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ABSTRACT 

 

 

 

 

A mathematical model for the boundary layer flow and heat transfer in forced 

convection is developed.  Boundary layer is a narrow region of thin layer that exists 

adjacent to the surface of a solid body where the effects of viscosity are obvious, 

manifested by large flow velocity and temperature gradient.  The concept of 

boundary layer was first introduced by Ludwig Prandtl (1875-1953) in 1905.  The 

derivation of both velocity and temperature boundary layer equations for flow past a 

horizontal flat plate and semi-infinite wedge are discussed.  The velocity and 

temperature boundary layer equations are first transformed into ordinary differential 

equations via a similarity transformation.  The differential equations corresponding 

to the flow past a horizontal flat plate and a semi-infinite wedge are nonlinear and 

known respectively as the Blasius and the Falkner-Skan equation.  The approximate 

solutions of these equations are obtained analytically using a series expansion, 

namely the Blasius series and an improved perturbation series using the Shanks 

transformation.  The solutions presented include the velocity and temperature 

profiles, the skin friction and the heat transfer coefficient.  

 

 

 

 

 

 

 

 

 

 



 vi

 

 

 

 

ABSTRAK 

 

 

 

 

Model matematik bagi aliran lapisan sempadan dan pemindahan haba dalam 

perolakan paksa telah dibina.  Lapisan sempadan merupakan suatu kawasan nipis 

yang wujud pada suatu permukaan, di mana kesan kelikatan terhadap aliran bendalir 

adalah nyata yang mengakibatkan wujud kecerunan halaju dan suhu yang besar. 

Konsep lapisan sempadan buat pertama kalinya telah diperkenalkan oleh Ludwig 

Prandtl (1875-1953) pada tahun 1905.  Penerbitan bagi persamaan-persamaan lapisan 

sempadan halaju dan suhu bagi aliran merentasi suatu plat rata yang mendatar dan 

merentasi bucu semi-infiniti telah dibincangkan.  Kedua-dua persamaan lapisan 

sempadan halaju dan suhu terlebih dahulu dijelmakan kepada persamaan-persamaan 

pembezaan biasa menggunakan penjelmaan keserupaan.  Persamaan pembezaan 

yang diperoleh bagi kes aliran merentasi plat rata dan bucu semi-infiniti masing-

masing dikenali sebagai persamaan Blasius dan persamaan Falkner-Skan.  

Kemudian, persamaan Blasius diselesaikan menggunakan pengembangan siri yang 

dikenali sebagai siri Blasius dan persamaan Falkner-Skan diselesaikan menggunakan 

kaedah usikan yang dipertingkatkan dengan penjelmaan Shanks.  Keputusan yang 

diperoleh adalah merangkumi profil halaju dan suhu, tegasan ricih dan pekali 

pengaliran haba.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1      Introduction  

 

 

 Boundary layer is a narrow region of thin layer that exists adjacent to the 

surface of a solid body when a real fluid flows past the body.  In this region, the 

effect of viscosity is obvious on the flow of the fluid which resulted in large velocity 

gradient and the presence of shear stress.  The various transfer processes which take 

place in fluids and between solids and fluids are momentum, mass, and heat transfer.  

When formulating the conservation laws of mass, momentum, and energy, the laws 

of thermodynamics and gas dynamics have to be observed.  This means that along 

with the boundary layer flow, there are also the thermal boundary layer and the 

mutual influence of these boundary layers upon one another to be accounted for.  

The concept of boundary layer plays an important role in many branches of 

engineering sciences, especially in hydrodynamics, aerodynamics, automobile and 

marine engineering (Kundu and Cohen, 2004).   

 

This report contains the derivation of both velocity and thermal boundary 

layer equations.  Both velocity and temperature boundary layer are modelled in view 

of flow past a horizontal flat plate and semi-infinite wedge cases.  In each cases of 
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flow, the velocity and the thermal boundary layer equations are transformed to a 

single nonlinear and a linear differential equation respectively via similarity 

transformation.  The nonlinear equations are known as the Blasius equation and the 

Falkner-Skan equation; each corresponds to the cases of flow past a horizontal flat 

plate and semi-infinite wedge respectively.  Then the Blasius equation is solved via 

series expansion namely the Blasius series while the Falkner-Skan equation is solved 

using perturbation method, i.e. perturbation series together with Shanks 

transformation.  From the solution of velocity and temperature boundary layer 

equations, the analysis of results is made in consideration of the skin friction and 

heat transfer coefficient.  

 

In this chapter, the objective, methodology and scope of this project are 

described. The historical background of the boundary layer is also included here.   

 

 

 

 

1.2      Objectives and Scope of Research 

  

 

The objectives of this research are: 

 

1. To derive the velocity and temperature boundary layer equations in forced 

convection.   

2. To find the solution of the velocity and temperature boundary layer equations 

past a horizontal flat plate and a semi-infinite wedge via similarity 

transformation. 

3. To solve the Blasius equation using series expansion. 

4. To solve the Falkner-Skan equation using the perturbation series which is 

improved further using Shanks transformation. 
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The scope of this project is to derive the existing models of velocity and 

thermal boundary layers in a more comprehensive manner.  No new mathematical 

models will be developed.  The immersed bodies considered are the horizontal flat 

plate and the semi-infinite wedge.   

 

 

 

 

1.3 Historical Background 

 

 

Until the beginning of the twentieth century, analytical solution of a steady 

fluid flows were generally known for two typical situations.  One of these was that of 

parallel viscous flows and low Reynolds number flows, in which the nonlinear 

advective terms were zero and the balance of forces was that between the pressure 

and the viscous forces.  The second type of solution was that of inviscid flows 

around bodies of various shapes, in which the balance of forces was that between the 

inertia and pressure forces.  Although the equations of motion are nonlinear in this 

case, the velocity field can be determined by solving the linear Laplace equation.  

These irrotational solutions predicted pressure forces on a streamlined body that 

agreed surprisingly well with experimental data for flow of fluids of small viscosity.  

However these solutions also predicted a zero drag force and a nonzero tangential 

velocity at the surfaces, features that did not agree with experiments.  

 

In 1905 Ludwig Prandtl, an engineer by profession and therefore motivated to 

find realistic fields near bodies of various shapes, first hypothesized that, for small 

viscosity, the various forces are negligible everywhere except close to the solid 

boundaries where the no-slip condition had to be satisfied. The thickness of these 

boundary layers approaches zero as the viscosity goes to zero. The hypothesis of 

Prandtl reconciled two rather contradicting facts. On one hand he supported our 

intuitive idea that the effects of viscosity are indeed negligible in most of the flow 

field if the kinematics viscosity is small. At the same time Prandtl was able to 

account for drag by insisting that the no-slip condition must be satisfied at the wall, 
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no matter how small the viscosity is. Prandtl also showed how the equations of 

motion within the boundary layer can be simplified. Since the time of Prandtl, the 

concept of the boundary layer has been generalized, and the mathematical techniques 

involved have been formalized, extended, and applied to various other branches of 

physical science. The concept of boundary layer is considered one of the 

cornerstones in the history of fluid mechanics. Besides, just as the hydrodynamic 

boundary layer was defined as that region of the flow where viscous forces are felt, a 

thermal boundary layer may be defined as that region where temperature gradients 

would result from a heat exchange process between the fluid and the wall (Kundu 

and Cohen, 2004). 

 

 

 

 

1.4      Introduction to Chapters  

 

 

This report contains six chapters.   In Chapter 2, we clarify the derivation of 

the velocity boundary layer equations, which is actually represented via 

approximation.  This chapter starts with the visualization of the physical model of 

boundary layer flow.  It follows with the derivation of the velocity boundary layer 

equations, which is the main objective in this chapter.  Then the order of boundary 

layer thickness and the Reynolds Number will be discussed.  The derivation of the 

dimensionless boundary layer equations and the selection of boundary conditions 

will also be discussed in this chapter. 

 

The main objective in Chapter 3 is to derive the temperature boundary layer 

equation.  This chapter contains an explanation of some basic principles of 

convection heat transfer.  It follows with the derivation of the temperature boundary 

layer equation.  Next, the concept of thermal boundary layer thickness and the 

Prandtl number, and the heat transfer coefficient and the Nusselt number will be 

discussed.  This chapter ends with the description of the relation between fluid 

friction and heat transfer.  
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The next two chapters describe the models of velocity and thermal boundary 

layers past immersed bodies, namely the horizontal flat plate and semi-infinite 

wedge.  Chapter 4 first illustrates the physical models of boundary layer flow past 

the bodies.  Then the nondimensionalization of the boundary layer equations which 

have been obtained in Chapter 2 will be shown.  Next, the equations will be 

transformed via similarity transformation for each case of flow.  The transformation 

will result in an ordinary differential equation, namely the Blasius equation for flow 

past a horizontal flat plate.  After that the solution of Blasius equation using series 

expansion will be described.  On the other hand, the similarity transformation will 

result in the Falkner-Skan equation for flow past a semi-infinite wedge.  The 

Falkner-Skan equation will be solved via perturbation method.  Finally the result 

which provides the velocity profiles and the skin friction coefficient will be analyzed 

for each case of flow in this chapter. 

 

Chapter 5 will explain the models of thermal boundary layer.  In this chapter 

we will apply the thermal boundary layer equation obtained in Chapter 3 to the 

problem of steady laminar flow past a horizontal flat plate and a semi-infinite wedge.  

This chapter first describes the physical models of thermal boundary layer past the 

bodies, and then the derivation of dimensionless thermal boundary layer equation 

follows.  Then the thermal boundary layer equation will be transformed to another 

equation using similarity transformation technique.  Next, the solution of the 

transformed equations will be obtained.  This chapter ends with the analysis of 

results which provides the temperature profiles and the heat transfer coefficient.  

 

Finally, the conclusion of this project will be included in Chapter 6.  This 

chapter also contains some suggestions for future studies.  
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