SYSTEM PERFORMANCE OF A COMPOSITE STEPPED-SLOPE FLOATING BREAKWATER

LIM CHAI HENG

A thesis submitted in fulfilment of the requirements for the award of the degree of Master of Engineering (Coastal and Maritime)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2006

To my friends, teachers, lecturers and professors, who patiently share their ideas, knowledge and skills with me all these years; and

To students, researchers, academicians and engineers, who have spent time to read my thesis on the Stepped-Slope Floating Breakwater System; and

献给一直陪我成长的家人,中日, Man, 六叔及已逝的大姑。

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation and gratitude to my thesis supervisor, Professor Hadibah Ismail, for her supervision, helpful encouragement, knowledge, continued guidance and moral support throughout my studies as well as freedom provided to work on this research. I would also like to thank Associate Professor Ir. Faridah Jaffar Sidek who has given me a tremendous amount of suggestions, advice, knowledge and guidance as well as for having many meaningful conversations. I am also grateful to my colleagues, Eldina and Sabri, for sharing their ideas and providing valuable suggestions; laboratory assistants, Pak Din and Helmy, for their patience, for answering endless questions and making the time spent together working at the coastal laboratory a valuable experience for me; and my former colleague in COEI as well as former flatmate in Wangsa Maju, Teh Hee Min, for sharing his knowledge and laboratory experience. Their boundless enthusiasm for coastal engineering is contagious and served as my sources of inspiration when there was doubt. Many thanks are also due to the staff of COEI, Halim, Asrol (former staff), Kak Ani, Kak Zim and Azuan, for their support and assistance in my studies.

Associate Professor Ron Cox from the University of New South Wales helped guide me in my study during his visit to COEI. His expertise in coastal engineering proved instrumental in helping to efficiently solve problems that arose. I gratefully acknowledge Dr. Nor Azizi from PPD, UTM, Dr. Colin Christian from the University of Auckland, Dr. Torsten Schlurmann from Bergische Universität - Gesamthochschule Wuppertal, Pei Fung and Yew Kim for their contributions.

Special thanks to Andreas Büttcher, for his valuable time and effort to produce those beautiful drawings for me and making the time in university, K2 and B-1-53 a true joy; and Edward Andrewes for his effort and contributions to this project. Their great dedication towards assisting me was above and beyond what I expected. I truly appreciated their true friendship. I would also like to thank Jeff, Mathieu Mirmont, Makara Ty, Abdelghani El Mahrad, Wong Teck Soon, Inayati, Jörg Weigl, Chai Chuen Loon, Lim Meng Hee, Wong Yi Kang, Nadia and those mates in K2 for their moral support, encouragement and friendship.

I wish to extend my gratitude to COEI for providing necessary funding and facilities for the study and to Seginiaga Rubber Industries Sdn. Bhd. for the manufacture of the STEPFLOAT models. Last, but most importantly, I would like to thank Papa, Mama, my sister and brother, Alan (Soh Chong Zeh), Man (Mati-ur Rehman), my uncle and late auntie for their unswerving belief and support to me all these years.

ABSTRACT

With the increasing demand for multi-purpose use of coastal sea areas in recent years, the composite stepped-slope floating breakwater system (STEPFLOAT) has been designed and developed as an alternative engineering solution, mainly for shore protection and coastal shelter to pioneer the floating breakwater technology in Malaysia. The unique stepped-slope and multiple sharp-edge features of the STEPFLOAT serve to intercept waves by dissipating (rather than reflecting) the wave energy through the formation of wave breaking, turbulence and eddies around the polyhedron as the waves impinge on the surface of the structure. Laboratory experiments were conducted to study the performance of the STEPFLOAT as a wave attenuator under unidirectional monochromatic wave only environment on various system arrangements, i.e. 2-row, 3row, G = b and G = 2b systems. A suggested mooring method using vertical piles as a modification to the classical mooring system using chains or cables is applied to the STEPFLOAT system to overcome the problem of roll and sway motions. Additional tests on the 2-row chain-moored STEPFLOAT were also conducted to allow comparisons with the fundamental design of the SSFBW system as well as the pilesupported STEPFLOAT. Experiments on restrained case for 2-row and 3-row systems were performed to evaluate the effect of heave and limited roll motions of the floating body on wave attenuation. For the present study, a simple conventional method is applied to decompose the co-existing composite wave record in front of the model into the incident and reflected waves. Transmitted wave heights were measured at the lee side of the model. Measured transmission coefficient (C_t) , reflection coefficient (C_r) and loss coefficient (C_l) were related to the non-dimensional structural geometric parameters, i.e. relative width (B/L), relative draft (D/L) and relative pontoon spacing (G/L), and hydraulic parameters, i.e. wave steepness (H/L) and relative depth (d/L). Two new nondimensional composite parameters, i.e. BD number and BDG number were introduced and examined. Experimental results for C_t are presented and compared to the results of previous studies of various floating breakwater designs done by other researchers. Empirical equations for predicting the transmission coefficient are developed for each tested system using Multiple Linear Regression Analysis. The STEPFLOAT, with relatively smaller structure width, generally has excellent wave attenuation ability over most of the previous floating breakwaters. The experimental results showed that the composite pile-supported STEPFLOAT with 3-row, G = b and G = 2b arrangements are capable to attenuate waves up to 80% of the incident wave height for wave period of less than 1.33 seconds.

ABSTRAK

Berikutan dengan peningkatan permintaan terhadap penggunaan kawasan pantai sejak kebelakangan ini, sistem pemecah ombak terapung komposit bercerun tingkat (STEPFLOAT) telah direkabentuk dan dibangunkan sebagai satu penyelesaian kejuruteraan alternatif, khasnya untuk kawalan dan perlindungan pantai bagi merintis teknologi pemecah ombak terapung di Malaysia. Bentuk STEPFLOAT yang bercerun tingkat dan berbucu tajam berfungsi untuk memintas ombak dengan mengurangkan tenaganya melalui pembentukan pemecahan ombak, gelora dan eddi di sekitar struktur polihedron tersebut apabila ombak bertindak pada permukaannya. Ujikaji makmal telah dijalankan dalam keadaan ombak seragam sehala bagi pelbagai penyusunan sistem, iaitu sistem 2-baris, 3-baris, G = b dan G = 2b bagi menilai prestasi STEPFLOAT sebagai struktur pelemah ombak. Penggunaan cerucuk menegak sebagai pengubahsuaian kepada sistem tambatan secara tradisional yang menggunakan rantai atau kabel telah diaplikasikan dalam sistem STEPFLOAT bagi mengatasi masalah gerakan oleng dan huyung. Ujikaji tambahan terhadap STEPFLOAT berbaris dua yang ditambat oleh rantai juga dilakukan untuk perbandingan dengan sistem SSFBW dan STEPFLOAT yang ditambat oleh cerucuk. Eksperimen untuk kes terhalang bagi sistem 2-baris dan 3-baris telah dilaksanakan bagi menilai kesan gerakan lambung dan oleng yang terhad pada struktur terapung tersebut terhadap pelemahan ombak. Kaedah konvensional telah digunakan dalam kajian ini bagi menguraikan rekod ombak komposit kepada ombak tuju dan ombak pantulan. Tinggi ombak terhantar diukur di belakang model. Pekali penghantaran ombak (C_l) , pekali pantulan (C_r) dan pekali kehilangan (C_l) dikaitkan dengan parameter-parameter tanpa dimensi geometri struktur, iaitu lebar relatif (B/L), draf relatif (D/L) dan sela relatif (G/L), dan parameter-parameter hidraulik, iaitu kecuraman ombak (H/L) dan kedalaman relatif (d/L). Dua parameter komposit tanpa dimensi baru, iaitu nombor BD dan nombor BDG telah diperkenalkan dan diperiksa. Keputusan ujikaji bagi C_t telah dibandingkan dengan hasil keputusan daripada pelbagai rekabentuk pemecah ombak terapung yang lain. Persamaan empirikal bagi meramal pekali penghantaran ombak telah dihasilkan bagi setiap sistem yang dikaji dengan menggunakan Analisis Regresi Linear Berbilang. STEPFLOAT dengan lebar struktur yang lebih pendek secara relatif mempunyai keupayaan pelemahan ombak yang lebih baik berbanding dengan kebanyakan pemecah ombak yang lain. Keputusan ujikaji menunjukkan bahawa sistem komposit STEPFLOAT bertambatan cerucuk dengan susunan 3-baris, $G = b \operatorname{dan} G = 2b \operatorname{berupaya}$ mengurangkan tinggi ombak sehingga 80% daripada tinggi ombak tuju bagi kala ombak kurang daripada 1.33 saat.

TABLE OF CONTENTS

CHAPTER	
---------	--

1

TITLE

PAGE

TITLE	i
DECLARATION OF ORIGINALITY AND EXCLUSIVENESS	ii
DEDICATION	iii
ACKNOWLEDGEMENTS	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	xiii
LIST OF FIGURES	XV
LIST OF PLATES	xxii
LIST OF ABBREVIATIONS AND NOTATIONS	xxiv
LIST OF APPENDICES	xxviii

INTRODUCTION						
1.1	Overview	1				
1.2	Background of the Problem	3				
1.3	Statement of the Problem	5				
1.4	Objectives of the Study	6				
1.5	Scope of the Study	6				
1.6	Significance of the Study	8				

1.6.1	An Alternative Engineering Solution for Shore				
	Protection and Coastal Shelter	8			
1.6.2	Multi-Purpose Breakwater Facility	8			
1.6.3	An Impetus for Future Research and Development				
	(R & D)	9			
1.6.4	References and Guidelines for Future Research				
	Development	9			
1.6.5	Great Potential for Commercialization	10			

viii

2	THEORETICAL BACKGROUND AND LITERATURE						
	REV	REVIEW					
	2.1	Wave Protection					
	2.2	Floating Breakwater Applicability and Advantages					
	2.3	Opera	Operation of a Floating Breakwater as a Wave Attenuator				
	2.4	4 Wave Control and Attenuation Mechanisms					
		2.4.1	Reflection	18			
		2.4.2	Dissipation	24			
			2.4.2.1 Wave Breaking and Overtopping	26			
			2.4.2.2 Turbulence and Eddies	28			
		2.4.3	Transformation	29			
	2.5	Mooring Systems					
	2.6	Perfor	ormance Considerations				
	2.7	Existi	ng Floating Breakwaters	40			
		2.7.1	Floating Breakwater by Tsunehiro et al. (1999)	43			
		2.7.2	Floating Dynamic Breakwater by Federico (1994)	44			
		2.7.3	Cage Floating Breakwater by Murali and Mani (1997)	47			
		2.7.4	Rapidly Installed Breakwater System (RIBS) by Resio				
			<i>et al.</i> (1997)	50			

THE	E COMI	POSITE	STEPPED-SLOPE FLOATING	
BRE	CAKWA	TER SY	STEM (STEPFLOAT)	53
3.1	Introd	uction		53
3.2	The E	volution	of the Stepped-Slope Floating Breakwater	
	Syster	n		54
	3.2.1	The SS	FBW: Fundamental Design of the	
		Stepped	I-Slope Floating Breakwater System	55
	3.2.2	The ST	EPFLOAT: Proposed Improved Design of the	
		Stepped	I-Slope Floating Breakwater System	58
		3.2.2.1	Design Concepts and Practicability	
			Considerations	58
			(a) Shape and Geometry	59
			(b) Alternative Features	62
			(c) Material Type	65
			(d) Mooring System	66
3.3	The C	omposite	STEPFLOAT Breakwater Model	67

3

4	EXP	EXPERIMENTAL SET-UP AND PROCEDURE			72
	4.1	Introduction			
	4.2	Labor	atory Fac	ilities and Instrumentation	73
		4.2.1	Wave F	lume	73
			4.2.1.1	General Remarks When Using Wave Flume	74
				(a) Decay Due to Internal Friction	77
				(b) Decay Due to Viscous Boundary Friction	78
		4.2.2	Wave G	enerating System	81
		4.2.3	Wave A	bsorber	83
		4.2.4	Wave P	robes and Data Acquisition System	83
			4.2.4.1	Wave Probe Calibration	85
	4.3	Measu	urement o	f Incident, Reflected and Transmitted Waves	87
	4.4	Deterr	nination o	of Wave Period and Wave Length	89

5.1		nsional A	ALYSIS AND EXPERIMENTAL RESULTS	ç	
5.2		imental R	·	1(
0.2	5.2.1		nain Mooring System	10	
	0.2.1	5.2.1.1	Two-row System	1	
	5.2.2		·	1	
	3.2.2	5.2.2.1		1	
			Three-row System	1	
	5.2.3		Pile System	1	
	0.210		Two-row System	1	
			Three-row System	1	
			G = b System	1	
			G = 2b System	1	
5.3	Performance Evaluation Based on Results Comparison				
	5.3.1	Perform	ance Evaluation in terms of Mooring Systems	1	
		5.3.1.1	STEPFLOAT vs SSFBW vs Rectangular		
			Pontoon (with Line Mooring)	1	
		5.3.1.2	STEPFLOAT (Vertical Piles vs Steel Chains)	1	
		5.3.1.3	STEPFLOAT (Vertical Piles vs Restrained		
			Case)	1	
	5.3.2	Perform	ance Evaluation of Pile-System STEPFLOAT in		
		terms of	System Arrangements	1	
		5.3.2.1	Two-row vs Three-row	1	
		5.3.2.2	Three-row vs $G = b$	1	
		5.3.2.3	G = 0 vs $G = b$ vs $G = 2b$	1	
5.4	Comp	arison on	the Performance between the STEPFLOAT and		
	Previo	ous Floati	ng Breakwater Studies	1	

Experimental Tests on STEPFLOAT

4.5

х

PAR	RAMET	RIC ANA	ALYSIS AND EMPIRICAL	
REL	LATION	SHIPS		166
6.1	Introd	uction		166
6.2	Param	166		
	6.2.1	Influenc	e of Relative Width, <i>B/L</i>	168
		6.2.1.1	Two-row System	168
		6.2.1.2	Three-row System	170
		6.2.1.3	G = b System	170
		6.2.1.4	G = 2b System	173
	6.2.2	Influenc	ee of Relative Draft, D/L	174
		6.2.2.1	Two-row System	174
		6.2.2.2	Three-row System	175
		6.2.2.3	G = b System	176
		6.2.2.4	G = 2b System	177
	6.2.3	Influenc	ee of Wave Steepness, H/L	178
		6.2.3.1	Two-row System	178
		6.2.3.2	Three-row System	179
		6.2.3.3	G = b System	180
		6.2.3.4	G = 2b System	181
	6.2.4	Influenc	the of Relative Depth, d/L	182
		6.2.4.1	Two-row System	182
		6.2.4.2	Three-row System	183
		6.2.4.3	G = b System	184
		6.2.4.4	G = 2b System	185
	6.2.5	Influenc	ee of Relative Gap Size, G/L	186
		6.2.5.1	G = b System	186
		6.2.5.2	G = 2b System	187

6

xi

7	MULTIPLE LINEAR REGRESSION ANALYSIS AND					
	DIAGNOSTICS					
	7.1	Introdu	ction		189	
	7.2	Multipl	e Linear	Regression Analysis	190	
		7.2.1	Examina	ation of the Variables	192	
		7.2.2	Multiple	e Linear Regression Models of C_t	201	
			7.2.2.1	Two-row Equation	202	
			7.2.2.2	Three-row Equation	205	
			7.2.2.3	G = b Equation	208	
			7.2.2.4	G = 2b Equation	211	
		7.2.3	Multiple	e Regression Diagnostics	213	
			7.2.3.1	Two-row Model	214	
			7.2.3.2	Three-row Model	217	
			7.2.3.3	G = b Model	219	
			7.2.3.4	G = 2b Model	222	
8	CON	CLUSIC	ONS AN	D RECOMMENDATIONS	225	
	8.1	1 Summary and Conclusions			225	
	8.2 Recommendations for Future Research					

REFERENCES

Appendices A1-A4	239 - 250
11	

234

LIST OF TABLES

TABLE N	NO. TITLE	PAGE
4.1	Average wave height at P1, P2, P3 and P4 with various frequencies	76
4.2	Absolute percentage difference between calculated and measured wave height at different positions	81
4.3	Mean wave period for various frequencies of wave generating motor	90
4.4	Wave period of model and prototype for various frequencies	90
4.5	Determination of wave number, <i>k</i> , by Bi-Section Method (for $T = 1.33$ s , $d = 45$ cm)	92
4.6	Determination of wave length using the linear dispersion relationship	92
4.7	The structure of experimental tests	96
6.1	Summary of regression analysis parameters for the 2-row vertical pile-system STEPFLOAT breakwater (second order polynomial)	169
6.2	Summary of regression analysis parameters for the 2-row vertical pile-system STEPFLOAT breakwater (exponential)	169
6.3	Summary of regression analysis parameters for the 3-row vertical pile-system STEPFLOAT breakwater (second order polynomial)	171
6.4	Summary of regression analysis parameters for the 3-row vertical pile-system STEPFLOAT breakwater (exponential)	171
6.5	Summary of regression analysis parameters for the G = b vertical pile-system STEPFLOAT breakwater (second order polynomial)	172

6.6	Summary of regression analysis parameters for the G = b vertical pile-system STEPFLOAT breakwater (exponential)	172
6.7	Summary of regression analysis parameters for the G = 2b vertical pile-system STEPFLOAT breakwater (second order polynomial)	174
6.8	Summary of regression analysis parameters for the G = 2b vertical pile-system STEPFLOAT breakwater (exponential)	174
7.1	Variable range for 2-row empirical model	202
7.2	Variable range for 3-row empirical model	206
7.3	Variable range for $G = b$ empirical model	208
7.4	Variable range for $G = 2b$ empirical model	212
7.5	Comparison of predicted and observed C_t for 2-row system	215
8.1	Summary of C_b , C_r and C_l for the STEPFLOAT in terms of various system arrangements and mooring systems	227
8.2	Summary of C_t predictive equations	230

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE
2.1	Wave responses to a line-moored floating structure described by a single sinusoid wave train	16
2.2	Relationships among $(\omega t)_m$, $F(x)$ and $I(x)$	21
2.3	A-Frame Floating Breakwater	24
2.4	Tethered-Float Breakwater [Harms, 1980]	25
2.5	Pole-Tire Breakwater [Harms, 1980]	26
2.6	Variation of the position of the eddies with the movement of the free surface [Tolba, 1999]	30
2.7	Alaskan floating breakwater [Morey, 1998]	31
2.8	Anchor-and-line mooring system [McCartney, 1985]	32
2.9	Mooring line configurations for a single pontoon-type floating breakwater [Sannasiraj <i>et al.</i> , 1998]	35
2.10	The "X" shaped section of Bombardon floating breakwater was beach near the shoreline near the left center [Normandy Invasion, 1944]	ed 41
2.11	Perspective view of the floating breakwater [Tsunehiro et al., 1999]	44
2.12	Floating dynamic breakwater [Federico, 1994]	45
2.13	Cage floating breakwater [Murali and Mani, 1997	48

2.14	Rapidly Installed Breakwater System concept [Resio et al., 1997]	51
3.1	The SSFBW model	56
3.2	Comparison of C_t for different number of rows of SSFBW at water depths of 20 cm and 30 cm [Teh, 2002]	57
3.3	A single module of a composite STEPFLOAT	60
3.4	3-D view of a composite STEPFLOAT module formed by a pair of top half and bottom half units	61
3.5	Module assembly of the 2-row STEPFLOAT breakwater	63
3.6	A single module of a suggested solid-type STEPFLOAT breakwater	64
3.7	Proposed horizontal platform as a walkway for pontoons	64
3.8	Proposed synthetic seaweed curtains as wave screens or silt curtains	65
3.9	Schematic sketch of the suggested STEPFLOAT mooring system using vertical piles	68
3.10	Top half of the STEPFLOAT module	69
3.11	Bottom half of the STEPFLOAT module	70
3.12	The STEPFLOAT system model is formed by a series of composite single modules	71
4.1	Schematic layout of the wave flume	73
4.2	The measurements of wave decay without the presence of floating breakwater model	76
4.3	Comparison between the calculated attenuated wave heights due to boundary friction and measured wave heights 7	79-80
4.4	Wave prove calibration	86
4.5	Laboratory and STEPFLOAT model set-up in the wave flume	88
4.6	Relationship between wave period and frequency	90
4.7	Plots of d/L vs. T for $d = 45$ cm	93
4.8	Details of the vertical pile system	98

xvi

5.1	Definition sketch of a pile-system 2-row STEPFLOAT breakwater	102
5.2	Wave profiles of the composite and transmitted waves for 2-row model system using vertical piles ($f = 42$ Hz or $T = 0.95$ sec)	107
5.3	Variation of C_t , C_r and C_l against T for 2-row model system using chain mooring for $D/d = 0.104$	108
5.4	Variation of C_t , C_r and C_l against T for 2-row model system restrained from moving for $D/d = 0.133$	111
5.5	Variation of C_t , C_r and C_l against <i>T</i> for 3-row model system restrained from moving for $D/d = 0.133$	113
5.6	Variation of C_t , C_r and C_l against <i>T</i> for 2-row model system using vertical piles for D/d = 0.133	116
5.7	Variation of C_t , C_r and C_l against <i>T</i> for 3-row model system using vertical piles for $D/d = 0.133$	118
5.8	Variation of C_t , C_r and C_l against T for G = b model system using vertical piles for $D/d = 0.133$	121
5.9	Variation of C_t , C_r and C_l against T for G = 2b model system using vertical piles for $D/d = 0.133$	123
5.10	Specifications and test details of a 2-row STEPFLOAT, a single row of SSFBW and rectangular pontoon models	127
5.11	C_t vs T for comparisons among a 2-row STEPFLOAT, a single row of SSFBW and rectangular pontoon models	128
5.12	C_t vs B/L for comparisons among a 2-row STEPFLOAT, a single row of SSFBW and rectangular pontoon models	134
5.13	C_t vs D/L for comparisons among a 2-row STEPFLOAT, a single row of SSFBW and rectangular pontoon models	134
5.14	C_t vs H/L for comparisons among a 2-row STEPFLOAT, a single row of SSFBW and rectangular pontoon models	135
5.15	C_t vs d/L for comparisons among a 2-row STEPFLOAT, a single row of SSFBW and rectangular pontoon models	135
5.16	C_t vs T for comparison of 2-row STEPFLOAT breakwater using vertical piles and steel chain mooring	137

xvii

5.17	$[C_t]_{red}$ vs <i>T</i> between 2-row STEPFLOAT breakwater using vertical piles and steel chain mooring	138
5.18	C_t vs B/L for comparison of 2-row STEPFLOAT breakwater using vertical piles and steel chain mooring	139
5.19	C_t vs D/L for comparison of 2-row STEPFLOAT breakwater using vertical piles and steel chain mooring	139
5.20	C_t vs H/L for comparison of 2-row STEPFLOAT breakwater using vertical piles and steel chain mooring	141
5.21	C_t vs d/L for comparison of 2-row STEPFLOAT breakwater using vertical piles and steel chain mooring	141
5.22	Comparison between restrained case and vertical-pile system on the effect of heave and limited roll motions on C_t , C_r and C_l for 2-row STEPFLOAT	142
5.23	Comparison between restrained case and vertical-pile system on the effect of heave and limited roll motions on C_t , C_r and C_l for 3-row STEPFLOAT	143
5.24	C_t vs B/L - Comparison of 2-row STEPFLOAT between restrained case and vertical-pile system	147
5.25	C_t vs D/L - Comparison of 2-row STEPFLOAT between restrained case and vertical-pile system	147
5.26	C_t vs H/L - Comparison of 2-row STEPFLOAT between restrained case and vertical-pile system	148
5.27	C_t vs d/L - Comparison of 2-row STEPFLOAT between restrained case and vertical-pile system	148
5.28	C_t vs B/L - Comparison of 3-row STEPFLOAT between restrained case and vertical-pile system	149
5.29	C_t vs D/L - Comparison of 3-row STEPFLOAT between restrained case and vertical-pile system	149
5.30	C_t vs H/L - Comparison of 3-row STEPFLOAT between restrained case and vertical-pile system	150
5.31	C_t vs d/L - Comparison of 3-row STEPFLOAT between restrained case and vertical-pile system	150

5.32	$C_t \& \Delta C_{t[2-3]}$ vs <i>T</i> - Performance comparison between 2-row and 3-row STEPFLOAT systems	151
5.33	C_t vs B/L - Performance comparison between 2-row and 3-row STEPFLOAT systems	152
5.34	C_t vs D/L - Performance comparison between 2-row and 3-row STEPFLOAT systems	153
5.35	C_t vs H/L - Performance comparison between 2-row and 3-row STEPFLOAT systems	153
5.36	C_t vs d/L - Performance comparison between 2-row and 3-row STEPFLOAT systems	154
5.37	$C_t \& \Delta C_{t[3-b]}$ vs <i>T</i> - Performance comparison between 3-row and G = b STEPFLOAT systems	155
5.38	C_t vs B/L - Performance comparison between 3-row and G = b STEPFLOAT systems	156
5.39	C_t vs D/L - Performance comparison between 3-row and G = b STEPFLOAT systems	156
5.40	C_t vs H/L - Performance comparison between 3-row and G = b STEPFLOAT systems	157
5.41	C_t vs d/L - Performance comparison between 3-row and G = b STEPFLOAT systems	157
5.42	C_t , $\Delta C_{t[0-b]}$ & $\Delta C_{t[2b-b]}$ vs <i>T</i> - Performance comparison between G = 0, G = b and G = 2b STEPFLOAT systems	159
5.43	C_t vs B/L - Performance comparison between G = 0, G = b and G = 2b STEPFLOAT systems	160
5.44	C_t vs D/L - Performance comparison between G = 0, G = b and G = 2b STEPFLOAT systems	161
5.45	C_t vs H/L - Performance comparison between G = 0, G = b and G = 2b STEPFLOAT systems	161
5.46	C_t vs d/L - Performance comparison between G = 0, G = b and G = 2b STEPFLOAT systems	162

xix

5.47	C_t vs G/L - Performance comparison between G = b and G = 2b STEPFLOAT systems	162
5.48	Comparison of floating breakwaters efficiency between the STEPFLOAT and those from previous studies	164
6.1	Measured C_t , C_r & C_l versus B/L of 2-row system with $D/d = 0.133$	169
6.2	Measured C_t , C_r & C_l versus B/L of 3-row system with $D/d = 0.133$	171
6.3	Measured C_t , C_r & C_l versus B/L of G = b system with $D/d = 0.133$	172
6.4	Measured C_t , C_r & C_l versus B/L of G = 2b system with $D/d = 0.133$	173
6.5	Measured C_t , C_r & C_l versus D/L of 2-row system with $D/d = 0.133$	175
6.6	Measured C_t , C_r & C_l versus D/L of 3-row system with $D/d = 0.133$	176
6.7	Measured C_t , C_r & C_l versus D/L of G = b system with $D/d = 0.133$	177
6.8	Measured C_t , C_r & C_l versus D/L of G = 2b system with $D/d = 0.133$	178
6.9	Measured C_t , C_r & C_l versus H/L of 2-row system with $D/d = 0.133$	179
6.10	Measured C_t , C_r & C_l versus H/L of 3-row system with $D/d = 0.133$	180
6.11	Measured C_t , C_r & C_l versus H/L of G = b system with $D/d = 0.133$	181
6.12	Measured C_t , C_r & C_l versus H/L of G = 2b system with $D/d = 0.133$	182
6.13	Measured C_t , C_r & C_l versus d/L of 2-row system with $D/d = 0.133$	183
6.14	Measured C_t , C_r & C_l versus d/L of 3-row system with $D/d = 0.133$	184
6.15	Measured C_t , C_r & C_l versus d/L of G = b system with $D/d = 0.133$	185
6.16	Measured C_t , C_r & C_l versus d/L of G = 2b system with $D/d = 0.133$	186
6.17	Measured C_t , C_r & C_l versus G/L of G = b system with $D/d = 0.133$	187
6.18	Measured C_t , C_r & C_l versus G/L of G = 2b system with $D/d = 0.133$	188
7.1	Scatterplot matrix of the C_t and the 4 independent variables for 2-row	193
7.2	Scatterplot matrix of the C_t and the 4 independent variables for 3-row	193
7.3	Scatterplot matrix of the C_t and the 5 independent variables for $G = b$	194

7.4	Scatterplot matrix of the C_t and the 5 independent variables for $G = 2b$	194
7.5	Measured C_t versus BD/dL for 2-row STEPFLOAT system	197
7.6	Measured C_t versus BD/dL for 3-row STEPFLOAT system	197
7.7	Measured C_t versus BDG/dL^2 for G = b STEPFLOAT system	198
7.8	Measured C_t versus BDG/dL^2 for G = 2b STEPFLOAT system	198
7.9	Scatterplot matrix of the C_t and the 2 independent variables for 2-row	199
7.10	Scatterplot matrix of the C_t and the 2 independent variables for 3-row	199
7.11	Scatterplot matrix of the C_t and the 2 independent variables for $G = b$	200
7.12	Scatterplot matrix of the C_t and the 2 independent variables for $G = 2b$	200
7.13	Predicted and observed C_t for 2-row system	214
7.14	Studentized deleted residuals versus predicted C_t for 2-row system	217
7.15	Predicted and observed C_t for 3-row system	218
7.16	Studentized deleted residuals versus predicted C_t for 3-row system	219
7.17	Predicted and observed C_t for G = b system [Equation (7.9)]	220
7.18	Predicted and observed C_t for G = b system [Equation (7.10)]	220
7.19	Studentized deleted residuals versus predicted C_t for G = b system [Equation (7.9)]	221
7.20	Studentized deleted residuals versus predicted C_t for G = b system [Equation (7.10)]	222
7.21	Predicted and observed C_t for G = 2b system	223
7.22	Studentized deleted residuals versus predicted C_t for G = 2b system	224
8.1	Cross-section of the suggested shapes for the bottom layer of the STEPFLOAT	233

LIST OF PLATES

PLATE N	NO. TITLE	PAGE
2.1	A floating dock system supported by mooring piles at the Sutera Harbour Resort, Kota Kinabalu, Sabah, Malaysia	32
4.1	Wave generating system	82
4.2	Electronic analog control panel	82
4.3	Capacitance-type wave probe	84
4.4	HIOKI 8833 MEMORY Hi CORDER data acquisition system	85
4.5	Wave Flume	94
4.6	Various STEPFLOAT model system arrangements	95
4.7	2-row STEPFLOAT model moored to the flume bed by steel chains	96
4.8	A 2-row model as restrained from moving at four steel piles	97
4.9	A 3-row model with vertical pile system	98
5.1	Wave-structure interaction during experimental tests for 2-row system using chain mooring	n 110
5.2	Wave-structure interaction during experimental tests for the restraine 2-row system	d 112
5.3	Wave-structure interaction during experimental tests for the restraine 3-row system	d 115

5.4	Wave-structure interaction during experimental tests for 2-row system using vertical piles	117
5.5	Wave-structure interaction during experimental tests for 3-row system using vertical piles	120
5.6	Wave-structure interaction during experimental tests for G = b system using vertical piles	122
5.7	Wave-structure interaction during experimental tests for $G = 2b$ system using vertical piles	124
5.8	A 2-row STEPFLOAT breakwater moored with six steel chains	130
5.9	The transition between slack and taut conditions of the STEPFLOAT system	131
5.10	Induced roll and sway motions generate secondary waves at the leeside of the floating breakwater during the experiments	132

LIST OF ABBREVIATIONS AND NOTATIONS

List of Abbreviations

ANOVA	-	analysis of variance
ASCE	-	American Society of Civil Engineers
CEM	-	Coastal Engineering Manual
COEI	-	Coastal and Offshore Engineering Institute
DC	-	direct current
EPDM	-	ethylene-propylene diene monomer
ERDC	-	U.S. Army Engineer Research and Development Center
GDP	-	gross domestic product
HDPE	-	high-density polyethylene
i.e.	-	that is (Latin <i>id est</i>)
LCD	-	liquid crystal display
MLT	-	mass-length-time system
MPTT	-	modified power transmission theory
PDH	-	principle of dimensional homogeneity
PPD	-	Pusat Pengajian Diploma
PTT	-	power transmission theory
PVC	-	polyvinyl chloride
RIBS	-	Rapidly Installed Breakwater System
RM	-	Malaysian Ringgit
SBR	-	styrene-butadiene rubber

SS	-	sea state
SSFBW	-	Stepped-Slope Floating Breakwater (fundamental design)
STEPFLOAT	` -	Stepped-Slope Floating Breakwater (improved design)
SWL	-	still-water level
UTM	-	Universiti Teknologi Malaysia
VIF	-	variance inflation factor
WAMIT	-	Wave Analysis MIT (numerical program developed by the
		Massachusetts Institute of Technology)

List of Notations

а	-	wave amplitude
a_0, a_1, a_2	-	regression coefficients for the second order polynomial trend line
b	-	characteristic breakwater pontoon size or dimension
<i>b</i> , <i>c</i>	-	constants for the exponential trend line
В	-	unstandardized coefficient for independent variable
В	-	breakwater width
B_f	-	wave flume width
B_i	-	partial regression coefficient $[i = 1, 2, 3,]$
B_o	-	regression constant
B/L	-	relative width
BD/dL	-	$BD \text{ number} = \left(\frac{B}{L}\right) \left(\frac{D}{L}\right) \left(\frac{L}{d}\right)$
BDG/dL ²	-	$BDG \text{ number} = \left(\frac{B}{L}\right) \left(\frac{D}{L}\right) \left(\frac{G}{L}\right) \left(\frac{L}{d}\right)$
С	-	wave celerity
C_l	-	loss coefficient
C_r	-	reflection coefficient

C_t	-	transmission coefficient
$[C_t]_{red}$	-	percentage of C_t reduction
d	-	water depth
D	-	draft or depth of submergence
d/L or d/gT^2	-	relative water depth
D/L	-	relative draft
E_i	-	incident wave energy
E_l	-	dissipated wave energy or energy loss
E_r	-	reflected wave energy
E_t	-	transmitted wave energy
f	-	frequency or a mathematical function
F	-	F ratio (= regression mean square/residual mean square)
g	-	gravitational acceleration = 9.81 m/s^2
G	-	gap between modules or pontoon spacing
G/L	-	relative gap or indicative of gap size to wave length ratio or
		relative pontoon spacing
Н	-	wave height
H_1	-	wave height at $x_p = 0$
H_2	-	wave height after travelling a distance, x_p
H_i	-	incident wave height
H_i/gT^2	-	wave steepness parameter
H_i/L or H/L	-	wave steepness
H_o	-	deep water wave height
H_r	-	reflected wave height
H_t	-	transmitted wave height
k	-	number of fundamental dimensions
k	-	wave number $\left(=\frac{2\pi}{L}=\frac{2\pi}{CT}\right)$
L	-	wave length
L_o	-	deep water wave length
n	-	number of dimensional variables

n.a.	_	not available
R	-	correlation coefficient
R^2	_	square of the correlation coefficient
t	-	time
Т	-	wave period
T model	-	wave period of model
T prototype	-	wave period of prototype
W	-	breakwater width
W/L	-	relative width
x	-	horizontal distance or dummy variable representing independent
		non-dimensional variable
x_p	-	horizontal distance in wave flume
$\Delta C_{t [2-3]}$	-	difference of C_t between 2-row and 3-row STEPFLOAT systems
		$[=C_{t2\text{-row}} - C_{t3\text{-row}}]$
$\Delta C_{t [3-b]}$	-	difference of C_t between 3-row and G = b STEPFLOAT systems
		$[=C_{t \text{ 3-row}} - C_{t \text{ G=b}}]$
$\Delta C_{t[0-b]}$	-	difference of C_t between G = 0 (or 2-row) and G = b
		STEPFLOAT systems [= $C_{t \text{ G=0}} - C_{t \text{ G=b}}$]
$\Delta C_{t [2b-b]}$	-	difference of C_t between G = 2b and G = b STEPFLOAT systems
		$[=C_{t \text{ G=2b}} - C_{t \text{ G=b}}]$
Е	-	phase lag induced by reflection process
η	-	displacement of the water surface relative to the SWL
η_t	-	total wave surface profile
θ	-	direction of wave advance $\left(=\frac{2\pi x}{L}-\frac{2\pi t}{T}\right)$
V	-	fluid kinematic viscosity
ρ	-	fluid density
$ ho_s$	-	density of structure
ω or σ	-	wave angular or radian frequency $(=\frac{2\pi}{T})$

xxvii

LIST OF APPENDICES

APPEND	DIX TITLE	PAGE
A1	Results of the multiple linear regression analysis for a 2-re	ЭW
	STEPFLOAT system	239
A2	Results of the multiple linear regression analysis for a 3-re STEPFLOAT system	ow 242
A3	Results of the multiple linear regression analysis for a G = STEPFLOAT system	= b 245
A4	Results of the multiple linear regression analysis for a G = STEPFLOAT system	= 2b 248

xxviii

CHAPTER 1

INTRODUCTION

1.1 Overview

Many citizens from maritime nations have settled close along the coast in order to make a living, engage in trade and access communication links. The coast provides a source of food and income through fishing activities and recently has provided areas for recreation. Malaysia and most of the countries in Southeast Asia region are not seen as countries of extremes, either extremes of climate or extremes of natural events. Hence, it sometimes escapes attention and awareness that a large proportion of these countries' population are exposed to wave disturbance and threatened by coastal erosion. Coastal problems have caused a significant impact on the economy of many countries. As a result, it is unavoidable that the government and local shore property owners need to contend with these problems by implementing some programmes of investment in shore protection and coastal shelter to reduce the risk of loss of life and property. Most sites for small craft harbours, marinas and coastal aquaculture facilities will be found to need some form of perimeter protection. The physical conditions of a proposed site may be relatively calm for most of the time due to natural protection. However, the wave climate of the site could be moderately rough under storm conditions due to the arrival of far field waves and eventually significant protection may be required. Competent coastal shelter and shore protection may take the form of stone barriers, wave screens or vertical barriers, which are either solid or semipermeable such as floating breakwaters.

Breakwaters, either fixed or floating, are structures constructed to protect the shoreline, other coastal structures, marinas, etc. by reflecting and/or dissipating the incident wave energy and thus reduce wave action in the leeside of the breakwater system. Permanently fixed breakwaters provide a higher degree of protection than floating breakwaters. However, a fixed breakwater may not be competitive cost wise with a floating breakwater in relatively deeper water depths and it may also cause a lot of detrimental effects to the environment.

Increasing construction costs and environmental constraints encourage alternative considerations to the traditional fixed breakwaters for coastal shelter and shore protection. Floating breakwaters have later gained wide attention and subsequently appeared to be a good choice for wave suppression during most weather conditions. They are considered as cost-effective and environmentally-friendly substitutes for the conventional type of breakwaters for the perimeter protection. In recent years, many research institutions such as Indian Institute of Technology Madras, U.S. Army Engineer Research and Development Center, The University of Auckland, State University of New York, Sharif University of Technology, University of New Hampshire, Australian Water and Coastal Studies Pty. Ltd., University of Wuppertal and Suez Canal University, have been involved with the design and development of floating breakwaters for application within semi-protected coastal areas from high energy wave condition.

1.2 Background of the Problem

The energetic power of water waves are often difficult to deal with and it has been the most challenging aspect for coastal engineers. Many coastlines of the world are facing the need for beach stabilization out of the effects of beach erosion. Coastal erosion has become a more significant environmental issue nowadays as it poses threats to many lives, valuable resources and properties, as well as commercial activities in coastal areas. Human lives, sandy beaches, tourism and industrial development, infrastructure, agriculture, aquaculture, residential and mangroves are among the examples of the sacrifices of the destructive wave attack.

The increase in the number of private pleasure crafts and small commercial vessels has generated a demand for convenient and accessible sheltered mooring. Many naturally protected or semi-sheltered waters along coastlines in established population centers have been developed to accommodate the influx of vessels. As a result, artificial man-made structures will be required to provide perimeter protection from incident waves where nature offers little or no protection.

It is for these reasons that breakwaters of various dimensions and designs have been widely employed in locations exposed to wave attack. The purpose of installing a breakwater is to reduce the incident wave heights to a level commensurate with the intended use of the site in the leeside of the structure. Cost-effective design and the required degree of wave protection will dictate possible breakwater alternatives.

The rubble mound breakwater offers advantages in the form of excellent perimeter protection. It provides a high degree of wave protection and has been widely used to attenuate surface water waves. The breakwater is a fixed gravity structure constructed of organized pile of graded rocks with a sloped surface, a broad base and a narrow top or crest, consisting of stones which are large enough to prevent or limit movement under most wave conditions. Nevertheless, there are many sites in marine setting where the traditional fixed breakwater is not suitable. Construction of fixed breakwaters are often more expensive in deeper water depth. Poor foundation condition is another disadvantage of the application of this fixed structure.

An additional negative aspect is that such a structure will not allow the transport of sediment along the shoreline. It creates unacceptable sedimentation and water quality problems due to poor water circulation behind the structure. The base of the fixed breakwater will lead to the bottom loss for plant and animal habitat. As it is a permanent fixed structure, a rubble mound breakwater must be high enough to provide reasonable protection under most storm flood level conditions. If it were to be built at a lower level, its effectiveness could be severely reduced.

In recent years, coastal engineers become more environmentally conscious. Coastal engineering projects often have a significant effect on natural ecosystems and the ensuing environmental damage may make things worse for future generations. In seeking to revolutionize towards softer engineering solutions by encouraging the provision of technically, environmentally and economically sound and sustainable perimeter protection measures, a move towards schemes designed to work with nature rather than against it has begun to emerge. Floating breakwater has later appeared to be a cost-effective substitute for the conventional type of breakwaters in providing the required level of protection while working with the power and resources of nature.

The demand made the concept of the first locally designed floating breakwater technology possible. In 2002, Teh (2002) has completed his study on wave dampening characteristics of the fundamental design of a stepped-slope floating breakwater, namely

SSFBW. Foreseeing the potential of the stepped-slope floating breakwater system to be commercialized in the market for the benefit of communities, an improved cost-effective and practical design to suit the local needs is necessary in order to put forward the system into the industry. Therefore, the present study is carried out as a continuation of the work done by Teh (2002).

1.3 Statement of the Problem

There has been quite a number of floating breakwaters available in the market but until the present invention of the STEPFLOAT breakwater, there is no truly outstanding solution that has been put forward into the local maritime industry. While attention was given to the preservation and conservation of natural environment, most floating breakwaters which utilized the concept of wave reflection in their designs, have neglected the safety of moving vessels in the vicinity of the floating breakwater system. Therefore, there arises a need for an economical and environmentally-friendly yet viable floating breakwater that has an acceptably high efficiency in dissipating wave energy, instead of reflecting it, to provide the required level of tranquility in areas it desires to protect. As a result, the first locally designed floating breakwater technology has been developed. However, the fundamental design of the SSFBW was still in the stage of infancy. Practical requirements such as manufacturing problem, jointing system, mooring method, material and economics as well as the viability of the system need to be considered and incorporated into the improved design of the STEPFLOAT. Thus far, modifications to the fundamental design of the SSFBW system as well as the mooring method are required not only to enhance the efficiency of the floating breakwater system, but also to improve the practicability of the system.

1.4 Objectives of the Study

- 1. The primary objective of this research is to evaluate and predict the wave attenuation efficiency of the improved design of a composite stepped-slope floating breakwater system, i.e. STEPFLOAT, as a wave attenuator.
- 2. It is also intended to assess the wave reduction capabilities and the stability of the structure on several system arrangements (i.e. 2-row, 3-row, G = b and G = 2b systems) and on three types of mooring systems. Analyses of wave-structure interaction based on measured laboratory data also need to be performed in order to allow comparisons of results among the STEPFLOAT breakwater model with different system arrangements and mooring methods.
- 3. Also, it is the goal of this study to develop empirical model for each system arrangement in the form of functional relationship of various dimensionless parameters of breakwater geometry and wave conditions, to predict the performance of the STEPFLOAT breakwater system.

1.5 Scope of the Study

The scope of work throughout the study is orderly stated as follows:

 Literature review based on various sources of references such as theses, technical papers, technical reports, books, patents, articles, etc has been conducted to provide sufficient knowledge and understanding on wave attenuation concepts, wave protection systems, laboratory and field studies for the design and investigations on the performance of a floating breakwater system.

- 2. A review of the previous design of the SSFBW system and the mooring method in order to produce modifications and improved design of the STEPFLOAT system has been carried out.
- 3. Planning and design of appropriate and suitable research methodology to conduct the laboratory experiments.
- 4. Fabrication of the STEPFLOAT model and the construction of the composite STEPFLOAT system with an assembly of several modules connected to one another by a stainless steel bolt-and-nut system. This part of the study was conducted in collaboration with the industry, i.e. SEGINIAGA Rubber Industries Sdn. Bhd.
- 5. Design and building of the vertical piling system with aluminium rods, steel pipes and U-shape steel bars.
- 6. Setting up of the equipment and apparatus as well as setting up the model of the floating breakwater system in the laboratory.
- 7. A series of laboratory tests on the STEPFLOAT with different mooring systems and various system arrangements under wave only condition was conducted.
- 8. Experimental data on wave reduction capabilities, the physical mechanism of the wave-structure interaction and stability of the structure, were observed, recorded and systematically documented.
- 9. Dimensional analysis and parametric analysis were performed. Measured laboratory data was further analyzed using Multiple Linear Regression Method to yield empirical wave-structure relationships for pile-supported STEPFLOAT to predict the performance of the floating breakwater system.
- Assessment and comparisons of results of the STEPFLOAT with the previous study on the SSFBW design as well as studies on other floating breakwaters done by other researchers.

1.6 Significance of the Study

1.6.1 An Alternative Engineering Solution for Shore Protection and Coastal Shelter

The STEPFLOAT system may provide an alternative solution for coastal protection with a functional cost-effective engineering design while protecting and enhancing the environment. The amount of money spent on imported technologies and products or conventional breakwater construction for coastal protection would therefore be greatly minimized. Long-term dependence on costly imported technologies would be an impractical solution and it is not worthwhile. Therefore, a locally designed floating breakwater system would be an alternative engineering solution to minimize the unnecessary loss to the country's resources.

1.6.2 Multi-Purpose Breakwater Facility

The design and development of the multi-purpose STEPFLOAT breakwater system would eventually benefit the communities, especially those shore property owners or citizens who reside near the coastal area, as the STEPFLOAT system has multi-purpose functions such as wave attenuator, walkway platform and encourage marine habitats. Other advantages that can be provided by the STEPFLOAT system as a multi-purpose breakwater facility will be further discussed in Chapter III.

1.6.3 An Impetus for Future Research and Development (R & D)

The rubble mound breakwater has found frequent application in Malaysia's coastal water due to its durability and the high degree of wave protection. Even though it has been proven as an effective wave attenuation structure, the rubble mound breakwater is limited to its potential application in certain regions and it causes environmental degradation. It is for these reasons that floating breakwater designs are of interest for perimeter protection. The STEPFLOAT system is the first floating breakwater technology designed locally. Its promising results with good wave attenuation capability have gained momentum for further research and development. It is believed that this potential floating breakwater system would be the impetus for continuing future research and development in Malaysia in this particular engineering design and other coastal and marine engineering aspects, especially technologies for shore protection and coastal shelter.

1.6.4 References and Guidelines for Future Research Development

Laboratory experiments have been carried out to gather some information about the performance of the new design and improved floating breakwater system to provide data and information for the preliminary design of the prototype-scale field version of the STEPFLOAT system. Results and findings as well as empirical models from the laboratory investigations in the present study could be very useful information, references and guidelines for future research development by other researchers, who attempt to investigate this particular field of study.

1.6.5 Great Potential for Commercialization

The present study on STEPFLOAT system aims to assess the performance of the improved floating breakwater system design and does not involve any commercial interest. However, the success of this study, with encouraging results and findings on the performance of the system, would determine the potential of the STEPFLOAT system to be commercialized in the market in future. An increasing demand for mooring in coastal water in Malaysia and simultaneous shortage of suitable construction sites that are naturally sheltered from wave action generate a need for artificial cost-effective perimeter protection devices. Keizrul Abdullah (2005) reported that Malaysia with an extensive coastline of 4809 km has a total eroding coastline of 1372 km. Coastal erosion and wave attack on other coastal facilities for aquaculture activities, leisure purposes, etc. have also fostered the development of the environmentally-friendly floating breakwater system to ameliorate the risk of livelihood and properties of the coastal communities. It is believed that for these reasons, the potential use of floating breakwaters in Malaysia and perhaps in South East Asia countries would boom a vast popular demand for perimeter protection from the more traditional harder defences to solutions that we now term as "soft engineering".

REFERENCES

- Adee, B. H. (1976). Floating Breakvater Performance. *Proceedings of the 15th Coastal Engineering Conference*. 11-17 Ily. Honolulu, Hawaii: ASCE. 1976. 2777-2791.
- Agerton, D. J. Savage, G. H. and Stotz, K C. Design, Analysis and Field Test of a Dynamic Floating Breakwter (1976). *Proceedings of the 15th Coastal Engineering Conference*. 11-17 July. Honolulu, Hawaii: ASCE. 2792-2809.
- Archilla, JC. (1999). Three-Dimensional Nonlinear Dynamics of a Moored Cylinder to be Used as a Breakwater. Virginia Polytechnic Institute and State University: Masters' Thesis.
- Armstrong, JM. and Petersen, R. C. (1978). Tire Module Systems in Shore and Harbour Protection. *Journal of the Waterway, Port, Coastal and Ocean Division*. 104(**W**): 357-374.
- Bhat, S. S. (1998). *Performance of Twin-Pontoon Floating Breakwaters*. The University of British Columbia: Ph.D. Thesis.
- Bishop, Jand Bishop, R. (2002). Floating Breakwater System. (@V0226019).
- Brebner, A. and Ofuya, A. O. (1968). Floating Breakvaters. *Proceedings of the 5th Coastal Engineering Conference*. ASCE. 1055-1085.
- Briggs, M. J(2001). Performance Characteristics of a Rapidly Installed Breakwater System. Technical Report No. 01-13. U. S. Army Engineer Research and Development Center, Vickburg, MS.
- Briggs, M. J, Demirbilek Z, Pratt, T., Re sio, D. T. and Kang, J (2000). Performance Characteristics of a Rapidly Installed Floating Breakvater. *Proceedings of the 27th International Conference on Coastal Engineering*. 16-21 July. Sydney, Australia: ASCE, 2254-2267.
- Briggs, M. J, & WDemirbilekZa nd Zang, J(2002). Field and Numerical
 Comparisons of the RIBS Floating Breakvater. *Journal of Hydraulic Research*. 40(3): 289-301.
- British Standards Institution (1999). *Code of Practice For Maritime Structures Part 6:* Design of Inshore Moorings and Floating Structures. London, BS 6349-6: 1989.

- Carve, R. D. (1979). Floating Breakwater Wave Attenuation Tests for Easy Bay Marine, Olympia Harbor, Washington - Hydraulic Model Investigation. Technical Report HL-79-13. U. S. Army Engineer Werways Experiment Station, Vickburg, MS.
- Christian, C. D. (2000). Floating Breakvat ers for Small Boat Marina Protection. Proceedings of the 2000 Coastal Engineering Conference. Inly 16-21. Sydney: ASCE, 2268-2277.
- Coastal and Offshore Engineering Institute (2003). Design, Installation and Assessment of the Stepped-Slope Floating Breakwater System (SSFBW) for the Borneo Marine Research Institute (BMRI), Universiti Malaysia Sabah, Kota Kinabalu. Technical
 Æinancial Proposal. COEI, UTM, Kala Lumpur, Malaysia.
- Cox, R. J, Blumberg, G. P. and Mght, M. J(1991). Floating Br eakvaters Practical Performance Data. Proceedings of the 3rd International Conference on Coastal and Port Engineering in Developing Countries (COPEDEC III). 20-25 September. Mombasa, Knya.
- Dean, R. G. and Dalrymple, R. A. (2000). Advanced Series on Ocean Engineering -Volume 2: Water Wave Mechanics for Engineers and Scientists. 7th ed. Singapore:
 Wild Scientific Publishing Co. Pte. Ltd.
- Eastern Designers and Company Limited (1991). Breakwaters: Planning Guidelines for Commercial Fishing Harbours, Atlantic Canada. Canada: Small Craft Harbours, Department of Fisheries and Oceans, 157-177. Qoted by Morey, B. J(1998). Floating Breakwaters: Predicting Their Performance. Memorial University of Newfoundland: Masters Thesis.
- Farmer, A. L. (1999). Investigation into Snap Loading of Cables Used In MooredBreakwaters. Virginia Polytechnic Institute and State University: Masters' Thesis.
- Federico, L. L. (1994). Floating Dynamic Breakwater. (US 5304005).
- Finnemore, E. Jand Franzini, JB. (2002). *Fluid Mechanics with Engineering Applications*. 10th ed. New &rkMcGraw-Hill. 245-251.
- Goda, Y(2000). *Random Seas and Design of Maritime Structures*. 2nd Ed. Singapore: ₩Id Scientific Publishing Co. Pte. Ltd.
- Hadibah Ismail and Teh, Hee Min (2002a). W ve Attenuation Characteristics of a Stepped-Slope Floating Breakvater (SSFB)WSystem. Proceedings of the 13th

Congress of the Asia Pacific Division of the International Association for Hydraulic Engineering and Research (IAHR-APD), Advances in Hydraulics and Water Engineering Vol. II. 6-8 August. Singapore: Wild Scientific. 805-810.

- Hadibah Ismail and Teh, Hee Min (2002b). Effect of Crest With and Geometry on
 Floating Breakvater Performance. Proceedings of the 5th International Conference on Coasts, Ports and Marine Structures, ICOPMAS 2002. 14-17 October. Ramsar, Iran. 239-244.
- Hales, L. Z(1981). Floating Breakwaters: State-of-the-art Literature Review .Technical Report No. 81-1. U. S. Army Coastal Engineering Research Center, Fort Belvoir, VA.
- Harms, V. W(1979). Design Criteria for Floating Tire Breakvaters. Journal of the Waterway, Port, Coastal and Ocean Division. 105(X): 149-170.
- Harms, V. W(1980). Floating Br eakvater Performance Comparison. Proceedings of the 17th Coastal Engineering Conference. March 23-28. Sydney, Australia: ASCE. 2137-2158.
- Headland, JR. (1995). Floating Brea waters. In: Tsinkr, G. P. Marine Structures Engineering: Specialized Applications. New WrkChapman & Hall. 367-411.
- Hughes, S. A. (1993). *Physical Models and Laboratory Techniques in Coastal Engineering*. Singapore: Wld Scientific Publishing Co. Pte. Ltd.
- Isaacson, M. and Byres. R. (1988). Floating Breakvater Response to We Action. *Proceedings of the 21st Coastal Engineering Conference*. New MrkASCE. 2189-2199.
- Ines, JB. (1971). Transportable Breakwaters A Survey of Concepts. NTIS Technical Report AD-887 841, Naval Facilities Engineering Command, Port Hueneme, CA.
- Kto, J, Hagino, S. and Uekta, Y(1966). Damping Effect of Floating Breakvater to which Anti-Rolling System is Applied. *Proceedings of the 10th Conference on Coastal Engineering*. ASCE. 1068-1078.
- Kizrul Abdullah (2005). No More in the Comfort Zne Malaysia's Response to the December 2004 Tsunami. The 2nd International Hydrographic and Oceanographic Industry 2005 Conference and Exhibition (IHOCE '05). July 5-7. K., Malaysia.

- Kmar, KS. V., Sundar, V. and Sundaravadivelu, R. (2001). Hydrodynamic Characteristics of Moored Floating Plate Breakvater. Proceedings of the 1st Asia-Pacific Conference on Offshore Systems. Malaysia: Universiti Tekologi Mara. 159-164.
- Lienhard IV, JH. and Lienhard V, JH. (2003). *A Heat Transfer Textbook*. 3rd ed. Cambrigde, Massachusetts, USA: Phlogiston Press.
- Mani, JS. (1991). Design of Frame Floating Breakvater. Journal of Waterway, Port, Coastal, and Ocean Engineering. 117(2): 105-119.
- McCartney, B. L. (1985). Floating Breakvater Design. Journal of Waterway, Port, Coastal, and Ocean Engineering. 111: 304-318.
- Meyers, F. and Brown, JA. (2002). *System and Apparatus For Rapidly Installed Breakwater*. (US 2002085883).
- Montgomery, D. C. and Runger, G. C. (2003). *Applied Statistics and Probability for Engineers*. 3rd ed. New VrkU.S.A.: Jhn Wey Sons, Inc.
- Morey, B. J(1998). *Floating Breakwaters: Pred icting Their Performance*. Memorial University of Newfoundland: Masters' Thesis.
- Murali, Kand Mani, J.S. (1997). Perf ormance of Cage Floating Breakvater. *Journal* of Waterway, Port, Coastal, and Ocean Engineering. 123(4): 172-179.
- Nece, R. E. and Sjelbreia, N. K(1984). Ship-wave Attenuation Tests of a Prototype Floating Breakvater. *Proceedings of the 19th Coastal Engineering Conference*. New & KASCE. 2515-2529.
- Nece, R. E., Nelson, E. E. and Bishop, C. T. (1988). Some North American Experience with Floating Breakvater. In: Institution of Civil Engineers. *Design of Breakwater*. London: Thomas Telford. 299-312.
- Nelson, E. E. and Hemsley, JM. (1988). Monitoring Completed Coastal Projects: Operational Assessment of Floating Breakwaters, Puget Sound, Washington.
 Miscellaneous Paper CERC-88-6. CERC, Vickburg, MS.
- Normandy Invasion, Ine 1944. URL: http://www.history.navy.mil/photos/images/s1000 00/s195619c.htm [27 April 2004]
- Norušs, M. J (2000). SPSS[®] 10.0 Guide to Data Analysis. Upper Saddle River, New &rsey: Prentice-Hall, Inc. 3.

Osho (2001). Intimacy: Trusting Oneself and the Other. New &rkSt. Martin's Griffin.

- Purnell, R. G. (1996). The Nature of Risk Proceedings of the International Conference on Advances in Coastal Structures and Breakwaters. 27-29 April. London: Thomas Telford. 1-5.
- Purusthotham, S., Sundar, V. and Sundaravadivelu, R. (2001). Hydrodynamic Characteristics of Moored Floating Pipe Breakvater. *Proceedings of the 1st Asia-Pacific Conference on Offshore Systems*. Malaysia: Universiti Tekologi Mara. 165-170.
- Resio, D. T., Briggs, M. J, Fowler, JE. and Marke, D. G. (1997). Floating "V" Shaped Breakwater. (US 5702203).
- Sannasiraj, S. A., Sundar, V. and Sundaravadivelu, R. (1998). Mooring Forces and Motion Responses of Pontoon-Type Floating Breakvaters. *Ocean Engineering*. 25(1): 27-48.
- Shaw, R. (1982). Wave Energy: A Design Challenge. England: Ellis Horwood Limited.
- Sorensen, R. M. (1978). Basic Coastal Engineering. Canada: Jhn Wey Sons, Inc.
- SPSS Inc. (2004). SPSS Version 12.0 for Windows. Chicago: Statistical Software.
- Standards Australia International (2001). *Guidelines for Design of Marinas*. Sydney, NSWAustralia, AS 3962-2001.
- Stitt, R. L. and Noble, H. M. (1963). *Introducing Wave-Maze Floating Breakwater*. Unnumbered report. Temple City, California.
- Teh, Hee Min (2002). *Wave Dampening Characteristics of A Stepped-Slope Floating Breakwater*. Universiti Tekologi Malaysia: Master's Thesis.
- Tobiasson, B. O. and Kilmeyer, R. C. (1991). *Marinas and Small Craft Harbors*. New &rkVan Nostrand Reinhold.
- Tolba, Ehab Rashad Abdel Salam (1999). Behaviour of Floating Breakwaters UnderWave Action. University of Wepertal SuezCanal University: Ph.D. Thesis.
- Tsunehiro, S., Akyuk, U. and Takzo, S. (1999). Floating Breakwater. (P 11229350).
- U.S. Army Corps of Engineers (2002). *Coastal Engineering Manual (CEM)*. Vickburg, Mississippi, EM 1110-2-1100.
- Amamoto, T. (1981). Moored Floating Breakvater Response to Regular and IrregularWes. Journal of Applied Ocean Research. 3(1): 114-123.