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ABSTRACT 

Network Intrusion Detection System (IDS) is an automated system that can 

detect a malicious traffic and it plays a critical role in a network.  In recent years, 

machine learning algorithms have been developed and used to detect network 

intrusion.  Most standard machine learning algorithms often give high overall 

accuracy.  However, they favor on majority class when dealing with imbalanced data.  

Unfortunately, IDS deals with highly imbalanced data distribution and most machine 

learning algorithms have poor detection on R2L and U2R classes, which include 

malicious attacks.  Therefore, it requires a resampling technique to balance the data. 

The purpose of this study is to investigate performance of three machine learning 

algorithms which are Support Vector Machine (SVM), Decision Tree (DT) and Fuzzy 

Classifier (FC) for imbalanced data in IDS and after the rebalanced the data which was 

achieved using Synthetic Minority Over-sampling TEchnique (SOMTE).  The 

performance of the three machine learning algorithms was evaluated with the new 

rebalanced data.  The benchmark DARPA KDDCup 1999 IDS dataset was used. 

SMOTE was implemented with two imbalance ratio, one is 1:4 another one is 1:1.  

After analysis the results of before and after resampling showed that FC performs 

better with imbalance ratio of 1:1.  The accuracy of FC with balanced data was Normal 

traffic (99.19%), Denial of Service attacks (99.35%), Probe attacks (99.51%), Remote 

to Local attacks (99.67%) and User to Root attacks (99.41%).  In addition, the data 

with imbalance ratio of 1:1 get the better results on all classes with these three machine 

learning algorithms. 
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  ABSTRAK 

Intrusion Detection System (IDS) Rangkaian adalah sistem automatik yang boleh 

mengesan trafik yang berniat jahat dan ia memainkan peranan penting dalam rangkaian. Pada 

tahun-tahun kebelakangan ini, algoritma pembelajaran mesin telah dibangunkan dan 

digunakan untuk mengesan pencerobohan rangkaian. Kebanyakkan algoritma pembelajaran 

mesin yang piawai sering memberi ketepatan keseluruhan yang tinggi. Namun, mereka 

seriang memihak kepada kelas majoriti apabila berurusan dengan data yang tidak seimbang. 

Malangnya, IDS menawarkan pengagihan data yang sangat tidak seimbang dan kebanyakkan 

algoritma pembelajaran mesin memberikan pengesanan yang rendah untuk kelas R2L dan 

U2R, termasuk serangan berbahaya. Oleh itu, ia memerlukan teknik persempelan semula 

untuk mengimbangi data tersebut. Tujuan kajian ini adalah untuk menyelidik prestasi tiga 

algoritma pembelajaran mesin iaitu  Support Vector Machine (SVM), Decision Tree 

(DT) dan Fuzzy Classifier (FC) untuk ketidakseimbangan data dalam IDS dan data yang 

telah diseimbangkan yang dapat dicapai melalui Synthetic Minority Over-sampling TEchnique 

(SOMTE). Prestasi ketiga-tiga algoritma pembelajaran mesin kemudian dinilai dengan data 

baru yang telah diseimbangkan. Penanda aras set data DARPA KDDCup 1999 IDS telah 

digunakan. SMOTE telah dilaksanakan dengan dua nisbah ketidakseimbangan, iaitu 1:4 dan 

1:1. Setelah menganalisis keputusan sebelum dan selepas pengsempelan semula, ia 

menunjukkan bahawa FC menunjukkan keputusan yang lebih baik dengan nisbah 

ketidakseimbangan 1:1. Ketepatan FC dengan data seimbang untuk trafik Normal adalah 

(99.19%), serangan Denial of Service (99,35%), serangan Probe (99,51%), serangan 

Remote to Local (99.67%) dan serangan User to Root (99.41%). Di samping itu, data 

dengan nisbah ketidakseimbangan 1:1 mencapai keputusan terbaik untuk ketiga-tiga kelas 

algoritma pembelajaran mesin. 
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CHAPTER 1 

 INTRODUCTION 

1.1 Overview 

The class imbalance problem is a difficult challenge faced by machine 

learning and data mining, and it has attracted a significant amount of research in 

these years.  A classifier affected by the class imbalance problem for a specific 

dataset would see strong accuracy overall but very poor performance on the minority 

class.  This study will evaluated three machine learning algorithms for imbalanced 

data problem before and after rebalancing the dataset in intrusion detection system 

(IDS). 

1.2 Background of the Problem 

Nowadays, cyber-crime has become one of the most important problems in 

the computer world.  All over the world companies and governments are increasingly 

dependent on their computer networks and communications, hence need to protect 

these systems from attack. Find the best possible way to protect all information 

system is needed.  The prevention techniques such as encryption, Virtual Private 

Network (VPN) and firewall alone seem to be inadequate (Zainal, 2011) .  It is 



2 
	  

	  

important to have a detecting and monitoring system to protect important data.  

Intrusion detection is identifying unauthorized users in a computer system.  

Intrusion Detection System (IDS) is an automated system that can detect a 

computer system intrusion either by using the audit trail provided by an operating 

system or by using the network monitoring tools.  The main goal of intrusion 

detection is to detect unauthorized use, misuse and abuse of computers by both 

system insiders and external intruders.  In IDS, misuse and anomaly are the two 

types of detection approaches.  Misuse detection can detect known attacks by 

constructing a set of signatures of attacks while anomaly detection recognizes 

novel attacks by modeling of normal behaviors (Xu and Wang, 2005; Zainal, 

2011). 

Intrusion detection is a tool of monitoring and analyzing the events occurring 

in a computer system in order to detect signs of security problem.  The network 

traffic is made up of attack and normal traffic.  The number of attacks on the network 

is typically a very small fraction of the total traffic.  On the basis of this the attacks 

can also be categorized into two classes, minority and majority attack class.  The 

normal data, Denial of Service (DoS) and Probe attacks belong to majority class 

whereas User-to-Root (U2R) and Remote-to-Local (R2L) belong to minority class 

also called as rare class of attacks.  In real world environment, the minority attacks 

are more dangerous than the majority (Sharma and Mukherjee, 2012; Lopez et al., 

2012). 

Intrusion detection systems goal is to detect malicious action in close to real-

time and raise an alert. Operators can then take proper actions to decrease any impact 

of the activity. Intrusion detection systems also can categories by either HIDS (host-

based) or NIDS (network-based).  Network-based IDS analyze network traffic to 

monitor entire computer networks.  IDSs also can be further labeled as anomaly-

based or misuse-based (Davis and Clark, 2011). 
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Additionally, intrusion detection techniques can be mapped into two classes: 

anomaly detection and misuse detection.  Anomaly detection consists of establishing 

normal behavior profile for user and system activity also observing significant 

deviations of actual user activity with respect to the established habitual pattern.  

Misuse detection, refers to intrusions that follow well-defined attack patterns that 

exploit weaknesses in system and application software (Beghdad, 2009). 

The difficulty faced by IDS is highly imbalanced data distribution (Wu 

and Banzhaf, 2010; Zainal, 2011). Imbalanced data further make difficult the 

anomaly detection cases.  Most of the studies implementing supervised method like 

LGP (Prasad et al., 2008) and Neuro-Fuzzy (Toosi and Kahani, 2007) on KDD Cup 

1999 Intrusion Detection Datasets, reported poor results especially on R2L (Remote 

to Local) and U2R (User to Root) attacks.  This is because R2L and U2R constitute 

the least data in the experimental dataset (KDD Cup 1999) compared to other classes 

of traffic (Normal, Denial of Service (DoS) and Probe). 

Network traffic contains class imbalanced problem.  The class imbalanced 

problem arises when some particular classes are represented with too many 

instances and the other some classes have very few instances (Zainal, 2011).  

Usually the classification is biased towards the classes with majority instances 

(Liao, 2008).  Most reported works in IDS (Hossain et al., 2003; Xu and Wang, 

2005; Lee et al., 2006; Shafi and Abbass, 2009; Jemili et al., 2007; Zainal, 2011) 

reported poor detection on U2R and R2L classes.  

As an example, let consider a data set whose imbalance ratio is 1:100 (i.e., for 

each example of the positive class, there are 100 negative class examples). A 

classifier tries to maximize the accuracy of its classification rule, may obtain an 

accuracy of 99% just by the ignorance of the positive examples, with the 

classification of all instances as negatives.   
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As stated by Galar et al. (2012), in recent years, class imbalance problem has 

emerged as one of the challenges in data mining community and a number of 

solutions have been proposed at the data and algorithm levels and trying to address 

the imbalanced data problem.  The problem of imbalanced data is not properly 

addressed.  Most machine learning algorithms are influenced towards the class with 

more instances and give poor detection performance for minority class and give out 

high false alarm rate.  

Fuzzy Classifier (FC) has the ability to handle datasets with overlapping and 

imbalancing problem that is a good potential solution since IDS datasets are usually 

extremely skewed (Ali et al., 2011). 

The main capability of fuzzy classifier is better than the standard classifiers, 

which proposed by many researchers (Ali et al., 2011; Visa, 2006).  When compare 

to other classifiers, the FC is a better candidate for classification of imbalanced 

data.  More precisely, the fuzzy classifier recognizes better the minority class while 

also achieving better overall accuracy then neural network and RF (random Forest) 

(Ali et al., 2011). 

SVM (Support Vector Machine) and Decision Trees (DT) are also two 

popular machine-learning algorithms, which are widely used for classification with 

imbalanced data (Phoungphol et al., 2012; Chandrasekhar and Raghuveer, 2013; 

Teng et al., 2010; Liu et al., 2010).  SVM was introduced by Vapnik (1998) is one 

of the most fascinating recent developments in classifier design.  SVMs have several 

important properties including the ability to model complex nonlinear decision 

boundaries, good performance in a wide variety of applications, less prone to 

overfitting, and a compact description of the learning models.  Decision trees use 

simple knowledge representation to classify examples into a limited number of 

classes.  In a standard setting, the tree nodes denote the attributes, the edges represent 
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the possible values for a particular attribute and the leaves are assigned with class 

labels.   

These machine learning algorithms cannot get satisfactory results with 

severely imbalanced data. So, imbalanced data is needed to balance the data by using 

one resampling technique.  One of the popular resampling approach is SMOTE 

(Synthetic Minority Over-sampling TEchnique), which adds information to the 

training set by introducing new, non-replicated minority class examples (Chawla et 

al., 2002).  The results show that the SMOTE approach can improve the 

accuracy of classifiers for a minority class.  

1.3 Statement of the Problem 

One of the main challenges in intrusion detection system is that, few attacks 

are rarely happened.  IDS deal with highly imbalanced data distribution.  This would 

lead to significantly disparate or too small training dataset for determined classes.  

Most of the standard machine learning techniques are influenced towards the 

majority classes and give poor detection performance for classes with very less 

data samples during training which giving out high false alarm rate.  This research 

gives a primary focus on this imbalanced issue. 

1.4 Purpose of the Research 

The aim of this study is to improve detection accuracy for imbalanced class 

in IDS especially U2R and R2L. Generally this will improve detection accuracy as 

well. 
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1.5 Objectives of the Study 

The particular objectives of this study are: 

i. To study and investigate performance of three machine learning 

algorithms (FC, SVM and DT) for imbalanced data in IDS. 

ii. To rebalance the data by an up-sampling algorithm (SMOTE) to deal 

with severely imbalanced problem and evaluate the performance of FC, 

SVM and DT techniques.  

iii. To compare the results of these machine learning algorithms with 

imbalanced data before the rebalancing and after the rebalancing dataset.  

1.6 Scope of the Study 

The scope of this study will be limited to following: 

i. The study will use KDD Cup 1999 Intrusion Detection data set 

(http://kdd.ics.uci.edu/databases/kddcup99) as widely used by other 

researchers in the field of IDS (Jemili et al., 2007; Shafi and Abbass, 

2009; Zainal, 2011; Abraham et al., 2007; Tajbakhsh et al., 2009; Farid 

et al., 2010). 

ii. Classification of attacks are based on four established dominant 

categories which are Denial of Service (DoS), Probe, User to Root 

(U2R) and Remote to Local (R2L) as widely used in other studies in 

the field of IDS (Abraham et al., 2007; Shafi and Abbass, 2009; 

Zainal, 2011; Tajbakhsh et al., 2009; Farid et al., 2010; Teng et al., 

2010). 

iii. It is assumed that the cost implications for making decisions are the 

same for all type of attacks as widely assumed by other researchers in 
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the field of IDS (Abraham et al., 2007; Shafi and Abbass, 2009; Zainal, 

2011). 

1.7 Significant of the Study  

The research is important and significant from theoretical and practical 

perspectives. The rationale and motivation for this research is imbalanced data, 

which is commonly found in intrusion detection domain, has reduced the 

performance of machine learning based IDS. 

The research findings are expected to lead to better understanding on the 

nature of computer network security and provide a better approach deal with 

imbalanced data IDS.  As such, they should benefit both researchers and 

practitioners. 

1.8 Research Contributions 

The main contribution is to evaluate of the using three machine learning 

algorithms (FC, SVM and DT that widely used by other researchers) on imbalanced 

data in IDS before rebalancing the dataset and after rebalancing the dataset and 

which can be more accurate for imbalanced data problem.   
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1.9 Research Methodology 

This part quickly presents the research methodology in this study. The 

details will be offered in Chapter 3.  Phase 1 dealt with implementing and testing 

three machine learning algorithms (FC, SVM and DT) on imbalanced data and 

compare the results.  In phase 2, procedures to rebalanced the data by an up-

sampling algorithm and test it.  Finally, Phase 3 dealt with evaluating and comparing 

the performance of these three techniques with rebalance data and without rebalance. 

      

Figure 1.1: Design and development phases of the study 

1.10 Organization of the Study 

This study is organized into four chapters as shown in Figure 1.2. 

Phase 1 
•  Implement and test three machine learning 

algorithms (FC, SVM and DT) to deal with 
imbalanced data and Compare the results  

Phase 2 
•  Rebalancing the data by an up-sampling 

algorithm (SMOTE) to deal with imbalanced 
problem and test it 

Phase 3 

•  Compare the result of these machine learning 
algorithms with imbalanced data before the 
rebalancing and after the rebalancing dataset.  
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Figure 1.2: Organization of the thesis 

Chapter 1 is an outline to this study. Chapter 2 will be provided a literature 

review that leads to understand the research problem and get information of related 

work by other researchers. Chapter 3 will provide the research methodology.  

Chapter 4 will be provided the performance of three machine learning algorithms 

which are SVM, DT and FC on IDS data.  The performance of these three machine 

learning algorithms after rebalancing by SOMTE technique and before rebalancing 

will be provided in Chapter 5.  Finally, Chapter 6 is the conclusion of this work. 

Chapter 6 

Conclusions 

Chapter 5  
Performance of Machine Learning 

Algorithms on Rebalanced IDS Data 

Chapter 4 
Performance of Machine Learning 

Algorithms on IDS Data 

Chapter 3 

Reseach Methodology 

Chapter 2 

Literature Review 

Chapter 1 

Introduction 
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