EVALUATION ON AGGREGATE EFFECTIVE SPECIFIC GRAVITY AS RELATED TO MARSHALL VOLUMETRIC PROPERTIES

SHAHREENA MELATI BINTI RHASBUDIN SHAH

A project report submitted in partial fulfilment of the requirements for the award of the degree Master of Engineering (Civil-Highway and Transportation)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > MAY, 2006

Dedicated to

My beloved family

My best friends

My beannie..

ACKNOWLEDGEMENT

Alhamdulillah, with His blessing, I have successfully completed my master's project. I am grateful for the contributions of many people in helping me to complete this project.

I would like to take this opportunity to express a million thanks and appreciation to my project supervisor, Dr. Mohd Rosli bin Hainin for his ideas, support, motivation and guidance along the research. I am also very thankful to Highway and Transportation lecturers especially Prof. Ir. Dr. Hasanan bin Md. Nor, Prof. Madya Dr. Othman Che Puan, Prof. Madya Abd Aziz bin Abd Muti, Prof. Madya Dr Abdul Aziz Chik and En. Che' Ros bin Ismail for their guidance and advice.

My sincere appreciation also extends to En. Abdul Rahman, En. Suhaimi, En. Azman and En. Ahmad Adin, staffs of Highway and Transportation Laboratory where the research was conducted for the helping hand along my way in completed the research.

To all my dearest friends, thanks for always be there. For my soul mate Beannie, thank you so much for lighten up my life. Last but not least, I would like to convey my appreciation to my beloved parents, sister and brothers for always supporting me. I love all of you so much.

ABSTRACT

The volumetric properties which consist of voids in total mix (VTM), voids in the mineral aggregate (VMA) and voids filled with asphalt (VFA) of compacted hot mix asphalt (HMA) provide an indication of the potential pavement mixture performance. Usually, the voids in compacted HMA were calculated on the basis of bulk specific gravity of the aggregate assuming that there is no asphalt absorbed in the aggregate permeable pores. In the case of asphalt absorption, the use of aggregate effective specific gravity should give a more true value of voids in compacted HMA. This study was carried out to determine the voids value of compacted HMA on the basis of effective specific gravity of the aggregate. Comparisons of the voids value using both specific gravities were analysed in terms of optimum asphalt content (OAC) and volumetric properties determination. The results show that OAC, VMA, VFA and stability of the mix increase on the basis of aggregate effective specific gravity.

ABSTRAK

Ciri – ciri volumetrik yang terdiri daripada lompang dalam campuran (VTM), lompang dalam agregat (VMA) dan lompang terisi simen asfalt (VFA) bagi campuran panas asfalt (HMA) padat adalah faktor penting untuk menentukan prestasi campuran jalan raya. Kebiasaannya, lompang di dalam campuran panas asfalt padat dianalisis berdasarkan graviti tentu pukal agregat, dengan anggapan bahawa tiada simen asfalt yang diserap ke dalam liang telap agregat. Namun begitu dalam mengambil kira penyerapan asfalt, penggunaan graviti tentu efektif seharusnya memberikan nilai sebenar lompang di dalam campuran panas asfalt padat. Kajian ini dijalankan untuk menentukan nilai lompang di dalam campuran panas asfalt padat dianalisis berdasarkan graviti tentu efektif agregat. Perbandingan nilai lompang yang dianalisis menggunakan kedua – dua graviti tentu ini dilihat dari penentuan kandungan asfalt optimum dan ciri – ciri volumetrik. Keputusan daripada kajian yang dijalankan menunjukkan kandungan asfalt optimum, VMA, VFA dan kestabilan campuran adalah lebih tinggi berdasarkan graviti tentu efektif agregat.

TABLE OF CONTENTS

TITLE

PAGE

DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	Х
LIST OF FIGURES	xii
LIST OF SYMBOLS / ABBREVIATIONS	xiv
LIST OF APPENDICES	XV

1 INTRODUCTION

2

1.1	Research Background	1
1.2	Problem Statement	2
1.3	Objective	3
1.4	Scope	3
1.5	Significance of Research	3

LITE	RATU	RE REVIEW		4
2.1	Hot Mix Asphalt Mixture			
2.2	Aggre	egate		5
	2.2.1	Specific Gravities		6
	2.2.2	Absorption And Porosity		9

2	2.3	Volum	netric Properties of Asphalt Mixtures	11
		2.3.1	Air voids	12
		2.3.2	Voids in the Mineral Aggregate	14
		2.3.3	Voids Filled with Asphalt	16
2	2.4	Aspha	lt Content	16
2	2.5	Influe	nce of Aggregate Specific Gravity on	
		Determ	nination of Volumetric Properties	19
2	2.6	Durab	ility and Asphalt Film Thickness of	
		Hot M	lix Asphalt	24
2	2.7	Marsh	all Mix Design Method	25
F	RESE	ARCH	METHODOLOGY	27
3	5.1	Introd	uction	27
3	5.2.	Labora	atory Test Procedure	28
		3.2.1	Sieve Analysis of Fine and Coarse	
			Aggregates (ASTM C 136-84a)	29
		3.2.2	Specific Gravity and Absorption	
			of Coarse Aggregate (ASTM C 127-88)	30
		3.2.3	Specific Gravity and Absorption	
			of Fine Aggregate (ASTM C 128-88)	33
		3.2.4	Theoretical Maximum Specific Gravity	
			and Density of Bituminous Paving	
			Mixtures (ASTM D 2041-91)	35
		3.2.5	Resistance to Plastic Flow of	
			Bituminous Mixtures Using Marshall	
			Apparatus (ASTM D 1559)	37
3	.3.	Data C	Collection	40
3	.4.	Data A	Analysis	40
		3.4.1	Volumetric Properties of Compacted	
			Mixtures	41
		3.4.2	Optimum Asphalt Content	44
3	5.5	Data P	Presentation	45
3	6.6.	Specification		

3

RESE	EARCH FINDINGS AND ANALYSIS	48	
4.1	Introduction 4		
4.2	Aggregate Gradation	48	
4.3	Aggregate Bulk Specific Gravity	49	
	4.3.1 Bulk Specific Gravity of Coarse Aggreg	ate 49	
	4.3.2 Bulk Specific Gravity of Fine Aggregate	e 49	
	4.3.3 Specific Gravity of Filler	50	
	4.3.4 Bulk Specific Gravity for Total Aggrega	te 50	
4.4	Maximum Specific Gravity of Paving Mixture	51	
4.5	Aggregate Effective Specific Gravity	52	
4.6	Specific Gravity of Asphalt	52	
4.7	Volumetric Properties Analysis	52	
	4.7.1 Voids in Total Mix, VTM	53	
	4.72 Voids in Mineral Aggregate, VMA	54	
	4.7.3 Voids Filled with Asphalt, VFA	55	
4.8	Optimum Asphalt Content (OAC) 57		
4.9	Stability and Flow at Optimum Asphalt Content 63		
4.10	Comparison of mix properties at the		
	optimum asphalt content evaluated on the		
	different aggregate specific gravity	64	
4.11	Comparison of mix properties with specification	n 64	
CON	CLUSIONS AND RECOMMENDATION	66	
5.1	General		
5.2	Conclusions	66	
5.3	Recommendation 68		

REFERENCES

Appendices A - D 73 - 84

LIST OF TABLES

TA	BL	Æ	N	0	•
----	----	---	---	---	---

TITLE

PAGE

2.1	Suggested Minimum and Maximum VMA	15
2.2	Influence of Type of Specific Gravity on Determination	
	of VMA and Air Voids	19
2.3	Incorrect and Correct Voids Values for the Compacted	
	Paving Mixture	20
2.4	The effect of variations in specific gravity on air voids	22
3.1	Gradation Limits and Binder Contents for Bituminous	
	Macadam	46
3.2	Gradation Limits for Asphaltic Concrete	46
3.3	Design Bitumen Contents	47
3.4	Test and Analysis Parameters for Asphaltic Concrete	47
4.1	Bulk specific gravity of coarse aggregate for each mix	49
4.2	Bulk specific gravity of fine aggregate for each mix	50
4.3	Bulk specific gravity of total aggregate for each mix	50
4.4	Maximum Specific Gravity for each mix	51
4.5	Maximum Specific Gravity at each asphalt content	51
4.6	Effective specific gravity for each mix	52
4.7(a)	VTM (%) at each asphalt content for ACW 14	53
4.7(b)	VTM (%) at each asphalt content for ACW 20	53
4.7(c)	VTM (%) at each asphalt content for ACB 28	54
4.8(a)	VMA (%) at each asphalt content for ACW 14	54
4.8(b)	VMA(%) at each asphalt content for ACW 20	55
4.8(c)	VMA (%) at each asphalt content for ACB 28	55

4.9(a)	VFA (%) at each asphalt content for ACW 14	56
4.9(b)	VFA (%) at each asphalt content for ACW 20	56
4.9(c)	VFA (%) at each asphalt content for ACB 28	56
4.10	Stability and flow of asphaltic concrete (AC) at	
	optimum asphalt content	63
4.11	Stability and flow of bituminous macadam (BM) at	
	optimum asphalt content	63
4.12	Mix properties of asphaltic concrete (AC) at optimum	
	asphalt content	64
4.13(a)	Mix properties of ACW 14 at optimum asphalt content	65
4.13(b)	Mix properties of ACW 20 at optimum asphalt content	65
4.13(c)	Mix properties of ACB 28 at optimum asphalt content	65

LIST OF FIGURES

FIGURE NO.

TITLE

PAGE

2.1	Apparent Specific Gravity (Roberts et al., 1996)	7
2.2	Bulk Specific Gravity (Roberts et al., 1996)	7
2.3	Effective Specific Gravity (Roberts et al., 1996)	8
2.4	Illustrating VMA, air voids and effective asphalt	
	content in compacted asphalt paving mixture	
	(Asphalt Institute, 1988).	11
2.5	Maximum Theoretical Specific Gravity	13
2.6	Bulk Specific Gravity of Mixture	14
2.7	Illustration of Asphalt Film Thickness	
	(Chadbourn et al., 2000)	25
3.1	Flow Chart for Experiment Design	28
3.2	Sieves from pan to 20 mm	30
3.3	The ASTM D 2041 test apparatus	36
3.4	The specimens submerged in the water bath	39
3.5	The complete assembly to be placed on Compression	
	Testing Machine	39
3.6	Compression Testing Machine	39
4.1(a)	Optimum asphalt content determination for ACW 14	57
4.1(b)	Optimum asphalt content determination for ACW 20	58
4.1(c)	Optimum asphalt content determination for ACB 28	58
4.1(d)	Optimum asphalt content determined by bulk and	
	effective specific gravity	59

4.2(a)	VMA (%) at optimum asphalt content for ACW 14	60
4.2(b)	VMA (%) at optimum asphalt content for ACW 20	60
4.2(c)	VMA (%) at optimum asphalt content for ACB 28	61
4.3(a)	VFA (%) at optimum asphalt content for ACW 14	61
4.3(b)	VFA (%) at optimum asphalt content for ACW 20	62
4.3(c)	VFA (%) at optimum asphalt content for ACB 28	62

LIST OF SYMBOLS / ABBREVIATIONS

AAMAS	-	Asphalt-Aggregate Mixture Analysis System
AASHTO	-	American Association of State Highway and
		Transportation Officials
ACB	-	Asphaltic Concrete Binder Course
ACW	-	Asphaltic Concrete Wearing Course
ASTM	-	American Society for Testing and Materials
BMR	-	Bituminous Macadam Roadbase
BMW	-	Bituminous Macadam Wearing Course
G_{mb}	-	Bulk Specific Gravity of Compacted Mixture
G_{mm}	-	Maximum Specific Gravity of Paving Mixture
G _{sa}	-	Apparent Specific Gravity of Aggregate
G_{sb}	-	Bulk Specific Gravity of Aggregate
G _{se}	-	Effective Specific Gravity of Aggregate
HMA	-	Hot Mix Asphalt
JKR	-	Jabatan Kerja Raya
NAPA	-	National Asphalt Pavement Association
OAC	-	Optimum Asphalt Content
P _b	-	percent of asphalt by total weight of mixture
P _{mm}	-	total loose mixture, percent by total weight of mixture
Ps	-	percent of aggregate by total weight of mixture
SSD	-	Saturated Surface Dry
US	-	United States of America
UTM	-	Universiti Teknologi Malaysia
VFA	-	Voids Filled with Asphalt
VMA	-	Voids in the Mineral Aggregate
VTM	-	Voids in Total Mix

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Aggregate Gradation	73
В	Aggregate Bulk Specific Gravity	76
С	Maximum Specific Gravity of Loose Mixture	82
D	Bulk Specific Gravity of Compacted Mixture	84

CHAPTER I

INTRODUCTION

1.1 Research Background

The volumetric properties which consist of air voids or voids in total mix (VTM), voids in the mineral aggregate (VMA) and voids filled with asphalt (VFA) are important parameters evaluated in hot mix asphalt (HMA) mix design which provide an indication of the potential mixture's pavement performance. The volumetric properties of the compacted HMA are determined at the laboratory design stage and used in the two laboratory design procedures, Marshall and SuperPave.

The air voids in compacted HMA consists of small air spaces between the asphalt binder coated aggregate particles. The term VMA describes that portion of the space in a compacted HMA pavement or specimen which is not occupied by the aggregate (Kandhal and Chakraborty, 1996) and the VFA are the VMA that is filled with asphalt binder.

Establishing an adequate VMA during mix design and in the field will help establish adequate film thickness without excessive asphalt bleeding or flushing (Chadbourn *et al.*, 2000), hence provide a durable asphalt mixture. The air voids in the total compacted mix also need to be sufficient enough to allow for a slight amount of additional compaction under traffic loading without flushing, bleeding, and loss stability, yet low enough to keep out harmful air and moisture (Asphalt Institute, 1988). The specific gravity of an aggregate is needed in calculating the voids in a compacted HMA. There are three different types of aggregate specific gravities used in the voids analysis of compacted HMA: apparent, bulk and effective. This study was carried out to determine the volumetric properties of a compacted HMA on the basis of aggregate effective specific gravity.

1.2 Problem Statement

The selection of specific gravity of the aggregate to be used in mix design calculation can give different values on calculated voids in the compacted HMA. According to Asphalt Institute, the VMA of a compacted HMA is most appropriately calculated on the basis of the bulk specific gravity of the aggregate. It is assumed that there is no asphalt cement absorbed into the aggregate permeable pores. However, all mineral aggregate have the potential to absorb asphalt binder.

Aggregate with large permeable pores will reduce effective asphalt content because the portion of the asphalt that is absorbed is no longer available as binder (Chadbourn *et al.*, 2000). By not taking asphalt absorption into account cause the VMA to be underestimated, resulted in a lower film thickness which can lead to mixture durability problem.

A present in Malaysia, the voids in compacted HMA are calculated based upon bulk specific gravity of aggregate with no allowance for asphalt absorbed into the aggregate. The concept of effective specific gravity more truly describes the case of asphalt absorption when calculating the voids in a compacted HMA mixture (Roberts *et al.*, 1996). From this research, the correct value for voids in compacted HMA can be verified.

1.3 Objective

This study is undertaken to compare the Marshall volumetric properties value of compacted HMA based upon effective and bulk specific gravity of the aggregate.

1.4 Scope

In order to achieve the objective, this project mainly dealt with laboratory testing involving aggregate and HMA mixture. There were six different mixes utilized namely ACW14, ACW20, ACB 28, BMW14, BMW20 and BMR 28. The tests were performed at Highway & Transportation Laboratory, UTM. The analysis on volumetric properties was conducted and conclusion is included in the report.

1.5 Significance of Research

From this project, the Marshall volumetric properties of compacted HMA evaluated on the basis of effective specific gravity of the aggregate can be determined. The volumetric properties evaluated on the basis of effective specific gravity will be compared to the volumetric properties evaluated on the basis of bulk specific gravity of the aggregate. This research finding hopefully can serve as a guideline for highway engineer in considering aggregate effective specific gravity as an alternative in determination of volumetric properties of a compacted HMA.

REFERENCES

- Al-Abdul Wahhab, H. and Khan, Z. A. (1991). Evaluation of Marshall and Mix Design Procedures for Local Use. In *Transportation Research Record No* 1317. Asphalt Mixtures: Design, Testing and Evaluation 1991. Washington, D. C.: Transportation Research Board.68 - 76.
- American Society for Testing and Materials (1992). Road and Paving Materials; Pavement Management Technologies. Volume 04.03. Philadelphia: American Society for Testing and Materials.
- Asphalt Institute (1983). *Principles of Construction Of Hot-Mix Asphalt Pavements*. MS-22. Kentucky: Asphalt Institute.
- Asphalt Institute (1988). *Mix Design Methods for Asphalt Concrete and Other Hot-Mix Types*. MS-2. Kentucky: Asphalt Institute.

Asphalt Institute (1989). The Asphalt Handbook. MS-4. Kentucky: Asphalt Institute.

- Baladi, G. Y. and Harichandran, R. S. (1989). Asphalt Mix Design and the Indirect Test: A New Horizon. In Gartner Jr., W. ed. Asphalt Concrete Mix Design: Development of More Rational Approaches ASTM STP 1041. Philadelphia: American Society for Testing and Materials. 86 – 105.
- British Standard Institution (1993). Coated Macadam for Roads and Other Paved Areas. Specifications for Constituent Materials and for Mixtures. London, BS 4987: Part 1.

- Chadbourn, B. A., Skok, E. L. Jr., Crow, B. L., Spindler, S. and Newcomb, D. E.
 (2000). *The Effect of Voids in Mineral Aggregate (VMA) on Hot-Mix Asphalt Pavements*, Final report prepared for Minnesota Department of Transportation.
- Christensen, D. W and Bonaquist, R. F. (2005). *VMA: One Key to Mixture Performance,* submitted for Publication in the National Superpave Newsletter.
- Coree, B. J. (1998). *HMA Volumetrics Revisited A New Paradigm*, Center for Transportation Research and Education.
- Daines, M. E. (1995). Tests for Voids and Compaction in Rolled Asphalt Surfacing.Project Report 78. Berkshire: Transport Research Laboratory.
- Elliot, R. P., Ford Jr., M. C., Ghanim, M. and Tu, Y. F. (1991). Effect of Aggregate Gradation Variation on Asphalt Concrete Mix Properties. In *Transportation Research Record No 1317. Asphalt Mixtures: Design, Testing and Evaluation* 1991. Washington, D. C.: Transportation Research Board. 52- 67.
- Foster, C. R. (1982). *Development of Marshall Procedures for Designing Asphalt Paving Mixture*. Information Series 84. Maryland: NAPA.
- Goetz, W. H. (1989). The Evolution of Asphalt Concrete Mix Design. In Gartner Jr.,
 W. ed. Asphalt Concrete Mix Design: Development of More Rational Approaches ASTM STP 1041. Philadelphia: American Society for Testing and Materials. 5 – 14.
- Horan, R. D. (2003). Effective Specific Gravity for VMA Calculations. *Asphalt Institute Magazine*.
- Hunter, R. N. ed (1994). Bituminous Mixtures In Road Construction. London: Thomas Telford Services Ltd.

- Jabatan Kerja Raya (1988). *Standard Specification for Road Works*. Kuala Lumpur, (JKR/SPJ/1988). JKR 20401-0017-88.
- Kandhal, P. S and Chakraborty, S. (1996). Evaluation of Voids in the Mineral Aggregate for HMA Paving Mixtures. NCAT Report No 96-4. Auburn University, Alabama: National Center for Asphalt Technology.
- Kandhal, P. S. and Khatri, M. A. (1992). Relating Asphalt Absorption to Properties of Asphalt Cement and Aggregate. In *Transportation Research Record No* 1342. Asphalt and Asphalt Additives. Washington, D. C.: Transportation Research Board. 76 – 84.
- Kandhal, P. S., Foo, K. Y. and Mallick, R. B. (1998). A Critical Review of VMA Requirements in Superpave. NCAT Report No 98-1. Auburn University, Alabama: National Center for Asphalt Technology.
- Lavin, P. G. (2003). Asphalt Pavement. A Practical Guide to Design, Production and Maintenance for Engineers and Architects. London: Spon Press.
- Martin, J. R. and Wallace, H. A. (1958). *Design and Construction of Asphalt Pavements*. New York: McGraw-Hill Book Company, Inc.
- McLeod, N. W. (1956). Relationships Between Density, Bitumen Content, and Voids Properties of Compacted Bituminous Paving Mixtures. *Proceedings of the Thirty-Fifth Annual Meeting*. January 17-20. Washington, D. C.: *Highway Research Board*.
- Mohd Zainazim Bin Zaini (2005). Perbandingan Terhadap Kaedah Penentuan Kandungan Bitumen Optimum Dalam Campuran Panas Asfalt. Universiti Teknologi Malaysia: Tesis Sarjana Muda.

- Monismith, C. L., Finn, F. N. and Vallerga, B. A. (1989). A Comprehensive Asphalt Concrete Mixture Design System. In Gartner Jr., W. ed. Asphalt Concrete Mix Design: Development of More Rational Approaches ASTM STP 1041.
 Philadelphia: American Society for Testing and Materials. 39 – 71.
- Nur Sabahiah Binti Abdul Sukor (2005). Evaluation of Laboratory Compactive Effort on Asphaltic Concrete Mixes. Universiti Teknologi Malaysia: Tesis Sarjana.
- Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. and Kennedy, T. W. (1996).
 Hot Mix Asphalt Materials, Mixture Design, And Construction. 2nd ed.
 Lanham, Maryland: NAPA Research and Education Foundation.
- Von Quintus, H.L., Scherocman, J. A., Hughes, C. S. and Kennedy, T. W. (1991). Asphalt-Aggregate Mixture Analysis System. National Cooperative Highway Research Program Report 338. Washington, D. C.: Transportation Research Board.