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ABSTRACT 

With the increasing demand for multi-purpose use of coastal sea areas in recent 
years, the composite stepped-slope floating breakwater system (STEPFLOAT) has been 
designed and developed as an alternative engineering solution, mainly for shore 
protection and coastal shelter to pioneer the floating breakwater technology in Malaysia. 
The unique stepped-slope and multiple sharp-edge features of the STEPFLOAT serve to 
intercept waves by dissipating (rather than reflecting) the wave energy through the 
formation of wave breaking, turbulence and eddies around the polyhedron as the waves 
impinge on the surface of the structure. Laboratory experiments were conducted to study 
the performance of the STEPFLOAT as a wave attenuator under unidirectional 
monochromatic wave only environment on various system arrangements, i.e. 2-row, 3-
row, G = b and G = 2b systems. A suggested mooring method using vertical piles as a 
modification to the classical mooring system using chains or cables is applied to the 
STEPFLOAT system to overcome the problem of roll and sway motions. Additional 
tests on the 2-row chain-moored STEPFLOAT were also conducted to allow 
comparisons with the fundamental design of the SSFBW system as well as the pile-
supported STEPFLOAT. Experiments on restrained case for 2-row and 3-row systems 
were performed to evaluate the effect of heave and limited roll motions of the floating 
body on wave attenuation. For the present study, a simple conventional method is 
applied to decompose the co-existing composite wave record in front of the model into 
the incident and reflected waves. Transmitted wave heights were measured at the lee 
side of the model. Measured transmission coefficient (Ct), reflection coefficient (Cr) and 
loss coefficient (Cl) were related to the non-dimensional structural geometric parameters, 
i.e. relative width (B/L), relative draft (D/L) and relative pontoon spacing (G/L), and 
hydraulic parameters, i.e. wave steepness (H/L) and relative depth (d/L). Two new non-
dimensional composite parameters, i.e. BD number and BDG number were introduced 
and examined. Experimental results for Ct are presented and compared to the results of 
previous studies of various floating breakwater designs done by other researchers. 
Empirical equations for predicting the transmission coefficient are developed for each 
tested system using Multiple Linear Regression Analysis. The STEPFLOAT, with 
relatively smaller structure width, generally has excellent wave attenuation ability over 
most of the previous floating breakwaters. The experimental results showed that the 
composite pile-supported STEPFLOAT with 3-row, G = b and G = 2b arrangements are 
capable to attenuate waves up to 80% of the incident wave height for wave period of less 
than 1.33 seconds.
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ABSTRAK 

 Berikutan dengan peningkatan permintaan terhadap penggunaan kawasan pantai 
sejak kebelakangan ini, sistem pemecah ombak terapung komposit bercerun tingkat 
(STEPFLOAT) telah direkabentuk dan dibangunkan sebagai satu penyelesaian 
kejuruteraan alternatif, khasnya untuk kawalan dan perlindungan pantai bagi merintis 
teknologi pemecah ombak terapung di Malaysia. Bentuk STEPFLOAT yang bercerun 
tingkat dan berbucu tajam berfungsi untuk memintas ombak dengan mengurangkan 
tenaganya melalui pembentukan pemecahan ombak, gelora dan eddi di sekitar struktur 
polihedron tersebut apabila ombak bertindak pada permukaannya. Ujikaji makmal telah 
dijalankan dalam keadaan ombak seragam sehala bagi pelbagai penyusunan sistem, iaitu 
sistem 2-baris, 3-baris, G = b dan G = 2b bagi menilai prestasi STEPFLOAT sebagai 
struktur pelemah ombak. Penggunaan cerucuk menegak sebagai pengubahsuaian kepada 
sistem tambatan secara tradisional yang menggunakan rantai atau kabel telah 
diaplikasikan dalam sistem STEPFLOAT bagi mengatasi masalah gerakan oleng dan 
huyung. Ujikaji tambahan terhadap STEPFLOAT berbaris dua yang ditambat oleh rantai 
juga dilakukan untuk perbandingan dengan sistem SSFBW dan STEPFLOAT yang 
ditambat oleh cerucuk. Eksperimen untuk kes terhalang bagi sistem 2-baris dan 3-baris 
telah dilaksanakan bagi menilai kesan gerakan lambung dan oleng yang terhad pada 
struktur terapung tersebut terhadap pelemahan ombak. Kaedah konvensional telah 
digunakan dalam kajian ini bagi menguraikan rekod ombak komposit kepada ombak tuju 
dan ombak pantulan. Tinggi ombak terhantar diukur di belakang model. Pekali 
penghantaran ombak (Ct), pekali pantulan (Cr) dan pekali kehilangan (Cl) dikaitkan
dengan parameter-parameter tanpa dimensi geometri struktur, iaitu lebar relatif (B/L), 
draf relatif (D/L) dan sela relatif (G/L), dan parameter-parameter hidraulik, iaitu 
kecuraman ombak (H/L) dan kedalaman relatif (d/L). Dua parameter komposit tanpa 
dimensi baru, iaitu nombor BD dan nombor BDG telah diperkenalkan dan diperiksa. 
Keputusan ujikaji bagi Ct telah dibandingkan dengan hasil keputusan daripada pelbagai 
rekabentuk pemecah ombak terapung yang lain. Persamaan empirikal bagi meramal 
pekali penghantaran ombak telah dihasilkan bagi setiap sistem yang dikaji dengan 
menggunakan Analisis Regresi Linear Berbilang. STEPFLOAT dengan lebar struktur 
yang lebih pendek secara relatif mempunyai keupayaan pelemahan ombak yang lebih 
baik berbanding dengan kebanyakan pemecah ombak yang lain. Keputusan ujikaji 
menunjukkan bahawa sistem komposit STEPFLOAT bertambatan cerucuk dengan 
susunan 3-baris, G = b dan G = 2b berupaya mengurangkan tinggi ombak sehingga 80% 
daripada tinggi ombak tuju bagi kala ombak kurang daripada 1.33 saat.  
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CHAPTER 1 

INTRODUCTION

1.1 Overview 

 Many citizens from maritime nations have settled close along the coast in order 

to make a living, engage in trade and access communication links. The coast provides a 

source of food and income through fishing activities and recently has provided areas for 

recreation. Malaysia and most of the countries in Southeast Asia region are not seen as 

countries of extremes, either extremes of climate or extremes of natural events. Hence, it 

sometimes escapes attention and awareness that a large proportion of these countries’ 

population are exposed to wave disturbance and threatened by coastal erosion. Coastal 

problems have caused a significant impact on the economy of many countries. As a 

result, it is unavoidable that the government and local shore property owners need to 

contend with these problems by implementing some programmes of investment in shore 

protection and coastal shelter to reduce the risk of loss of life and property. 
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Most sites for small craft harbours, marinas and coastal aquaculture facilities will 

be found to need some form of perimeter protection. The physical conditions of a 

proposed site may be relatively calm for most of the time due to natural protection. 

However, the wave climate of the site could be moderately rough under storm conditions 

due to the arrival of far field waves and eventually significant protection may be 

required. Competent coastal shelter and shore protection may take the form of stone 

barriers, wave screens or vertical barriers, which are either solid or semipermeable such 

as floating breakwaters.

 Breakwaters, either fixed or floating, are structures constructed to protect the 

shoreline, other coastal structures, marinas, etc. by reflecting and/or dissipating the 

incident wave energy and thus reduce wave action in the leeside of the breakwater 

system. Permanently fixed breakwaters provide a higher degree of protection than 

floating breakwaters. However, a fixed breakwater may not be competitive cost wise 

with a floating breakwater in relatively deeper water depths and it may also cause a lot 

of detrimental effects to the environment.  

 Increasing construction costs and environmental constraints encourage 

alternative considerations to the traditional fixed breakwaters for coastal shelter and 

shore protection. Floating breakwaters have later gained wide attention and subsequently 

appeared to be a good choice for wave suppression during most weather conditions. 

They are considered as cost-effective and environmentally-friendly substitutes for the 

conventional type of breakwaters for the perimeter protection.  In recent years, many 

research institutions such as Indian Institute of Technology Madras, U.S. Army Engineer 

Research and Development Center, The University of Auckland, State University of 

New York, Sharif University of Technology, University of New Hampshire, Australian 

Water and Coastal Studies Pty. Ltd., University of Wuppertal and Suez Canal 

University, have been involved with the design and development of floating breakwaters 

for application within semi-protected coastal areas from high energy wave condition. 
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1.2 Background of the Problem 

The energetic power of water waves are often difficult to deal with and it has 

been the most challenging aspect for coastal engineers. Many coastlines of the world are 

facing the need for beach stabilization out of the effects of beach erosion. Coastal 

erosion has become a more significant environmental issue nowadays as it poses threats 

to many lives, valuable resources and properties, as well as commercial activities in 

coastal areas. Human lives, sandy beaches, tourism and industrial development, 

infrastructure, agriculture, aquaculture, residential and mangroves are among the 

examples of the sacrifices of the destructive wave attack.   

 The increase in the number of private pleasure crafts and small commercial 

vessels has generated a demand for convenient and accessible sheltered mooring. Many 

naturally protected or semi-sheltered waters along coastlines in established population 

centers have been developed to accommodate the influx of vessels. As a result, artificial 

man-made structures will be required to provide perimeter protection from incident 

waves where nature offers little or no protection.

 It is for these reasons that breakwaters of various dimensions and designs have 

been widely employed in locations exposed to wave attack. The purpose of installing a 

breakwater is to reduce the incident wave heights to a level commensurate with the 

intended use of the site in the leeside of the structure. Cost-effective design and the 

required degree of wave protection will dictate possible breakwater alternatives.  

 The rubble mound breakwater offers advantages in the form of excellent 

perimeter protection. It provides a high degree of wave protection and has been widely 

used to attenuate surface water waves. The breakwater is a fixed gravity structure 
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constructed of organized pile of graded rocks with a sloped surface, a broad base and a 

narrow top or crest, consisting of stones which are large enough to prevent or limit 

movement under most wave conditions. Nevertheless, there are many sites in marine 

setting where the traditional fixed breakwater is not suitable. Construction of fixed 

breakwaters are often more expensive in deeper water depth. Poor foundation condition 

is another disadvantage of the application of this fixed structure.

 An additional negative aspect is that such a structure will not allow the transport 

of sediment along the shoreline. It creates unacceptable sedimentation and water quality 

problems due to poor water circulation behind the structure. The base of the fixed 

breakwater will lead to the bottom loss for plant and animal habitat. As it is a permanent 

fixed structure, a rubble mound breakwater must be high enough to provide reasonable 

protection under most storm flood level conditions. If it were to be built at a lower level, 

its effectiveness could be severely reduced.

In recent years, coastal engineers become more environmentally conscious. 

Coastal engineering projects often have a significant effect on natural ecosystems and 

the ensuing environmental damage may make things worse for future generations. In 

seeking to revolutionize towards softer engineering solutions by encouraging the 

provision of technically, environmentally and economically sound and sustainable 

perimeter protection measures, a move towards schemes designed to work with nature 

rather than against it has begun to emerge. Floating breakwater has later appeared to be a 

cost-effective substitute for the conventional type of breakwaters in providing the 

required level of protection while working with the power and resources of nature.

The demand made the concept of the first locally designed floating breakwater 

technology possible. In 2002, Teh (2002) has completed his study on wave dampening 

characteristics of the fundamental design of a stepped-slope floating breakwater, namely 
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SSFBW. Foreseeing the potential of the stepped-slope floating breakwater system to be 

commercialized in the market for the benefit of communities, an improved cost-effective 

and practical design to suit the local needs is necessary in order to put forward the 

system into the industry. Therefore, the present study is carried out as a continuation of 

the work done by Teh (2002).

1.3 Statement of the Problem 

There has been quite a number of floating breakwaters available in the market 

but until the present invention of the STEPFLOAT breakwater, there is no truly 

outstanding solution that has been put forward into the local maritime industry. While 

attention was given to the preservation and conservation of natural environment, most 

floating breakwaters which utilized the concept of wave reflection in their designs, have 

neglected the safety of moving vessels in the vicinity of the floating breakwater system.

Therefore, there arises a need for an economical and environmentally-friendly yet viable 

floating breakwater that has an acceptably high efficiency in dissipating wave energy, 

instead of reflecting it, to provide the required level of tranquility in areas it desires to 

protect. As a result, the first locally designed floating breakwater technology has been 

developed. However, the fundamental design of the SSFBW was still in the stage of 

infancy. Practical requirements such as manufacturing problem, jointing system, 

mooring method, material and economics as well as the viability of the system need to 

be considered and incorporated into the improved design of the STEPFLOAT. Thus far, 

modifications to the fundamental design of the SSFBW system as well as the mooring 

method are required not only to enhance the efficiency of the floating breakwater 

system, but also to improve the practicability of the system.
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1.4 Objectives of the Study 

1. The primary objective of this research is to evaluate and predict the wave 

attenuation efficiency of the improved design of a composite stepped-slope 

floating breakwater system, i.e. STEPFLOAT, as a wave attenuator.

2. It is also intended to assess the wave reduction capabilities and the stability of the 

structure on several system arrangements (i.e. 2-row, 3-row, G = b and G = 2b 

systems) and on three types of mooring systems. Analyses of wave-structure 

interaction based on measured laboratory data also need to be performed in order 

to allow comparisons of results among the STEPFLOAT breakwater model with 

different system arrangements and mooring methods.  

3. Also, it is the goal of this study to develop empirical model for each system 

arrangement in the form of functional relationship of various dimensionless 

parameters of breakwater geometry and wave conditions, to predict the 

performance of the STEPFLOAT breakwater system. 

1.5 Scope of the Study 

 The scope of work throughout the study is orderly stated as follows: 

1. Literature review based on various sources of references such as theses, technical 

papers, technical reports, books, patents, articles, etc has been conducted to 

provide sufficient knowledge and understanding on wave attenuation concepts, 

wave protection systems, laboratory and field studies for the design and 

investigations on the performance of a floating breakwater system. 
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2. A review of the previous design of the SSFBW system and the mooring method 

in order to produce modifications and improved design of the STEPFLOAT 

system has been carried out.    

3. Planning and design of appropriate and suitable research methodology to conduct 

the laboratory experiments. 

4. Fabrication of the STEPFLOAT model and the construction of the composite 

STEPFLOAT system with an assembly of several modules connected to one 

another by a stainless steel bolt-and-nut system. This part of the study was 

conducted in collaboration with the industry, i.e. SEGINIAGA Rubber Industries 

Sdn. Bhd.

5. Design and building of the vertical piling system with aluminium rods, steel 

pipes and U-shape steel bars. 

6. Setting up of the equipment and apparatus as well as setting up the model of the 

floating breakwater system in the laboratory. 

7. A series of laboratory tests on the STEPFLOAT with different mooring systems 

and various system arrangements under wave only condition was conducted. 

8. Experimental data on wave reduction capabilities, the physical mechanism of the 

wave-structure interaction and stability of the structure, were observed, recorded 

and systematically documented.   

9. Dimensional analysis and parametric analysis were performed. Measured 

laboratory data was further analyzed using Multiple Linear Regression Method to 

yield empirical wave-structure relationships for pile-supported STEPFLOAT to 

predict the performance of the floating breakwater system. 

10. Assessment and comparisons of results of the STEPFLOAT with the previous 

study on the SSFBW design as well as studies on other floating breakwaters done 

by other researchers. 
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1.6 Significance of the Study 

1.6.1 An Alternative Engineering Solution for Shore Protection and Coastal

 Shelter 

The STEPFLOAT system may provide an alternative solution for coastal 

protection with a functional cost-effective engineering design while protecting and 

enhancing the environment. The amount of money spent on imported technologies and 

products or conventional breakwater construction for coastal protection would therefore 

be greatly minimized. Long-term dependence on costly imported technologies would be 

an impractical solution and it is not worthwhile. Therefore, a locally designed floating 

breakwater system would be an alternative engineering solution to minimize the 

unnecessary loss to the country’s resources.

1.6.2 Multi-Purpose Breakwater Facility  

 The design and development of the multi-purpose STEPFLOAT breakwater 

system would eventually benefit the communities, especially those shore property 

owners or citizens who reside near the coastal area, as the STEPFLOAT system has 

multi-purpose functions such as wave attenuator, walkway platform and encourage 

marine habitats. Other advantages that can be provided by the STEPFLOAT system as a 

multi-purpose breakwater facility will be further discussed in Chapter III. 
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1.6.3 An Impetus for Future Research and Development (R & D)

 The rubble mound breakwater has found frequent application in Malaysia’s 

coastal water due to its durability and the high degree of wave protection. Even though it 

has been proven as an effective wave attenuation structure, the rubble mound breakwater 

is limited to its potential application in certain regions and it causes environmental 

degradation. It is for these reasons that floating breakwater designs are of interest for 

perimeter protection.  The STEPFLOAT system is the first floating breakwater 

technology designed locally. Its promising results with good wave attenuation capability 

have gained momentum for further research and development.  It is believed that this 

potential floating breakwater system would be the impetus for continuing future research 

and development in Malaysia in this particular engineering design and other coastal and 

marine engineering aspects, especially technologies for shore protection and coastal 

shelter.

1.6.4 References and Guidelines for Future Research Development

 Laboratory experiments have been carried out to gather some information about 

the performance of the new design and improved floating breakwater system to provide 

data and information for the preliminary design of the prototype-scale field version of 

the STEPFLOAT system. Results and findings as well as empirical models from the 

laboratory investigations in the present study could be very useful information, 

references and guidelines for future research development by other researchers, who 

attempt to investigate this particular field of study. 
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1.6.5 Great Potential for Commercialization 

 The present study on STEPFLOAT system aims to assess the performance of the 

improved floating breakwater system design and does not involve any commercial 

interest. However, the success of this study, with encouraging results and findings on the 

performance of the system, would determine the potential of the STEPFLOAT system to 

be commercialized in the market in future. An increasing demand for mooring in coastal 

water in Malaysia and simultaneous shortage of suitable construction sites that are 

naturally sheltered from wave action generate a need for artificial cost-effective 

perimeter protection devices. Keizrul Abdullah (2005) reported that Malaysia with an 

extensive coastline of 4809 km has a total eroding coastline of 1372 km. Coastal erosion 

and wave attack on other coastal facilities for aquaculture activities, leisure purposes, 

etc. have also fostered the development of the environmentally-friendly floating 

breakwater system to ameliorate the risk of livelihood and properties of the coastal 

communities. It is believed that for these reasons, the potential use of floating 

breakwaters in Malaysia and perhaps in South East Asia countries would boom a vast 

popular demand for perimeter protection from the more traditional harder defences to 

solutions that we now term as “soft engineering”.
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