	20
		3.2.3.2	Macroscopic Cross Section	21
		3.2.3.3	Differential Scattering Cross Section	22
	3.2.4	Separati	on of Coherent and Incoherent Parts	24
		of Neutr	ron Scattering	
	3.2.5	The Me	asured Intensity and Scattering	25
		Cross S	ection	
	3.2.6	Intrapar	ticle scattering: Form factor P(Q)	28
	3.2.7	Interpar	ticle scattering: Structure factor $S(Q)$	29
3.3	Sampl	le Descrip	otion	
	3.3.1	What is	Aerogels?	31
	3.3.2	Synthes	is of Silica Aerogels	33
	3.3.3	Silica A	erogels Application	34
3.4	Deterr	nination	of Fractal Dimension	35
	3.4.1	Mass Fr	actal Dimension	37
	3.4.2	Surface	Fractal	38
3.5	Deterr	nination of	of Particle Size	40

8

METHODOLOGY

4

4.1	Introd	uction	42	
4.2	Synthe	esis of Silica Aerogels from Rice Husk Ash 4		
4.3	Exper	periment Preparation		
	4.3.1	Sample Cell and Sample Thickness	45	
	4.3.2	Required Q-Range	46	
4.4	SANS	Instrument Component at MINT	47	
	4.4.1	Course Collimator	50	
	4.4.2	Biological Shielding	50	
	4.4.3	Beam Filter	50	
	4.4.4	Monochromator	51	
	4.4.5	Neutron Monitor	52	
	4.4.6	Collimator	53	
	4.4.7	Post Sample Flight Path	54	
	4.4.8	Two Dimensional Position Sensitive	54	
		Detector (PSD)		
	4.4.9	Data Acquisition System	56	
4.5	SANS	Instrument at BATAN	57	
4.6	Data A	Acquisition		
	4.6.1	Configuration of SANS Instrument	59	
	4.6.2	Measurements	59	
	4.6.3	Counting Times	61	
	4.6.4	SANS Data Acquisition Program	62	
4.7	Data F	Reduction		
	4.7.1	Data Reduction Protocol	66	
	4.7.2	Data Reduction Program	68	
		4.7.2.1 CENTER	70	
		4.7.2.2 EFFI	71	
		4.7.2.3 IQ1D	72	

5 **RESULTS AND DISCUSSION**

5.1	Introd	uction		75
5.2	SANS	Instrume	ent Alignment at MINT	76
5.3	SANS	Facility	at BATAN	83
5.4	Deterr	nination	of Fractal Dimension	85
	5.4.1	SANS I	Result at MINT	85
	5.4.2	SANS I	Result at BATAN	
		5.4.4.1	Silica Aerogels and Titanium	88
			Containing Silica Aerogels	
		5.4.4.2	pH Varying Silica Aerogels	90
5.5	Deterr	nination	of Particle Size	95
	5.5.1	SANS I	Result at MINT	95
	5.5.2	SANS I	Result at BATAN	
		5.5.2.1	Silica Aerogels and Titanium	97
			Containing Silica Aerogels	
		5.5.2.2	pH Varying Silica Aerogels	99

6 SUMMARY AND CONCLUSION

6.1	Alignment of SANS Instrument at MINT	103
6.2	SANS Data Reduction Program Development	103
6.3	Determination of Fractal Dimension and	104
	Particle Size of Silica Aerogels and	
	Titanium Containing Silica Aerogels	
	(MINT & BATAN)	
6.4	Determination of Fractal Dimension and	105
	Particle Size of Silica Aerogels with Different	
	Acid Concentration (BATAN)	
6.5	Conclusion and Suggestions	105

REFERENCE	107
APPENDIX A	119
APPENDIX B	140
APPENDIX C	143
APPENDIX D	154
APPENDIX E	155
APPENDIX F	169
APPENDIX G	170
APPENDIX H	172

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	The properties of the interaction of X-Rays and neutrons	2
	with matters.	
4.1	Physical properties of Maerogel.	44
4.2	Specification of the 8m SANS Instrument at MINT	56
4.3	Instrument parametre of SANS facility at BATAN	57
5.1	Sample to detector distance and resultant Q range	83
5.2	Fractal dimension of silica aerogels and	85
	titanium containing silica aerogels (MINT).	
5.3	Fractal dimension of silica aerogels and	88
	titanium containing silica aerogels (BATAN)	
5.4	Fractal dimension of silica aerogels with different	91
	acid concentration	
5.5	Guinier analysis of silica aerogels and	95
	titanium containing silica aerogels	
5.6	Guinier analysis of silica aerogels and	97
	titanium containing silica aerogels (particle radius)	
5.7	Guinier analysis of silica aerogels and	97
	titanium containing silica aerogels (cluster radius)	
5.8	Guinier analysis of silica aerogels (particle radius)	99
	with different acid concentration	
5.9	Guinier analysis of silica aerogels (cluster radius)	100
	with different acid concentration	

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
3.1	Neutron scattering experimental setup	14
3.2	Schematic drawing of small angle neutron	15
	scattering experiment	
3.3	A scattering event	16
3.4	Scattering geometry	16
3.5	A parallel neutron beam incident normally on a thin target	20
3.6	Physical situation of detector placed in the outgoing beam	22
	to detect the product	
3.7	Silica Matrix in aerogels	32
3.8	Illustration for two dimensional mass fractal	38
4.1	Schematic procedure of preparing silica aerogels from	43
	rice husk ash	
4.2	Schematic procedure of preparing titanium containing	44
	silica aerogels	
4.3	Selection of sample thickness for maximum	46
	scattered intensity	
4.4	Cutaway view of TRIGA reactor	48
4.5	General layout of SANS instrument at MINT	49
4.6	The shutter, beryllium filter and monochromator assembly	52
4.7	Experimental setup from collimator to post sample	53
	flight tube	
4.8	Arrangement of post sample flight tube and	55
	position sensitive detector	
4.9	SANS Instrument Setup at BATAN	58

4.10	Input control and scale display screen	63
4.11	Data acquisition program flow chart	64
4.12	FORTRAN data reduction program flowchart	73
5.1	Output screen of the data acquisition system for the	77
	SANS instrument before instrument alignment was	
	carried out	
5.2	Dos Prompt of program used to control the motor	78
	of rotating table and goniometre	
5.3	Output screen of the data acquisition system for the	79
	SANS instrument after instrument alignment was carried out	
5.4	Graph of intensity $I(Q)$ versus scattering vector Q	81
	for SiO ₂ (1996)	
5.5	Graph of intensity $I(Q)$ versus scattering vector Q	81
	for SiO ₂ (2004)	
5.6	Double logarithmic plot of intensity $I(Q)$ versus	82
	scattering vector Q for SiO ₂ (1996)	
5.7	Double logarithmic plot of intensity $I(Q)$ versus	82
	scattering vector Q for SiO ₂ (2004)	
5.8	Scattering pattern recorded by position-sensitive	83
	detector with sample to detector distance of 13 m	
5.9	Scattering pattern recorded by position-sensitive	84
	detector with sample to detector distance of 4 m	
5.10	Scattering pattern recorded by position-sensitive	84
	detector with sample to detector distance of 1.5 m	
5.11	Double logarithmic plot of Intensity $I(Q)$ versus	87
	scattering vector, Q for silica aerogels (MINT)	
5.12	Double logarithmic plot of Intensity $I(Q)$ versus	88
	scattering vector, Q for titanium containing	
	silica aerogels (MINT)	

5.13	Double logarithmic plot of intensity $I(Q)$ versus	89
	scattering vector, Q for silica aerogels (BATAN)	
5.14	Double logarithmic plot of intensity $I(Q)$ versus	89
	scattering vector, Q for titanium containing	
	silica aerogels (BATAN)	
5.15	Double logarithmic plot of intensity $I(Q)$ versus	93
	scattering vector, Q for silica aerogels 1N	
5.16	Double logarithmic plot of intensity $I(Q)$ versus	93
	scattering vector, Q for silica aerogels 1.25N	
5.17	Double logarithmic plot of intensity $I(Q)$ versus	94
	scattering vector, Q for silica aerogels 1.5N	
5.18	Double logarithmic plot of intensity $I(Q)$ versus	94
	scattering vector, Q for silica aerogels 1.75N	
5.19	Guinier plot for silica aerogels (MINT)	96
5.20	Guinier plot for titanium containing silica aerogels (MINT)	96
5.21	Guinier plot for silica aerogels (BATAN)	98
5.22	Guinier plot for titanium containing silica aerogels	98
	(BATAN)	
5.23	Guinier plot for silica aerogels 1N	101
5.24	Guinier plot for silica aerogels 1.25N	101
5.25	Guinier plot for silica aerogels 1.5N	102
5.26	Guinier plot for silica aerogels 1.75N	102

LIST OF SYMBOLS

A	-	area
b	-	barns
b	-	scattering length
b_c	-	coherent part of scattering length
b_{ic}	-	incoherent part of scattering length
b_i	-	scattering length of <i>i</i> th atom
b_o	-	average scattering length
d	-	sample thickness
d_c	-	correlation length / average chord
D	-	fractal dimension
D_b	-	bulk density of scattering body
D_m	-	mass fractal dimension
D_s	-	surface fractal dimension
E_i	-	incident energy
E_s	-	final energy
F(r)	-	autocorrelation function
F(Q)	-	form factor of single particle
g(r)	-	pair correlation function
Ι	-	beam intensity
I(Q)	-	scattering intensity
<i>Ι(θ</i>)	-	scattering intensity, in function of scattering angle
J_l	-	first order spherical Bessel function
k_i	-	incident wave vector
k_s	-	scattered wave vector

M(r) - distribution of mass

M_w	-	molecular weight
n	-	number of particle
<i>n</i> _i	-	reflecting index
N	-	number density of target nuclei
P(Q)	-	form factor
P(r)	-	Patterson function
Q	-	scattering vector / momentum transfer
r	-	average radius
r	-	position of nucleus
R_c	-	cluster radius
R_g	-	radius of gyration
R_p	-	particle radius
S	-	surface area
S(Q)	-	structure factor
t	-	counting time
T_s	-	sample transmission
Z	-	atomic number
Å	-	Angstrom
nm	-	nanometre
μm	-	micrometer
mm	-	milimetre
cm	-	centimetre
m	-	metre
^{0}C	-	centigrade degree
keV	-	kilo electron volt
Σ	-	macroscopic cross section
Σ_t	-	total cross section per unit sample volume
Σ_{c}	-	coherent cross section per unit sample volume
Σ_i	-	incoherent cross section per unit sample volume
Σ_a	-	absorption cross section per unit sample volume
Σ_{a}	-	absorption cross section per unit sample volume

~		souttoring gross soution
0	-	scattering cross section
σ_{s}	-	standard deviation
v_o	-	incident wave frequency
v	-	scattered wave frequency
θ	-	scattering angle
λ	-	wavelength
λ_i	-	incident wavelength
λ_s	-	final wavelength
ρ	-	scattering length density
$(\Delta \rho)^2$	-	contrast term
$ ho_{ m m}$	-	scattering length density of surrounding medium
$ ho_{ m p}$	-	scattering length density of sample
$\rho(r)$	-	density of subvolume
ϕ	-	neutron flux
\varOmega	-	solid angle
ε	-	detector efficiency
φ	-	tilting angle
Δx	-	thickness
$d\sigma/d\Omega$	2 -	differential cross section

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
Α	SANS Data Acquisition System Program	119
В	CENTER Program	140
С	<i>EFFI</i> Program	143
D	EFFI.DAT	154
E	<i>IQ1D</i> Program	155
F	IQD.DAT	169
G	Example Output File	170
Н	Publications	172

CHAPTER 1

INTRODUCTION

Small angle scattering (SAS) is the collective name given to techniques of small angle neutron (SANS), X-Ray (SAXS) and light (SALS) scattering. Small angle scattering, by definition, differs from other scattering or diffraction techniques in that it uses information derived from the scattered beam at small angles (Hu *et al.*, 2002). For typical SAS measurements, the scattering angles are in the range of 0.01° to 10° . A general feature of scattering is the reciprocity behaviour: large structural entities show up at small scattering angles, and vice versa (Emmerlling and Fricke, 1992). At larger scattering angles, distances in the length range of chemical bonds on the scale of angstroms are probed.

Small angle neutron or X-Ray scattering is the technique of choice for probing structural features that occur on length scales between approximately 10Å and 1000 Å. The size range spans a vast range of science, from proteins and viruses (biology and medical sciences) to emulsions and microemulsions (polymer and material science) to phase separation and fractal growth (physics, geology and metallurgy). It can be easily used to study liquid, amorphous and crystalline samples. Information about the size, shape or distribution of inhomogenities can be extracted from the scattering data (Li, 2000).

An important question is, why use neutron as opposed to X-Ray? The most fundamental difference between neutron and electromagnetic radiation is the mechanism

by which the incident radiation interacts with matter. Neutrons have no charge, thus, unlike electrons, they have no electrostatic interaction. Likewise their electric dipole moment is either zero or too small to be measured by the most sensitive modern techniques and this cause almost no polarization of the electron clouds. On the other hand, X-Rays have a very strong electric field associated with them which may ionize the atoms they pass through. Electrons interact electrostatically with the electrons in materials (Li, 2000). X-Ray is scattered by the electrons surrounding atomic nuclei, but neutrons are scattered by the nucleus itself. Table 1.1 summarises the properties of the interaction of X-Rays and neutrons with matters.

The strength of the neutron-nucleus interaction varies randomly with atomic number and is independent of momentum transfer Q. Even isotopes of the same element will have different neutron scattering cross section, σ (Hammouda, 1995). The interaction of neutrons with matter is weak and the absorption of neutrons by most materials is corresponding small. Neutron radiation is therefore very penetrating for most elements (Kostorz and Lovesey, 1979). Thus, neutrons can be used to probe the bulk properties of samples with pathlengths of several centimetres. Neutrons can penetrate a number of materials such as silicon, quartz and sapphire with little attenuation. These materials can act as both substrates for samples and windows for cells.

The wavelength of thermal neutrons is appropriate to reveal the atomic arrangement in the sample (Kostorz and Lovesey, 1979). The uniqueness of some of the information obtained from small angle neutron scattering may offset the relatively high cost of such experiments.

Radiation type	Interacts with	Interaction force	Penetrate depth
X-Rays	Electrons	Electromagnetic	Slight deep
Neutrons	Atomic nuclei	Nuclear force	Very deep

Table 1.1: The properties of the interaction of X-Rays and neutrons with matters.

1.1 Research Background

The major strength of the SANS technique is that it can be used as a probe on a host of materials, which cover a wide range of research disciplines. Materials that are routinely characterized using SANS technique include alloys and ceramics, biological materials, colloidal materials, complex fluids, polymers, surfaces and interfaces and flux lattices in superconductors and so on.

Small angle neutron scattering has been widely employed in modern materials science. It is a powerful tool for probing the microstructure of amorphous materials in the nanometre range. In this study, small angle neutron scattering has been utilized to study the structure of silica aerogels. As mentioned before, for typical SAS measurements, the structural information that can be obtained is in the range of 10Å to 1000Å. In aerogels systems, this size range of 1 to 100nm is of particular interest since the structural units, such as the pores and the particles, often fall in this range. Therefore, small angle neutron scattering is suitable for the characterization of the microstructure of the aerogels materials (Hu, 2002).

Many people assume that aerogels are recent products of modern technology. In reality, the first aerogels were prepared in 1931 by Steven. S. Kistler. Kistler's aerogels were very similar to silica aerogels prepared today. They were transparent, low density, and highly porous materials that stimulated considerable academic interest. Aerogels had been largely forgotten when, in the late 1970s, the French government approached Stanislaus Teichner at Universite Claud Bernard, Lyon seeking a method for storing oxygen and rocket fuels in porous materials. In subsequent years, Teichner's group, and others extended this approach to prepare aerogels of a wide variety of metal oxide aerogels (Hunt and Ayers, 1995).

Aerogels are highly porous solid materials with unusually low densities and high specific surface areas. They usually are prepared by the supercritical drying of highly cross-linked inorganic of organic gels. The most commonly studied aerogels contain only silica, but studies also have been carried out on silica-based gels that contain organic compounds. To incorporate organic modifiers effectively, the silica component of the gel must be prepared under carefully controlled conditions so that it leads to microstructure that can interact with these modifiers. The microstructure of the silica component of the aerogels and the sol gel from which it is made is sensitive to preparation conditions such as pH, and the ratio of the silica precursor to the solvent in the sol gel processing, and other factors. The microstructure can be controlled in the gelation, aging, and drying process (Wang *et al.*, 1991) as well as by isothermal sintering (Emmerling and Fricke, 1992). The interaction between the silica network and its modifiers also may affect the resulting aerogels structure.

The microstructure of aerogels strongly depends on the preparation conditions and the choice of precursors. Therefore, each aerogel has its own structural characteristics. The gathering of information on the structure of aerogels requires methods which cover the length scale from the lower nanometer range (structure of the primary particles) to the micrometer range (linking of the particles, etc). No single method can provide the complete information.

Besides small angle neutron scattering, imaging methods such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) also have such a capability to resolve inhomogenities of this lengths scale (nm to μ m) (Santos *et al.* 1987, Rousset *et al.* 1990, Foret *et al.* 1992, Jarzebski *et al.* 2001, Hu *et al.* 2001, Yamauchi *et al.* 2004). They provide images in real space, for instance pictures of individual grains in a nanocystalline material. SANS on the other hand provides information averaged over all grains of different sizes with high statistical accuracy.

1.2 Research Problem

Small angle neutron scattering technique has been widely employed in probing the microstructure of amorphous material in nanometre range. However, it is not so popular in use due to neutron is expensive to produce. According to statistics, there are total of 32 SANS facility at all around the world (Hammouda, 1995).

SANS facility at MINT is the one and only SANS facility in Malaysia. The construction of SANS facility was completed by the end of 1994 and many tests were carried out from 1995 to 1996. Analyzing real samples have been pursuited from 1997 onwards.

Before this, several surfactant based colloidal samples have been irradiated in the SANS facility (REACTOR TRIGA PUSPATI). However, in this present work, silica aerogels and titanium containing silica aerogels produced from rice husk ash (RHA) were being used as samples. Based on literature review, small angle neutron scattering is very suitable to characterize the structure of silica aerogels since the structural units such as particle size and pore size is in the nanometre range.

The structure of the aerogels depends strongly on the preparation condition and composition during the synthesis of aerogels. In this study, the particle size, fractal dimension and also the surface area of silica aerogels in conjunction of different pH is being verified. The fractal dimension and particle size for silica aerogels and titanium containing silica aerogels are compared to each other.

1.3 Research Objectives

- To verify the performance of small angle neutron scattering (SANS) facility at Malaysian Institute of Nuclear Technology Research (MINT).
- To demonstrate the suitability of SANS in probing microstructures.
- To develop a new SANS data reduction program written in FORTRAN language.
- To measure the fractal dimension and particle size of silica aerogels and titanium containing silica aerogels.
- To study the effect of pH on the variation of particle size and fractal dimension.

1.4 Scope of Studies

In order to verify the performance of SANS facility at MINT, several preliminary experiments have been done. However, the preliminary results show that the neutron beam which comes out from the reactor is off-centred. Hence, calibration of the facility was done. However, results obtained after the calibration was not convincing.

To overcome this problem, some powder samples were sent to Badan Tenaga Nuklir Nasional (BATAN), Indonesia to be irradiated. The results obtained from SANS facility at MINT were compared to results obtained at BATAN, Indonesia. At MINT the sample to detector distance (STD) was fixed to 4m and the *Q*-range fall between 0.1 nm⁻¹ and 0.9 nm⁻¹ (See section 3.2.1 for definition of *Q*). While for the SANS facility at BATAN the sample to detector distance varies from 1.5m to 4m to 13m. The corresponding *Q* range is between (0.06 - 3) nm⁻¹.

The silica aerogels was not synthesized personally. Instead, it was obtained from the Zeolite and Porous Material Research Group (ZPMG) of Department of Chemistry at Universiti Teknologi Malaysia (UTM). The aerogels was known as Maerogel and it was produced from rice husk ash (RHA).

Data correction and data reduction from two-dimensional scattering pattern to one-dimensional profile was performed by a new program developed. The program was written in FORTRAN language by J. Suzuki of Japan Atomic Energy Research Institute (JAERI). The program was modified in order to suit to our computer system and input data file. By using the program, scattering vector Q and corrected intensity I(Q) was calculated.

One of the objectives of this study is to characterize the structure of silica aerogels and titanium containing silica aerogels as a function of pH. The particle size and fractal dimension of silica aerogels was determined. Guinier law and power law and were applied for the characterization of the structure of the silica aerogels and titanium containing silica aerogels.

1.5 Organization of Thesis

This thesis details the work, results and analysis from the study of silica aerogels and titanium containing silica aerogels. The introduction describes the SANS method broadly and indicates why SANS was used to study silica aerogels. Following the introduction chapter, literature review on SANS studies will be reported in Chapter 2. Some fundamental aspects of small angle neutron scattering will be presented in Chapter 3. Chapter 4 covers a brief review of silica aerogels and the SANS facility at MINT, experimental details, data acquisition and also data reduction. Chapter 5 is a presentation of analysis and discussion of silica aerogels' microstructure. Finally, the conclusion of the work and a list of suggestions for further work are presented in Chapter 6.

REFERENCE

Allen A.J. (1991). Time-resolved phenomena in cements, clays and porous rocks. *Journal of Applied Crystallography*. 24: 624-634.

Allen, A. J. and Schofield, P. Small angle scattering from fractal systems. In: M W Johnson ed. *Workshop on Neutron Scattering Data Analysis 1986*. Bristol and Boston: Institute of Physics: 97-102; 1986.

Anwar Hasmy, Marie Foret, Eric Anflaret, Jacques Pelons, BenéVacher and Réni Jullien (2004). *Small angle neutron scattering of aerogels: Simulations and Experiments*.Laboratoire de Science des Materiaux Vitreux, France.

Arnaud Rigacci, Françise Ehrburger-Dolle, Erik Geissler, Bruno Chevalier, Hbert Sallé, Patrick Achard, Olivier Barbieri, Sandrine Berthon, Françise Bley, Frdéic Livet, Géard Marcel Pajonk, Nicolas and Cy rille Rochas (2001). Investigation of the multi-scale structure of silica aerogels by SAXS. *Journal of Non-Crystalline Solids*. 285: 187-193.

Betz, U., Sturm, A., Loeffler, J.F., Wagner, W., Wiedenmann, A. and Hahn, H. (1999). Low temperature isothermal sintering and microstructural characterization of nanocrystalline zirconia ceramics using small angle neutron scattering. *Nanostructural Materials*. 12: 689-692. Bierska, B., Pajak, L. and Lagiewka, E.. The influence of the catalyst composition on the structure of silica aerogels. In: Klabunde, Kenneth J. ed. *Nanoscale materials in chemistry*. New York : Wiley-Interscience. 220-223; 2001.

Borne, A., Chevalier, B., Chevalier, J.L., Quenard, D., Elaloui, E. and Lambard, J.(1995). Characterization of silica aerogel wit the atomic force microscope and SAXS. *Journal of Non-Crystalline Solids*. 188: 235-242.

Bostain, D.A., Brenizer, J.S., Jr. and P.M. Norris (2002). Neutron radioscopic measurement of water adsorption coefficients in aerogels. *Res. NonDestuctive Evaluation*. 14: 47-57.

Brinker, C. J. and Scherer, G. N. (1985). Sol, gel, glass: I. gelation and gel structure. *Journal of Non-Crystalline Solids*. 70: 301-322.

Brumberger, H. ed. *Modern Aspects of Small Angle Scattering*. Netherland: Kluwer Academic Publishers.1995.

Cao, W. and Hunt, J. (1994). Photoluminescense of chemically vapour deposited Si on silica aerogels. *Applied Letter Physics*. 64: 2376-2378.

Chen, S. Hsin. and Teixeira, J. (1986). Structure and Fractal Dimension of Protein-Detergent Complexes *Physics Rev. Lett.* 57: 2583-2586.

Cotton, J.P. Introduction to scattering experiments. In: P. Lindner and Th. Zemb ed. *Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems*. Netherland: North-Holland Delta Series. 3-18; 1991.

Cotton, J.P. Initial data treatment. In: P. Lindner and Th. Zemb ed. *Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems*. Netherland: North-Holland Delta Series. 19-32; 1991.

Deschamps, A., David, L., Nicholas, M., Bley, F., Livet, F., Sguta, R., Simon, J.P., Vigier, G. and Werenskiold, J.C.(2001). Recent developments in small angle X-ray scattering for the study of metals and polymers. *Advanced Engineering Materials*. *3*(8): 579-586.

Dieudonné Ph., Delord, P. and Phalippou, J. (1998). Small angle X-ray scattering of aerogel densification. *Journal of Non-Crystalline Solids*. 222: 220-225.

Ehrburger-Dolle, Françoise., Julien, Dalla mano., Elimane, Elaloui. and Géard, M. Pajonk (1995). Relations between the texture of silica aerogels and their preparation. *Journal of Non-Crystalline Solids*. 186: 9-17.

Einarsrud, Mari-Ann., Kirkedelen, May Britt., Nilsen, Elin., Mortensen, Kell. and Samseth, Jon. (1998). Structural development of silica gels aged in TEOS. *Journal of Non-Crystalline Solids*. 231: 10-16.

Emmerling, A., Gross, R J., Gerlach, Goswin, R., Reichenauer, G. and Fricke, J. (1990). Isothermal sitering of SiO₂ aerogels. *Journal of Non-Crystalline Solids*. 125: 230-243.

Emmerling, A. and Fricke, J. (1992). Small angle scattering and the structure of aerogels. *Journal of Non-Crystalline Solids*. 145: 113-120.

Freltoft, T., Kjems, J.K., Sinha, S. K. (1986). Physics Rev. B: Condensed Matter 33 (1): 269.

Fricke, J. and Reichenauer, G. (1987). Structural investigation of SiO₂ aerogels. *Journal* of Non-Crystalline Solids. 95&96: 1135-1141.

Foret, M., Pelous, J. and Vacher, R. (1992). SANS and SAXS investigations of silica aerogels: crossover from fractal structure to short-range packing. *Journal of Non-Crystalline Solids*. 145: 133-135.

Glatter, O. (1977). A new method for the evaluation of small angle scattering data. *Journal of Applied Crystallography*. 10: 415-421.

Glatter, O. Small angle scattering and light scattering. In: P. Lindner and Th. Zemb ed. *Neutron, X-Ray and Light Scattering: Introduction to an Investigative Tool for Colloidal and Polymeric Systems.* Netherland: North-Holland Delta Series. 19-32; 1991.

Hammouda Boualem (1995). *A tutorial on small angle neutron scattering from polymers*. National Institute of Standards and Technology.

Häßer, F., Eichhorn, F., Röling, S. and Baumbach, H. (1990). Monitoring of the hydration process of hardening cement pastes by small angle neutron scattering. *Cement and Concrete Research.* 20: 644-654.

Häßer, Frank, Simone, Palzer and Angela, Eckart (2001). *Nanostructural investigations* on carbonation of hydrating tricalcium silicate by small angle neutron scattering.

Hdach, H., Woignier, T., Phalippou, J. and Scherer, G.W. (1990). Effect of aging and pH on the modulus of aerogels. *Journal of Non-Crystalline Solids*. 121: 202-205.

Houng-Van, C., Pommier, B., Harivololona, R. and Pichat, P. (1992). Alumina-based aerogels as carriers for automotive palladium catalysts. *Journal of Non-Crystalline Solids*. 145: 250-254.

Hu, Xiangjun., Littrel, Kenneth., Ji, Shuang., Pickles, D.G. and Risen Jr, W.M. (2002). Characterization of silica-polymer aerogel composites by small angle neutron scattering and transmission electron microscopy. *Journal of Non-Crystalline Solids*. 288: 184-190.

Hua, D. W., Anderson, J., Gregorio, J., Smith, D.M. and Beaucage G. (1995). Structural analysis of silica aerogels. *Journal of Non-Crystalline Solids*. 186: 142-148.

Hunt, Arlon and Ayers, Michael (1995). *A brief history of Silica Aerogels*. Lawrence Berkeley Laboratory's Microstructured Materials Group.

Jarzebski, Andrzej B., Mrowiec-Bialon, Julita and Pajak, Lucjan (2001). Engineering of nanoporous materials using the sol-gel method. Educational examples. *International Conference of Engineering Education: Session 7E1*, Oslo, Norway.

Jensen, K.I. (1992). Passive solar component based on evacuated monolithic silica aerogel. *Journal of Non-Crystalline Solids*. 145: 237-239.

Knoblich, B. and Gerber, Th. Aggregation in SiO₂ sols from sodium silicate solutions (2001). *Journal of Non-Crystalline Solids*. 283: 109-113.

Knoblich, B. and Gerber, Th. (2001). The arrangement of fractal clusters dependent on the pH value in silica gels from sodium silicate solutions. *Journal of Non-Crystalline Solids*. 296: 81-87.

Kostorz, G. and Lovesey, S.W. Neutron Scattering-General Introduction. G. Kostorz ed. *Treatise on Materials Science and Technology Volume 15*. New York: Academic Press. 2-63;1979.

Kostorz, G. Small angle scattering and its application to materials science. G. Kostorz ed. *Treatise on Materials Science and Technology Volume 15*. New York: Academic Press. 227-286;1979.

Li, Xiaohe. *Neutron studies of nanostructured Zirconia-based Catalysts*. Ph. D. Thesis. Department of Chemical Engineering, University of Louisville, Kentucky, 2000.

Lours, T., Zarzycki, J., Craievich, A., Santos, D.I. Dos and Aegerter, M. (1987). SAXS and BET studies of aging and densification of silica aerogels. *Journal of Non-Crystalline Solids*. 95-96: 1151-1157.

Lours, T., Zarzycki, J., Craievich, A., Santos, D.I. Dos and M. Aegerter (1988). SAXS study of isothermal sintering of silica aerogel. *Journal of Non-Crystalline Solids*. 106(1-3): 157-160.

Lours, Thierry., Zarzycki, Jerzy, Aldo F**&**x Cr aievich, Dayse Iara dos Santos and Michel AndréAegerter (1987). SAXS and BET studies of aging and densification of silica aerogels. *Journal of Applied Crystallography*. 95&96: 1151-1158.

Marlièe, C., Despetis, F., Etienne, P., Woif nier, T., Dieudonné P. and Phalippou, J. (2001). Very large scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra small angle X-ray scattering experiments. *Journal of Non-Crystalline Solids*. 285: 148-153.

Marlièe, C., Woignier, T., Dieudonné P., Primera, J., Lamy, M., and Phalippou, J. (2001). Two fractal structures in aerogel. *Journal of Non-Crystalline Solids*. 285: 175-180

Meneau, F., Sankar, G., Morgante, N., Cristol, S., Catlow, C.R.A., Thomas, J.M. and Greaves, G.N. (2003). Characterization of zinc oxide nanoparticles encapsulated into zeolite-Y: An in situ combined X-ray diffraction, XAFS and SAXS study. *Nuclear Instruments and Methods in Physics Research B* 199: 499-503.

Merzbacher, C.I., Barker, J.G., Swider, K.E. and Rolison, D.R. (1998). Effect of reweting on silica aerogel structure: a SANS study. *Journal of Non-Crystalline Solids*. 224: 92-96.

Merzbacher, Celia I., Brker, John G., Swider, Karen E., Ryan, Joseph V., Bernstein, Robert A. and Rolison, Debra R. (1998). Characterization of multi-phase aerogels by contrast matching SANS. *Journal of Non-Crystalline Solids*. 255: 234-238.

Miranda Salvado, I.M., Sousa, J. Santos., Margaq, F.M.A. and Teixeira, J. (2000). Structure of SiO_2 gels prepared with different water contents. *Physica B*. 276-278: 388-389.

Mildner, D. F. R., Hall, P. L (1986). Small angle scattering from porous solids with fractal geometry. *Journal of Physics D, Applied Physics*. 19: 1535-1545.

North, A. N. Small angle scattering studies of heterogeneous systems. In: M C Fairbanks, A. N. North and R. J. Newport ed. *Neutron and X-ray Scattering: Complementary Technique*. Bristol and New York: Institute of Physics. 181-196;1989.

Pajak, L. SAXS studies on porous studies. In: Klabunde, Kenneth J. ed. *Nanoscale materials in chemistry*. New York : Wiley-Interscience. 208-211; 2001.

Pekala, R.W. and Hrubesh, L.W. (Eds) (1996). Proceedings of the fourth international symposium on aerogels. *Journal of Non-Crystalline Solids*. 194.

Petitt, Paul., Eugeneedwards, Michael. and Forciniti, Daniel. (1997). A small angle neutron scattering study of γ -crystallins near their isoelectric point. *Europe Journal of Biochemistry*. 243: 415-421.

Phalippou, J. and Vacher, R. (Eds) (1998). Proceedings of the fifth international symposium on aerogels. *Journal of Non-Crystalline Solids*. 225.

Porod, G. Determination of general parameters by small angle X-ray scattering. H. Brumberger ed. *Small Angle X-Ray Scattering*. New York: Gordon and Breach. 1-16;1967.

Posselt, D., Pederson, J.S. and Mortensen, K. (1992). A SANS investigation on absolute scale of a homogneous series of based catalysed silica aerogels. *Journal of Non-Crystalline Solids*. 145: 128-132.

Pikus, S., Dawidowicz, A.L., Kobylas, E., Wianowska, D. and Radkiewicz, S. SAXS investigation of the siliceous materials with surface polymer layers. In: Sokrates T Pantelides ed. *The physics of Si02 and its interfaces : proceedings*. New York : Pergamon Pr. 212-219; 1978.

Radlinski, A.P., Mastalerz, M., Hinde, A.L., Hainbuchner, M., Rauch, H., Baron, M., Lin, J.S., Fan, L. and Thiyagarajan, P. (2004). Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal. *International Journal of Coal Geology*. 59: 245-271.

Ramsay, John D.F. and Kallus, Stefan. (2001). Characterization of mesoporous silicas by in situ small angle neutron scattering during isothermal gas adsorption. *Journal of Non-Crystalline Solids*. 285: 142-147.

Rerchenauer, G., Fricke, J. and Buchenau (1989). Low temperature thermal transport in silica aerogels. *Europhysics letter*. 8: 415.

Rosa-Fox, Nicholá de la, Luis Gago-Duport and Luis Esquivias (1995). Aggregation process in silica aerogels on sintering. *Journal of Non-Crystalline Solids*. 192&193: 534-538.

Rousset, J.L., Boukenter, A., Champagnon, B., Dumas, J., Duva, E. and Quinson, J. F. (1990). Granular structure and fractal domains of silica aerogels. *Journal of Physics: Condensed Matter. 2* (42): 8445-8455.

Santos, Dayse Iara dos, Michel AndréAegert er, Aldo F**E**ix Craievic h, Thierry Lours and Jerzy Zarzycki (1987). Structural studies of fractal silica aerogels. *Journal of Non-Crystalline Solids*. 95&96: 1143-1150.

Schaefer, D.W. and Keeefer, K.D. (1986). Structure of Random Porous Materials: Silica Aerogel. *Physics Rev. Letter*. 56: 2199-2202.

Schaefer, D.W., Ricker, T., Agamalian, M., Lin, J.S., Fischer, D., Sukumaran, S., Chen, C.Y., Beaucage, G., Herd, C. and Ivie, J. (2000). Multilevel structure of reinforcing silica and carbon. *Journal of Applied Crystallography*. 33: 587-591

Schaefer, Dale W., Brow, Richard K., Olivier, Bernard J., Tom Rieker and Greg Beaucage, Larry Hrubesh and Lin, J.S. Characterization of porosity in ceramic materials by small angle scattering: VycorTM glass and silica aerogel. In: H. Brumberger ed. *Modern Aspects of Small Angle Scattering*. Dordrech: Kluwer Academic Publisher;1994.

Schaefer, D. W. and Keefer, K. D. (1986). Structure of Random Porous Materials: Silica Aerogel. Physics Rev. Letter. 56: 2199-2202.

Schmatz, W., Springer, T. and Schelten, J. (1974). Neutron small angle scattering: Experimental techniques and applications. *Journal of Applied Crystallography*. 7: 96-104.

Schmidt, P.W. (1991). Small angle scattering of disordered, porous and fractal systems. *Journal of Applied Crystallography*. 24: 414-435.

Schmidt, Paul W., Voss, D.J., Rixce, Randall D., Brükner, Rainer., Laural Shulse. Small angle scattering studies of solids with structure on more than one length scale in the interval between 5Åand 10⁴ ÅIn: Klabunde, Kenneth J. ed. *Nanoscale materials in chemistry*. New York : Wiley-Interscience. 174-195; 2001.

Schmidt, Paul W. Some fundamental concepts and techniques useful in small angle scattering studies of disordered solids. In: H. Brumberger ed. *Modern Aspects of Small Angle Scattering*. Netherlang: Kluwer Academic Publishers. 1-56; 1995.

Schwarz, W., Ebert, V., Geerds, H., Jungmann, K., Kirches, S., Koppe, S., Maas, F., H.-J. Mundinger, G. zu Putlitz, J. Rosenkranz, W. Schäer, G. Schiff, Z. Zhang, M.G. Boshier and V.W. Hughes (1992). Thermal muonium in vacuo from silica aerogels. *Journal of Non-Crystalline Solids*. 145: 244-249.

Stolarski, Marek., Walendziewski, Jerzy., Mieczyslaw Steininger Barbara Pniak (1999). Synthesis and characteristic of silica aerogels. *Applied Catalysis A: General*. 177: 139-148.

Sufi, M.A.M., Radiman, S., Wiedenmann, A. and Mortensen, K. (1997). Performance for a new small angle neutron scattering instrument at the Malaysian TRIGA reactor. *Journal of Applied Crystallography*. 30: 884-888.

Svendsen, S. (1992). Solar collector with monolithic silica aerogel. *Journal of Non-Crystalline Solids*. 145: 240-243.

Tajiri, Koji. and Igarashi, Kazoo. (1998). The effect of the preparation conditions on the optical properties of transparent silica aerogels. *Solar Energy Materials and Solar Cells*. 54: 189-195.

Tan, N.C.Beck, Balogh, L., Trevino, S.F., Tomalia, D.A. and Lin, J.S. (1999). A small angle scattering study of dendrimer-copper sulfide nanocomposites. *Polymer*. 40: 2537-2545.

Tang, Qi. and Wang, Tao. (2004). Preparation of silica aerogel from rice hull ash by supercritical carbon dioxide drying. *The Journal of Supercritical Fluids*.

Vacher, R., Woignier, Thierry., Jean Phalippou and Jacques Pelous (1988). Fractal structure of based catalysed and densified silica aerogels. *Journal of Non-Crystalline Solids*. 106: 161-165.

Vacher, R., Woignier, T., Pelous, J. and Courtens. (1988). Structure and self-similarity of silica aerogels. *Physics Rev. B*. 37: 6500-6503.

Wagh, P.B., Begag, R., Pajonk, G.M., Venkateswara Rao, A. and Haranath, D. (1999). Comparison of some physical properties of silica aerogel monolith synthesized by different precursors. *Materials Chemistry and Physics*. 57: 214-248.

Wang, P., Emmerling, A., Tappert, W., Spormann, O. and Fricke, J. (1991). High temperature and low temperature supercritical drying of aerogels-structural investigations with SAXS. *Journal of Applied Crystallography*. (24): 777-780.

Wang, Jue., Shen, Jun., Zhou, Bin. and Wu, Xiang. (1996). SAXS investigation of silica aerogels derived from TEOS. *Nanostructured Materials*. 7(6): 699-708.

Woignier, T., Phalippou, J., Vacher, R., Pelous, J. and Courtens, E. (1990). Different kinds of fractal structural in silica aerogels. *Journal of Applied Crystallography*. 121: 198-201.

Woignier, T. and Phalippou. (1987). Skeletal density of silica aerogels. *Journal of Non-Crystalline Solids*. 93: 17-21.

Xiong, S.B., Ye, Z.M., Liu, Z.G., Ding, W.P., Zheng, X.Q. and Zhu, Y.P. (1997). Supercritical drying preparation and fractal structure of blue luminescent silica aerogel. *Materials Letters*. 32: 165-169. Yamauchi, Kazuhiro., Satoshi Akasaka, Hirokazu Hasegawa, Satoshi Koizumi, Chudej Deeprasertkul, Pasaree Laokijcharoen, Jipawat Chamchang and Areeratt Kornduangkaeo (2004). Structural study of natural rubber thermoplastic elastomers and their composites with carbon black by small angle neutron scattering and transmission electron microscopy. *Composites: Part A: Applied Science and Manufacturing*.: 1-7.