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ABSTRACT 

Speaker identification is the computing task of identifying unknown identities 

based on voice. A good speaker identification system must have a high accuracy rate 

to prevent incorrect detection of the user's identity. This research proposed a hybrid 

of Subtractive Clustering and Radial Basis Function (Sub-RBF) which is the 

combination of supervised and unsupervised learning. Unsupervised learning is more 

suitable for learning large and complex models than supervised learning. This is 

because supervised learning increasing the number of connections between sets in the 

network. If the model contains a large and complex dataset, supervised learning is 

difficult. In addition, K-means is faced with improper initial guessing of first cluster 

centre and difficulty in determining the number of cluster centres. The proposed 

technique is introduced because subtractive clustering is able to solve these problems. 

RBF is a simple network structures with fast learning algorithm. RBF neural network 

model with subtractive clustering proposed to select hidden node centers, can achieve 

faster training speed. In the meantime, the RBF network was trained with a 

regularization parameter so as to minimize the variances of the nodes in the hidden 

layer and perform more accurate prediction. The accuracy rate for subtractive 

clustering is 8.125% and 11.25% for training dataset 1 and training dataset 2 

respectively. However, Sub-RBF provides 76.875% and 71.25% accuracy rate for 

training dataset 1 and training dataset 2 respectively. In conclusion, Sub-RBF has 

improved the speaker identification system accuracy rate.   
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ABSTRAK 

Sistem pengecaman suara adalah tugas mengecam identiti manusia berasaskan 

suara. Sistem pengecaman suara yang baik mesti mempunyai kadar pengecaman yang 

tinggi untuk mengelakkan daripada salah pengesanan identiti pengguna. Kajian ini 

mencadangkan hibrid Kelompok Subtraktif dan Fungsi Asas Jejarian (Sub-RBF) 

yang merupakan gabungan pembelajaran tak diselia dan pembelajaran diselia. 

Pembelajaran tak diselia lebih sesuai untuk mempelajari model yang besar dan 

kompleks berbanding dengan pembelajaran diselia. Ini adalah kerana pembelajaran 

diselia meningkatkan bilangan sambungan set dalam rangkaian. Mempelajari model 

pembelajaran diselia adalah sukar jika model mengandungi set data yang besar dan 

kompleks. Selain itu, K-means menghadapi masalah tekaan awalan tentang pusat 

kluster pertama dan kesukaran untuk menentukan bilangan kluster. Teknik yang 

dicadangkan ini diperkenalkan kerana Kelompok Subtraktif berupaya menyelesaikan 

masalah tersebut. RBF merupakan struktur rangkaian yang ringkas dan algoritma 

pembelajaran yang lebih pantas. Model rangkaian neural RBF menggunakan 

Kelompok Subtraktif untuk memilih pusat nod tersembunyi dapat mencapai kelajuan 

latihan dengan lebih cepat. Pada masa yang sama, rangkaian RBF yang dilatih dengan 

parameter diregularisasi dapat mengurangkan varians nod pada lapisan tersembunyi 

dan melaksanakan ramalan yang lebih tepat. Kadar pengecaman Kelompok Subtraktif 

ialah 8.125% dan 11.25% bagi dataset latihan 1 dan dataset latihan 2. Namun begitu, 

Sub-RBF menyediakan kadar pengecaman 76.875% dan 71.25% bagi dataset latihan 

1 dan dataset latihan 2. Kesimpulannya, Sub-RBF telah meningkatkan kadar 

pengecaman untuk sistem pengecaman suara. 
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CHAPTER 1 

INTRODUCTION 

1.1 Introductions 

Speaker recognition technologies have two major applications that are speaker 

identification and speaker verification. The goal of speaker identification is to 

recognize the unknown speaker from a set of N known speakers. On the other hand, 

the goal of speaker verification is to evaluate whether the claimed identity is correct 

or not when the unknown speaker presents a speech sample.To build a robust speaker 

identification system, it is often difficult because the performance of the speaker 

identification is dependent upon few factors such as amount of data, environment for 

speech producing, age of the speakers, accuracy rate of the system and the time 

processing. The performance of the speaker identification system must be near 

perfection becausethose technologies are currently applying in access control system, 

security control for confidential information, transaction authentication and telephone 

banking. 

In this research, accuracy rate of the speaker identification will be focused to 

improve the performance of the speaker identification. The accuracy rate for speaker 

identification, in other word is percentage of correct identification is the main 

performance measurement. Once the accuracy rate for speaker identification is 

unsatisfactory, the other performance measurement such as time processing and 

amount of data will become unimportant. 
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Speaker identification can be divided into text dependent and text independent. 

For the text dependent, speaker must use the same utterance for the training and 

testing phase in the system. But in text independent, user can simply use whatever 

utterance in training and testing phase. A matter of course, this project will 

concentrate on text independent. 

1.2 Problem Background 

 A robust speaker recognition system is influenced by few factors. Those 

factors or named as speech variation can be classified into six categories. There are 

intra-speaker variations, inter-speaker variations, model size, robustness, modelling 

and accuracy (El Hannani and Petrovska-Delacrétaz, 2006). 

 Intra-speaker variation is generally interpreted as variation in correctness. 

Every human being can use his language in more than one way. The voice could 

change in time due to aging, illness and emotions. These reasons may influence the 

result of the speaker recognition system. To solve this problem, better enrollment 

techniques are needed to increase the accuracy for the speaker identification. 

 Inter-speaker variations can be explained as each of the speakers will produce 

the different speech signal even they are uttered the same utterance. The most vital 

source of this variation is the physiological difference between speakers, such as the 

vocal tract length, physiology of the vocal folds, shape of the nasal tract, etc. The 

inter-speaker variations are also influence by the age, gender, speaking style and 

others related with the physiological difference. 

 The model size is the amount of the training data used to build the speaker 

model for the recognition system. Large amount of the training data is a large impact 

for the accuracy for the recognition system. The complexity of the training data 
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increases proportionally to the error rate of the inter-speaker variation, memory and 

time. 

 In therobust speech variants, the production, perception and acoustic 

representation of a speech signal are affected by the environment in which the speech 

is produced. There are two categories of environment aspects that induce the 

variations, static elements and dynamic elements. The static elements are caused by 

the room acoustics, reverberation and etc. The dynamic elements are caused by the 

background noise, microphone placement and etc. The differences in recording 

devices and environments can introduce discrepancies and influence the accuracy of 

the system. 

 In addition to the speech waveform, a recorded signal may contain acoustical 

background noise and the effects of microphone characteristics and electrical 

transmission. The noise of the acoustical background and the transmission will be 

used to train the speaker model. Some of the speaker models capture the speaker 

characteristics and the noise together. This will influence the accuracy when the 

speaker model is used to recognition system. 

 The first step of the recognition system is the enrollment processes which 

record the speaker's voice and extract the features from the speaker’s voice. There are 

several ways to extract the features from the voice to build the speaker model by 

using statistical method. Statistical method can be divided into generative and 

discriminative models. Generative model are probability density estimators which 

model the acoustic feature vectors, discriminative model are optimized to minimize 

the error on a set of training samples of the target and non-target (imposters) classes. 

So a suitable model will increase the accuracy of the recognition system. 

 Pattern classification plays an important role in speaker modelling component 

chain. The result of the pattern classification will affect the performance of the 

speaker recognition system in testing phase. Dynamic Time Warping (DTW) and 

Hidden Markov Model (HMM) are famous pattern classification technique but due to 
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the characteristic which not suitable for text independent recognition, those technique 

are starting be eliminated in speaker identification system(Loh, 2010). 

 In order to solve the problem of text independent recognition, some 

approaches have been introduced by researchers such as Vector Quantization (VQ), 

Gaussian mixture model (GMM), Support Vector Machine (SVM)and etc. According 

to Kekre and Kulkarni(2010), vector quantization is a very simple technique but the 

accuracy rate decrease when the number of speaker increases. VQ is a process of 

mapping a large set of vectors to produce a smaller set of vectors which represents the 

centroids or called as codewordof the distribution. Collection of all the codewordis 

called codebook. To form a codebook, the training data has to cluster and the original 

algorithm involves in producing the codebook is Linde-Buzo-Grey (LBG). LBG 

algorithm is one of the most popular algorithms and has an advantage of simplicity in 

learning. But LBG is a slow learning algorithm and this characteristic causes LBG 

not suitable to learn a large set of data. 

 According toKinnunen(2000), the clustering algorithm involved in speaker 

identification are Linde-Buzo-Grey (LBG), Self-organizing maps (SOM), Pairwise 

nearest neighbour (PNN), Principal component analysis (PCA) and Randomized local 

search algorithm (RLS). Each of the clustering algorithms is success in the speaker 

identification system. The research can prove that clustering algorithm is one of the 

methods in speaker identification and has a high potential to enhance 

theperformancein speaker identification. 

 According to Suvarnaet al.(2010), GMM has the advantages of minimum 

model order needed to adequately model speakers and achieve good identification 

performance and maintain high identification performance with increasing 

population(Bagul and Shastri, 2012). But the GMM will have the difficulty to 

estimate the covariance matrices when one of the objects has insufficiently points per 

mixture. The characteristics of GMM are insensitive to the model initialization 

method and variance limiting which are very important in training in order to avoid 

model singularities. Xuetal. (2007) stated that GMM reduces the likelihood of the 
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data and many approaches are presented by researcher to compensate the losing 

likelihood. 

 SVM is a binary classification method that finds the optimal linear decision 

surface based on the concept of structural risk minimization (Raghavan et al., 2006). 

The decision surface is a weighted combination of elements of a training set. These 

elements are called support vectors, which characterize the boundary between the two 

classes (labeled +1 and -1).Schmidt and Gish, (1996) declared that,SVM is inefficient 

when the number of training frames is large and Vincent (2003) state that SVM in 

speaker recognition need a normalization process to transform the signal into fixed 

length due to SVM only can process fixed-length input but speech signals are non-

stationary. In order to allow SVM to process speech signals, some pre-processing 

need to apply to the speech signal. According to Liet al.(2012), in order to enable the 

SVM to classify the speech signal, a novel kernel function based on GMM 

supervector or called NAP mappling KL divergence linear kernel function is 

proposed. This technique has the advantages of channel subspace which cause 

variability, can be removed in kernel space and improved the classification 

performance of SVM. 

 As an alternative, hybrid approachnormally used in current research for 

pattern recognition. For example, hybrid GMM/ANN(Xiang and Berger, 2003), 

hybrid HMM/ANN (Heckmannet al., 2000), hybrid GMM/VQ (Pelecanos et al., 

2000),hybrid clustering and RBF network(Mashor,2000). Those researches have 

shown that, hybrid method improve the current traditional method by taking the 

advantages of two typical pattern classification approaches. 

 In this research, a hybrid approach will proposed - hybrid of Subtractive 

Clustering and Radial Basis Function. From the analysis of Subtractive Clustering 

and RBF network, Subtractive clustering solves the major problem of K-means and 

Fuzzy C-means (FCM) which face the improper initial guesses of cluster center. 

Subtractive clustering obtains the cluster centers by compute the density of the data 

point and subtractive clustering grow exponentially with the size of the data, not the 
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dimension data. RBF have the simpler network structures and faster learning 

algorithm (Lim and Zainuddin, 2008). RBF finds the input to output map using the 

local approximators which will combine the linear of the approximators and cause the 

linear combiner have few weights. Besides that, RBF network is trained with a 

regularization term to minimize the variances of the nodes and perform more accurate 

prediction (Yang et al., 2009). 

1.3 Problem Statement 

 There are many recent advances and successes in speaker recognition have 

been achieved, but a better technique in speaker recognition is still in need. Based on 

the analysis on the previous techniques in speaker identification, those techniques still 

suffer from several problems: 

i. The most common clustering algorithm involved in those techniques is K-

means or fuzzy C-means which has the problem of improper initial guesses of 

cluster center (Leeet al., 2005). 

ii. Mountain clustering depends heavily on grid resolution and the dimension of 

data which will face the problem of efficiency if the dataset is in high 

dimension(Hammouda, 2006). 

iii. Hybrid of ANN with other technique faces the problem of Multilayer 

Perceptron (MLP) network which will fall into poor local minima when 

increasing the number of connection(Cheang, 2009). 

iv. Hybrid clustering and RBF network need a suitable clustering algorithm to 

prevent from lack of ability to choose the most accurate cluster center(Yang et 

al., 2009). 
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1.4 Project Aim 

 The project aims is to propose a new technique in speaker identification by 

hybrid the subtractive clustering and RBF network which will improve the accuracy 

rate for speaker identification. It constructs a front-end processing, subtractive 

clustering for finding cluster center and RBF model for identification task. 

1.5 Objectives of the Study 

The objectives of the research are: 

i. To develop a speaker models by hybrid the subtractive clustering and RBF. 

ii. To compare the accuracy rate among the proposed technique with the 

Subtractive clusteringtechnique. 

iii. To evaluate the risk of wrong detection in speaker identification. 

iv. To construct a Sub-RBF model based on text-independent environment. 

1.6 Scopes of the Study 

This research is bound to the following scopes: 

i. This research will focus on the model-based approach by subtractive-RBF as a 

framework for improving speaker recognition.In RBF network model,the 

hidden node centers of the network is obtained by applying clustering 

algorithm which can achieve faster training in the network. 

ii. Subtractive clustering is chosen to solve the improper initial cluster center and 

able to train a large set of data. 
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iii. The result of the proposed method will be compared with the subtractive 

clustering method from the aspect of accuracy rate and the ability to prevent 

wrongly identified. 

iv. Data set involves is TIMITAccoustic-Phonetic Continuous Speech Courpus 

which taken from eight different dialect regions and include male and female 

speakers. 

1.7 Thesis Structure 

 Chapter 1 introduces speaker recognition pattern classification approach and 

background of the research proposal. The aim, objectives and scope of the research 

are stated clearly. 

 Chapter 2 review the general components of speaker recognition application 

and framework; analyze feature extractor for speaker identification, some pattern 

classification approach. Besides that, this chapter also analyze the hybrid method in 

order to increase the accuracy in speaker identification.  

 Chapter 3 provides a discussion about methodology and theoretical 

framework of this research. The methodology consists of several procedures, there 

are planning and literature review, data collection, design of hybrid Subtractive 

Clustering and Radial Basis Function, evaluate and analysis results and thesis writing.  

 Chapter 4considers the implementation of the proposed method. In this 

chapter, the model of the proposed method is designed and implement with the 

TIMIT dataset. The model consists of three phase - pre-classifier using Subtractive 

Clustering, Classifier using Radial Basis Function network and Decision phase. 

 Chapter 5 presents the preparation for the experimental setup and the detail of 

the conducted experiments with the proposed method in this research. The results of 



9 

 

the experiment are discussed in this chapter. Chapter 6 concludes the thesis. This 

chapter describes the suggestions for future work to improve the proposed method. 
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