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ABSTRACT

The unique structure and electronic properties of Bilayer Graphene 

Nanoribbon (BLG) such as long mean free path, ballistic transport and symmetrical 

band structure, promise a new device application in the future. Improving the 

modeling of BLG Field Effect Transistor (FET) devices, based on the quantum 

confinement effect, is the primary objective of this research. It presents an analytical

and numerical model for evaluating electrical properties of BLG devices in 

equilibrium (temperature is constant) and non-equilibrium states (for different 

temperatures). By developing the carrier statistic and carrier transport model, the 

current-voltage model of a BLG FET is established and evaluated. Using an 

analytical model, BLG carrier concentration and conductance in degenerate and non-

degenerate limits are explored. The carrier mobility and drain current (as a mean 

parameter of FET characteristic) are also being investigated. This research also 

presents a numerical implementation of the developed model. These models provide 

one with the chance to perform simulation in a reasonable amount of time, which is 

required for large-scale applications of device optimisations. MATLAB software is

used in the numerical methods which have been extensively applied for the study of

BLG FET behaviour. Comparison study of conductance, mobility and current-

voltage with published experimental data is presented and good agreements with the 

proposed models are reported. The presented model can be used in Technology 

Computer Aided Design tools to improve the performance of next generation nano-

devices. 



ABSTRAK

Struktur yang unik dan sifat-sifat elektronik Bilayer Graphene Nanoribbon 

(BLG) seperti pergerakan bebas, pengangkutan balistik dan struktur jalur simetri 

menjadikan bahan tersebut mempunyai potensi yang luas dalam applikasi peranti 

baru di masa hadapan. Memperbaiki model peranti BLG Transistor Kesan Medan 

(FET) berdasarkan kesan penghadan kuantum adalah objektif utama dalam 

penyelidikan ini. Ia mempunyai model analisis dan berangka untuk menilai sifat 

elektrik peranti BLG dalam keadaan keseimbangan (suhu adalah malar) dan 

ketidakseimbangan (untuk suhu yang berbeza). Dengan membangunkan pembawa 

statistik dan pembawa pengangkutan model, model arus voltan FET BLG dihasilkan 

dan diuji. Menggunakan model analitikal, BLG kepekatan pembawa dan kealiran 

dalam had merosot dan bukan merosot akan dikaji. Kebolehgerakan pembawa dan 

arus saliran semasa juga sedang disiasat. Kajian ini juga membentangkan 

pelaksanaan berangka model yang dibangunkan. Model-model ini menyediakan satu 

peluang untuk melaksanakan simulasi dalam jumlah masa yang munasabah, yang 

diperlukan dalam aplikasi besar-besaran bagi meningkatkan kualiti peranti secara 

optimum disamping mempunyai saiz yang kecil. MATLAB adalah perisian 

digunakan dalam kaedah berangka yang telah digunakan secara meluas untuk kajian 

BLG tingkah laku FET. Kajian perbandingan kealiran, kebolehgerakan dan voltan 

semasa dengan data eksperimen yang diterbitkan menunjukkan persamaan dan 

penyesuaian yang baik dengan model yang dihasilkan. Model ini boleh digunakan 

dalam Technology Computer Aided Design untuk meningkatkan prestasi peranti nano 

untuk generasi akan datang.
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CHAPTER 1

INTRODUCTION

1.1 Background

Based on the technology demand for smaller size, higher processing speeds and 

lower power consumption of metal-oxide-semiconductor field effect transistor 

(MOSFET) led to the downsizing of channel length. The downsizing of channel of 

MOSFET transistor has many limitations which severely affect the expected 

performance of these devices (Eduardo and Castro, 2010). Since 1965, Gordon Moore, 

one of the Intel co-founder predicted, the number of transistors in a die will 

approximately double every 24 months. This popular prediction was known as Moor’s 

Low and it has been treated as a guide for the transistor manufacturing even until today.  

In fulfilling the Moore’s law, industry for example Intel has actually exceeded the 

normal prediction (year 1965 actual data) in year 1970 as shown in Figure 1.1. They 

have gone beyond Moor‘s prophecy and are able to fabricate recent Core 2 Quad 

processor with only 45 nm channel length (Connor, 2007; Group, 2010). Figure 1.1 

clearly shows that the numbers of transistors in Intel processor are exponentially 

increase with years.
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International Technology Roadmap for semiconductor (ITRS) has pointed out 

some significant hurdles of these conventional MOSFET, including the leakage current, 

interconnect problems, power consumption and quantum effect (O’Connor et al, 2007). 

The MOSFET is expected to reach its channel length limits of 10 nm before year 2020.

Figure 1.1 Exponential growth of the transistors in Intel processor per year,

according to Moore‘s Law.

Group of researchers declared the first graphene-based field-effect transistor at 

the Manchester University in 2004 (Fal'ko and Geim 2007; Novoselov 2007). Graphene, 

the unzipped form of carbon nanotubes (CNT) is the recently discovered allotrope of 

carbon that has gained tremendous amount of scientific technological interests. The 

graphene nanoribbon (GNR) is a single graphene that has been developed as a substitute

device possibility to replace the CNT chirality challenge and can be used as channel 

transport region with a narrow channel size in a FET-like device (Novoselov 2007). 

Theoretically, they are expected to show good electronic properties and very high 

electron or hole mobility, comparable to the properties observed in CNTs. Graphene is 

semimetal and does not have a band gap (band gap is zero), but with a narrow channel 

width ( transverse direction) it can provide a band gap (Schwierz, 2010). Hence, there 

are two methods to explain the band gap and electronic properties in GNR. Material 
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properties like the band gap (EG) have an important role in graphene transistors. The 

new development in this transistor by using new material and fabrication method is able 

to complement or even replace the current silicon technology. 

Bilayer graphene nanoribbon (BLG) including two layers graphene plate was

developed, in 2006. Researchers observed a low energy band gap at the k point in BLG 

when an electric field is applied (Feng Wang, 2009). Yuanbo Zhang, also have described 

widely tunable band structure near Dirac point in double layer graphene (Novoselov, 

McCann et al. 2006; Yuanbo Zhang 2009). Creating a band gap in BLG is very 

important in FET transistors. BLG devices have a better performance with superior on-

off ratio for future application. In 2010, Eduardo and Castro published electronic 

properties of BLGs (Castro, 2010). This led to the equation of energy band gap and 

density of state that have effect in the calculation of carrier statistic. They also studied 

edge properties (zigzag and armchair BLG) at zero energy and the Fermi level of the 

undoped system (Eduardo, 2010). In this research, we investigate theoretically double 

layer graphene nanoribbon model in field effect transistor.

1.2 Problem Statements

Conventional methods to improve metal oxide semiconductor (MOSFET) such 

as downsizing of the channel length have so far succeeded. Some aspects including the 

short channel effect, leakage current, interconnect difficulties, high power consumption 

and quantum effect are due to the downsizing of channel length in a planar MOSFET, 

(O’Connor et al, 2007). Hence, the modeling of conventional devices is no longer 

precise when the channel lengths get the nanometer scale because of the several

unidentified parameters. BLGs have the unique electronic properties, for example,

symmetrical band structures, ballistic transport, high current and so on. Therefore, we 
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can enable the development of BLG FET. Our focus is on the modeling of carrier 

statistic, carrier velocity and mobility in BLG channel and to compare with experimental

data. In summary, the problems in this research are: 

a) The modeling of carrier concentration (degenerate and non-degenerate 

approximation) in BLG FET model. 

We are used one-dimensional calculation for nanoscale devices. Most of the models 

calculated carrier concentration based on the Maxwell Boltzmann approximation 

(degenerate and non-degenerate regime).

        b)   The modeling of conductance in nanoscale BLG FET model for degenerate and

   non-degenerate regime. 

Only in the Lundstrom work we see the conductance approach for the nanoscale 

transistor modeling. But their work based on the Maxwell Boltzmann approximation 

(non-degenerate regime). On the other hand, nanoscale devices operate in degenerate 

regime. We are investigated the conductance approach in nanoscale BLG FET modeling 

for both degenerate and non-degenerate regime.

    c)  Ballistic carrier transport model for BLG FET structure is used in degenerate

    regime by improving these published charge-based BLG FET models. 

Since the carrier transport properties in channel MOSFET model are no longer capable 

of characteristic the carrier transport truly even for sub-100 nm MOSFETs. Nanoscale 

transistors operate in quasi-ballistic transport regime.
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1.3 Research objectives

This research focused on the modeling and simulating of bilayer graphene 

nanoribbon FET as a one dimensional device. It included modeling carrier 

concentration, ballistic conductance, electronic transport properties and current-voltage

in BLG FET. Semi-empirical model as a platform of the modeling technique based on 

device physics formulation is employed. The MATLAB software is used as a main 

platform to model in BLG field effect transistor. Combined with a Circuit Simulator, it 

will demonstrate the ultimate application of the full transistors design. The Electronic 

and Electrical Computer Aided Design (ECAD) tools will be able to assess this model to 

optimize transistor performance through multiple process and design variations. The 

objectives of this research are: 

a) To analytically model the carrier concentration in degenerate and non-

degenerate regime for BLG.

b) To investigate an analytical model for ballistic conductance of BLG in 

degenerate and non-degenerate limits.

c) To formulate analytical model for carrier transport in BLG FET.  

d) To investigate an analytical and semi-empirical model of BLG FET for 

current-voltage in the linear (Ohmic) region.

e) To compare the numerical results and analytical models with 

experimental data in terms of their physical structure for BLG FET.

f) To present model can be used through Technology Computer Aided 

Design (TCAD) tools to improve the performance of next generation 

devices.  
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1.4 Research Scopes

In this study, the literature review aids to understand the GNR physic. The scope 

of research is the development of an analytical BLG FET model in the areas:

a) The development the modeling of BLG FET devices, based on the carrier 

statistic in degenerate and non-degenerate limit.

b) The enhancement of carrier transport, conductance in degenerate and non-

degenerate limit and current-voltage model for BLG. 

c) Comparison of the numerical modeled and simulated device with experimental 

data in terms of their physical structure for BLG FET.

d) MATLAB software is used as the numerical platforms to establish the model 

development. 

1.5 Research Activities 

In this research we have investigated the model of double layer graphene 

nanoribbon field effect transistor. This included the study and development of energy 

band structure, carrier concentration, ballistic conductance, electronic transport 

properties and current-voltage in 1D BLG model. The physical phenomena of the model 

are described with improved Fermi-Dirac function and partial differential equations via 

simulation of the physical process using MATLAB software. The predefined modeling 

template can be modified to suit specific applications through equation-based modeling 
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capabilities. The calculated data will be generated via MATLAB to be compared and 

validated against the experimental data measured from BLG devices published. 

Basically, the activities require for this research can be divided into four categories 

which are:

a) Literature review.

b) Modeling the carrier concentration, ballistic conductance, carrier transport and 

current-voltage (I-V characteristic) of BLG transistor.

c) Numerical simulation works: adoption of theoretical developed for BLG transistor 

using MATLAB software.

d) Comparison study between modeling and experimental data to validate the 

transistor model.
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1.6 Research Flowchart

Two main parts of the work is shown in the flowchart, (Figure 1.2).

Figure 1.2 Research flow chart

The literature review of one dimensional device included the study in the modeling part 

and simulation part using MATLAB software. We began with band structure study of 

bilayer graphene nanoribbon as a basic point of physical view. Then, we are investigated

the carrier statistic, ballistic conductance, carrier mobility and current-voltage analytical

model in BLG FET. Understanding of band energy helps to find carrier density of states 

and carrier concentration. We employed these equations in ballistic conductance 

calculation and then our mobility model is completed by using conductance, and 

mobility approach for I-V characteristic of a BLG FET. In simulation part parallel to the 

modeling study, MATLAB software programming is used extensively.  
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1.7 Modeling of BLG

The main assumption taken into explanation for this model is the streamlined 

ballistic conductance in BLG FET. The effective density of state and carrier 

concentration in BLG channel was directly affected by conductance. This is due to the 

type of metal being chosen to be the contacts, which will indeed influences the 

resistance at the channel-contact interface and thus carrier concentration in the channel. 

The mobility model in BLG FET is a function of BLG channel length, phonon scattering 

mean free path and Fermi level of metal electrode.  Finally, all the models developed 

were applied in the I-V model to obtain the output characteristics of BLG FET. The 

comparison between the developed I-V model and experimental data will be carried out 

in order to verify this model.

1.8 Software

1.8.1 MATLAB

In this research, MATLAB software has an important role as the platform for 

data analysis, processing, and organizing for display into graphs. In order to compare the 

developed BLG FET model with the experimental data, software such as MATLAB was 

needed. A few comparisons have carried out in carrier statistic and conductance model 

for both degenerate and non-degenerate regime. Some parameters such as gate voltage, 

drain voltage, BLG dimensions, and so on, were taken to be same as the experimental 

data in order to obtain a fair comparison.
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1.9 Outline of Thesis

In this research we are considered the essential physics of quasi-1 dimensional 

BLG FET. To model an analytical bilayer graphene nanoribbon as well as compare with 

experimental data. In chapter 2, the literature review on the theory of graphene 

nanoribbon, one-dimensional concept and some structure device are discussed. Chapter 

3 explained the basic concepts of semiconductors that are needed in nanotransistors.

There is some new establish on one-dimension physics which is provided a foundation 

to the rest of the thesis. In chapter 4, the modeling and simulation of BLG including the 

band structure, carrier statistic, carrier transport, ballistic conductance and current-

voltage modeling are presented. Finally, the results, expected outcomes and research 

works are demonstrated. Then, the comparison between the established BLG FET model 

and experimental data are carried out in order to validate the proposed equation. The 

MATLAB modeling on BLG results were reported.
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