
A Technique to Remove Second Order Singularity 
Application in the Boundary Element Method for 
Elastoplasticity Plane Stress Analysis 
 
 
S.A. Bakar and A.L. Saleh 
Faculty of Civil Engineering, Universiti Teknologi Malaysia, Malaysia. 
suhaimibakar@utm.my 
alatif@utm.my 
 
 
 
Abstract 
 
This paper presents a technique to establish the strain incremental formulation in the 
boundary element method applied to elastoplasticity problem.  In this technique, the 
application of second order singularity problem is avoided, and only first order 
singularity problem is sufficient.  The proposed technique is applied to analyse a timber 
beam structure at the plastic stage.  The solution is compared with existing strain 
formulation method proposed by established publication.  The result gives an improved 
solution compared with the existing method.  The proposed technique is a simplified 
formulation where there is no second order singularity involved in the formulation. 
 
 
 
1. Introduction 
 
A major problem in the boundary element method applied to elastoplasticity problem is 
a singularity of strain incremental formulation.  This singularity comes from Kernel 
stress derivative and it is a second order singularity. 
 
Telles and Brebbia [1, 2] presents a method to solve the second order singularity 
problem by expanding the singular integral and reduce to non-singular integral.  This 
method is supported by Kane [3].  Telles and Brebbia [4] also proposed indirect method 
to solve hypersingular integral.  By using transformation method and combine with 
Guiggiani and Gigante work [5], Leitao, Aliabadi and Rooke [6] extended Telles and 
Brebbia works to solve the second order singularity problem. 
 

The existing methods to solve the second order singularity problem involve 
complicated derivation, formulation and calculation. This paper presents a simple 
technique to avoid the application of second order degree singularity for the 
elastoplasticity plane stress analysis. 
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2. Displacement increment and strain increment formulations in the 
boundary element method  
 
From Swedlow and Cruse [7], the displacement increment formulation is derived from 
Betti’s theorem and virtual work method, and given in equation (1).  This equation 
states that the displacement increment at internal point in the structure is a function of 
displacement increment and traction increment at the structural boundary, and plastic 
strain increment at plastic region. 
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where: 
δul

i = displacement increment at a point ‘i’ in the direction xl, 
Γ and V are the domain of structural boundary and internal domain of structure 
respectively, 
δpk and δuk are traction and displacement increments in the direction xk respectively, 
plk* and ulk* are virtual traction increment and virtual displacement increment in the 
direction xk respectively, 
σij(l)* = Kernel stress due to a unit load applied in direction xl, 
δεij

p = Plastic strain increment. 
 

The last integral in equation (1) is a weakly singular integral with first order 
degree of singularity.  The first and second integrals at the right-hand side of equation 
(1) is also singular if the source point, i, is located at the boundary.  This problem was 
solved by Swedlow and Cruse [7] by considering a small circle placement at source 
point at the boundary and considering the limit theory, hence equation (1) is reduce to 
the established boundary element formulation, as follow: 
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where Clk is a constant value which depend on the condition of structural boundary. 
 
By differentiating equation (1), the displacement increment derivative can be expressed 
as follow: 
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The derivative of Kernel stress in the last integral of equation (3) is singular with second 
order.   
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The total strain increment is expressed from the basic strain-displacement 
relationship as follow: 
 

1

2

2

1
12

2

2
22

1

1
11

)()(
;

)(
;

)(
x
u

x
u

x
u

x
u

∂
δ∂

∂
δ∂

δε
∂
δ∂

δε
∂
δ∂

δε +===                     (4) 

 
Thus, the total strain increment can be found by substituting equation (3) into equation 
(4). 
 
 
3. Transformation of Second Order Singular Integral into Non-
Singular Integral 
 
From Telles and Brebbia [1], the second order singularity of the last integral in equation 
(3) is proved can be removed and reduce to non-singular integral.  Equation (5) shows 
the proposed formulation given by Telles and Brebbia expanded from the last integral in 
equation (3). 
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where r is a distance between the source point i and observation point, and r,m=-∂r/∂xm 
 

The first integral at right-hand side of equation (5) can be interpreted in the 
sense of Cauchy principal value, while the second integral at right-hand side is a 
boundary integral of a circle of unit radius centered at the source point.  Both integrals 
at right-hand side of equation (5) are non-singular.  The reducing of singular integral 
into non-singular integrals is also supported by Kane [3]. 
 

The displacement derivative is found by substituting equation (5) into equation 
(3), gives: 
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where i = source point; l = direction of point load at source point 
 

The displacement derivative given in equation (3) involved the application of 
second order singularity problem.  One another method, which is proposed in this paper, 
is a displacement derivative formulation which avoid the application of second order 
singularity problem. 
 
 
4. Proposed strain formulation for the removing of second order 
singularity problem application 
 
It is assumed that the internal cell are quadrangular (see Figure 1) where each cell has 
nine nodes. All functions such as displacement increment are assumed to be quadratic.  
The displacement increment is related to nodal displacements as follow: 
 

Figure 1.  Quadrangular cell at suspected plastic region 

 
where φ1,…,φ9 are the shape functions, δu1

1,…,δu1
9 are the displacement increment in 

the direction x at nodal points, δu2
1,…,δu2

9 are the displacement increment in the 
direction y at nodal points. 
 

The displacement derivatives with respect to x and y axes are found from the 
chain rule, as follows: 
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Then, the strain formulations are found by substituting equation (8) into equation (4), 
yields: 
 

 
By assuming the distance x and y are linearly related to respective local 

distance ξ and η, the strain functions in equation (9) can be related to nodal 
displacement increment as follow: 

                                                                                                                                    (10) 
 

Starting with presumed initial plastic strain increment value, the boundary 
solution is found by using equation (2).  Applying transformation method as given by 
Kane [3], the singularity terms in equation (1) is completely removed, hence the 
boundary solution can give an exact values.  In order to avoid the second order 
singularity problem comes from strain increment formulation given in equation (3), the 
calculation of strain increment is proposed by using displacement increment equation 
given by equation (1).  The singularity terms arises from the last integral in the equation 
(1) is completely removed by applying transformation method given by Kane [3].  
Then, the displacement increment value at all internal nodes in the structure can be 
calculated by using equation (1) and the strain increment at all internal nodes can be 
found from equation (10).  The calculation of strains by this technique only involve the 
first order or weakly singularity problem and does not involved the second order 
singularity problem. 
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5. Numerical implementation 
 
In order to verify the strain incremental formulation proposed in Section 4, a simple 
elastoplasticity analysis is conducted to timber beam structure shown in Figure 2.  64 
boundary elements and 128 quadrangular cells with 585 internal nodes placed at 
suspected plastic region were applied.  The elastoplasticity analysis was applied using 
boundary element method.  The timber material is assumed behaves orthotropic 
property, the elastic parameters are given as follow: 
Ex=16388N/mm2,Ey=1600N/mm2,Gxy=71N/mm2, ν=0.2. 

Figure 2.  Boundary element and internal cell discretisation for timber beam structure 
 

For the plastic yield criteria of the material, it is assumed that the yield locus is 
straight and the yield stresses are different values in x and y directions, see Figure 3.  
The flow rule is assumed obeys perfectly plastic property, where the plastic strain 
increment vector is outward normal to the yield locus. 
 

Figure 3.  Presumed Yield locus diagram for timber 
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The chosen number of elements at the boundary provides good accuracy of 

stresses and displacements at all internal nodes in the elastic stage. The chosen number 
of internal cells was provides satisfactory convergence of displacements and stresses at 
all internal nodes in the plastic stage. 
 
 Based on boundary element analysis results in the plastic stage, two typical 
stress distribution across the beam's depth of the beam are plotted and shown in Figure 
4.  The first stress distribution, namely as s.d.1, was predicted based on boundary 
element method using strain formulation given in Section 4. The second stress 
distribution, namely as s.d.2, was predicted by using boundary element method based 
on strain formulation proposed by Telles and Brebbia (refer Section 3).  For the s.d. 1 
curve, the stress areas at compression side and tension side are approximately equal and 
shows that the equilibrium of internal forces over the beam’s cross section is satisfied. 
The neutral axis is also shifted down from the mid-depth position of the beam to 
maintain equilibrium of internal forces within the beam’s cross section. 

 
Figure 4.  Stress distribution across the beam's depth at traction equal to 1.94x10-3 

kN/mm2 (Plastic Stage) 
 
Based on the result of boundary element analysis, the traction-deflection relationship is 
plotted and shown in Figure 5.  The predicted curve using strain formulation given in 
Section 4 (present) is linear at elastic stage and indicated by the curve OA in Figure 5.  
After the yield limit of the material was reached at A, the slope of the curve is gradually 
changed and decreased and shown by the curve AB in Figure 5. 
 

A well known properties of timber are elastic under tension stresses and 
elastoplastic under compression stresses [8]. The fully plastic zone at compression side 
(about half depth of the beam) (refer also Figure 4) is achieved when the traction value 
approach 0.00382 kN/mm2 and indicated by the point B in Figure 5. The linear stress 
distribution in the tension side (see Figure 4) indicate that the tension side of the beam 
is remained under fully elastic stage. Since the fully plastic stage at compression side 
and fully elastic stage at tension side of the beam were maintained in the model, the 

Present (s.d.1) 

Telles and Brebbia (s.d.2) 

σx(kN/mm2) 

Compression 
Side 

Tension Side 
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traction at point B in Figure 5 is a maximum value for the timber’s beam and can not be 
exceeded beyond this point. As the timber property is partially plastic with the 
formation of wrinkle of timber's fibre at compression side of the beam during the plastic 
stage, the failure of the beam can occur at any time when the traction reach any point on 
the curve AB in Figure 5. 
 

 
Figure 5.  Traction-deflection curve 
 
From Figure 5, the traction-deflection curve predicted using strain formulation proposed 
by Telles and Brebbia (equation 6 and 4) is terminated and ended at point A. For this 
case, the maximum traction at A is 1.94 x 10-3 kN/mm2.  The plastic analysis can not be 
proceeded because the convergence of plastic strain increment can not be satisfied.  
 
The application of second order singularity for the strain increment calculation in the 
boundary element method is a main reason the convergence of plastic strain increment 
can not be satisfied.  In the considered case for elastoplasticity plane stress beam, the 
application of second order singularity problem is proposed to be avoided. 
 
 
6. Conclusion 
 
To conclude this paper, the following remarks are noted: 
 
1) The application of proposed formulation for the strain increment prediction in the 
boundary element method does not involved the application of second order singularity 
problem. 
2) By using the proposed strain formulation, the convergence of plastic strain increment 
can be satisfied. The equilibrium of internal forces over the beam’s cross section can be 
fulfilled and the continuity of traction-deflection curve from linear stage to plastic stage 
can be achieved. 
3) The application of second order singularity problem in the elastoplasticity plane 
stress beam is proposed to be avoided. 
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