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ABSTRACT 

 

 

 
 In taxonomy learning from texts, the extracted features that are used to describe 
the context of a term usually are erroneous and sparse. Various attempts to overcome 
data sparseness and noise have been made using clustering algorithm such as 
Hierarchical Agglomerative Clustering (HAC), Bisecting K-means and Guided 
Agglomerative Hierarchical Clustering (GAHC). However these methods suffer low recall.  
Therefore, the purpose of this study is to investigate the application of two hybridized 
artificial immune system (AIS) in taxonomy learning from Malay text and develop a 
Google-based Text Miner (GTM) for feature selection to reduce data sparseness. Two novel 
taxonomy learning algorithms have been proposed and compared with the benchmark 
methods (i.e., HAC, GAHC and Bisecting K-means). The first algorithm is designed through 
the hybridization of GAHC and Artificial Immune Network (aiNet) called GCAINT 
(Guided Clustering and aiNet for Taxonomy Learning). The GCAINT algorithm exploits 
a Hypernym Oracle (HO) to guide the hierarchical clustering process and produce better 
results than the benchmark methods. However, the Malay HO introduces erroneous 
hypernym-hyponym pairs and affects the result. Therefore, the second novel algorithm 
called CLOSAT (Clonal Selection Algorithm for Taxonomy Learning) is proposed by 
hybridizing Clonal Selection Algorithm (CLONALG) and Bisecting k-means. CLOSAT 
produces the best results compared to the benchmark methods and GCAINT. In order to 
reduce sparseness in the obtained dataset, the GTM is proposed. However, the 
experimental results reveal that GTM introduces too many noises into the dataset which 
leads to many false positives of hypernym-hyponym pairs. The effect of different 
combinations of affinity measurement (i.e., Hamming, Jaccard and Rand) on the 
performance of the developed methods was also studied. Jaccard is found better than 
Hamming and Rand in measuring the similarity distance between terms.  In addition, the 
use of Particle Swarm Optimization (PSO) for automatic parameter tuning the GCAINT 
and CLOSAT was also proposed. Experimental results demonstrate that in most cases, 
PSO-tuned CLOSAT and GCAINT produce better results compared to the benchmark 
methods and able to reduce data sparseness and noise in the dataset. 
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ABSTRAK 
 
 
 
 
 
 Fitur yang diekstrak dalam pembelajaran taksonomi dari teks yang digunakan 
untuk menggambarkan konteks suatu perkataan lazimnya mempunyai kesalahan (hingar) 
dan masalah kejarangan data. Beberapa penyelidikan telah cuba mengatasi masalah 
kejarangan dan hingar dengan menggunakan algoritma pengelompokan seperti 
Pengelompokan Aglomerat Berhierarki (HAC), Pembahagi-dua K-min dan 
Pengelompokan Aglomerat Berhierarki Berpandu (GAHC).  Walau bagaimanapun,  
kaedah ini mengalami masalah perolehan kembali yang rendah. Oleh itu, penyelidikan 
ini bertujuan untuk mengkaji penggunaan dua penghibiridan sistem imun buatan (AIS) 
dalam pembelajaran taksonomi dari teks Melayu dan pembangunan alat Perlombongan 
Teks Berasaskan Google (GTM) untuk pengekstrakan fitur bagi mengatasi masalah 
kejarangan data. Dua algoritma pembelajaran taksonomi dicadangkan untuk 
mengurangkan masalah kejarangan dan hingar dalam set data. Algoritma pertama direka 
dengan menghibrid GAHC dan Rangkaian Imun Buatan (aiNet) yang dinamakan 
GCAINT (Pengelompokan Berpandu dan aiNet untuk Pembelajaran Taksonomi). 
Algoritma GCAINT mengeksploitasi Hypernym Oracle (HO) yang memandu proses 
pengelompokan berhierarki untuk menghasilkan keputusan yang lebih baik berbanding 
kaedah lain. Namun, HO bahasa Melayu ini mengandungi perkataan sebagai hipernim 
atau hiponim yang salah, justru mempengaruhi kualiti taksonomi yang terbentuk. Oleh 
itu, kaedah kedua dicadangkan iaitu penghibridan antara Algoritma Pemilihan Klonal 
(CLONALG) dengan Pembahagi-dua K-min yang dinamakan CLOSAT. Keputusan 
CLOSAT adalah lebih baik berbanding kaedah tanda aras tersebut. Demi mengurangkan 
masalah kejarangan dalam set data, GTM dicadangkan. Namun, GTM menambah 
jumlah ralat ke dalam set data yang seterusnya mewujudkan hubungan yang salah 
diantara perkataan di dalam taksonomi. Pengaruh penggunaan ukuran afiniti dengan 
kombinasi yang berbeza (seperti Hamming, Jaccard dan Rand) terhadap prestasi kaedah 
cadangan turut dikaji. Jaccard didapati lebih baik berbanding Hamming dan Rand dalam 
mengukur afiniti diantara perkataan. Selain itu, alat penalaan parameter automatik 
berasaskan Pengoptimuman Partikel Secara Berkumpulan (PSO) juga dibangunkan. 
Keputusan kajian menunjukkan bahawa dalam kebanyakan kes, CLOSAT dan GCAINT 
yang ditala PSO menghasilkan keputusan yang lebih baik berbanding kaedah lain serta 
mengurangkan masalah kejarangan dan hingar pada set data.  
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Introduction 

 

 

One of the keystones of the Semantic Web vision is to represent information in a 

structured form so that the computers can "understand" and subsequently solve complex 

problems. Ontology is one of the main components of Semantic Web which provides a 

common vocabulary for a specific domain of interest. It describes properties of a term or 

word so that machines, applications or services can effectively share information and 

knowledge, thus ensuring interoperability among machines.   

 

However, the progress towards Semantic Web is slowed down due to the 

knowledge acquisition bottleneck. The manual ontology modeling, as described by 

researchers is a process that is labor-intensive, tedious, complex, time-consuming and 

expensive (Alesso and Smith, 2005; Gulla and Brasethvik, 2008; Yeh and Sie, 2006; 

Cimiano, 2006). One of the most important components of ontology is taxonomy or also 

known as concept hierarchy or thesauri.  

 

As unstructured texts such as Web page or e-books are massively available, most 

researchers have attempted to induce taxonomies from such resources by using machine 

learning, statistical analysis and natural language processing (NLP). The process of 

automatic knowledge acquisition for taxonomy creation is called taxonomy learning. The 



2 

 

  2

(semi-)automatic support in constructing taxonomy on the basis of unstructured textual 

resources is referred to as taxonomy learning from texts.   

 

Different learning approaches and methods from a spectrum of fields such as 

statistical analysis, machine learning and natural language processing have been 

proposed for partially or completely automatic construction of taxonomies. Alexander 

Maedche and Steffen Staab (2000) distinguish  taxonomy learning from text techniques 

into: i) pattern-based extraction; ii) Association rules; iii) Conceptual clustering; iv) 

Ontology pruning; and v) Concept learning. However, based on available resource and 

research scope, it can be concluded that the association rules, ontology pruning and 

concept learning will not be studied in this research because of the following reasons. 

Concept learning technique is used to update a given taxonomy while ontology pruning 

technique is used to elicit an ontology by using a core ontology as guidance. Association 

rules are used on the data mining process to discover taxonomic relations stored in 

databases or text by a ready-made taxonomy as background knowledge. Thus, these 

techniques are used when an existing ontology or taxonomy are already exists to ‘assist’ 

the learning process. Since this research do not rely on any existing taxonomy, all these 

three techniques are not suitable for this research. Therefore, this research will 

concentrate on pattern-based extraction and conceptual clustering. Moreover, the nature 

or ‘behavior’ of texts makes conceptual clustering much more appealing than other 

techniques. For example, a document may have either a huge amount of irrelevant noise 

such as spelling errors or grammatical mistakes which lead to either sparseness or noise 

in the extracted features.  

 

Furthermore, (semi-)automatic acquisition of taxonomy from Malay text is 

conspicuous by its absence in the research literature. Common features and linguistic 

patterns extracted from English text corpora have not been tested on Malay text. 

Therefore, this research is motivated by the believe that any learning system that is to 

retrieve an acceptable set of results from Malay texts must adapt to the data sparsity and 

noise. Currently, Artificial Immune System (AIS) has been the attention to many 

researchers in dealing with data sparseness. AIS is inspired from the human immune 

system, and it is known for its robustness, reliability and adaptability. Thus, the natural 

immune system exhibits many properties that are of interest to this area of taxonomy 

learning from text.  
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Therefore, this thesis is concerned with the design, implementation and 

evaluation of two hybrid conceptual clustering methods which are based on Artificial 

Immune System (AIS) for learning taxonomy from Malay text. Both algorithms 

proposed in this thesis perform taxonomy learning tasks over sets of documents. 

 

 

 

 

1.2 Background of the Problem 

 

 

The realization of the Semantic Web depends on the broad availability of 

semantic resources, often incorporated in ontology. Taxonomy is one of the important 

components of ontology. The (semi-) automatic acquisition of taxonomy based on the 

actual terminology used by a community is a major step towards the creation of (full) 

ontology. However, several issues still need to be resolved in order to construct ontology 

effectively and efficiently. First of all, the knowledge acquisition bottleneck problem. 

Much research has been devoted to develop methods to (semi-) automatic acquisition of 

taxonomies from text. This type of text mining is considered by Cimiano (2006) as a 

process of reverse engineering because it is a task of reconstructing the world model of 

an author(s) from the document(s) he has written. This task is inherently complex and 

challenging mainly due to two reasons. First, there is only a small part of the authors’ 

domain knowledge available (i.e., in the text) in the recreation process. Second, the 

‘small’ domain knowledge in the text is rarely mentioned explicitly, except in a 

dictionary. Taxonomy learning from texts thus can be seen as working with the 

‘unknown symbols’ for which the appropriate sense needs to be identified as some sort of 

reverse engineering.  

 

Taxonomy learning from texts is the use of content found in texts, for data mining 

tasks such as clustering. According to Cimiano (2006), making explicit the knowledge 

implicitly contained in texts is a great challenge.  The (semi-)automatic taxonomy 

acquisition from text is basically an advanced text mining that aims to identify 

knowledge structure in the form of taxonomy as knowledge can be found in texts at 
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different levels of explicit.  Thus, common methods exploits regular patterns to such as 

‘computer is a machine’ to discover taxonomic relations. However, it seems that the 

more technical and specialized the texts are, the less basic knowledge will be found 

stated in an explicit manner (Cimiano, 2006). Thus, conceptual clustering is an 

alternative technique to derive knowledge from texts.  This technique is based on 

distributional hypothesis (Harris, 1954) that assumes that terms are similar to the extent 

to which they share similar linguistic contexts. In other words, Harris’s hypothesis states 

that the meaning of words corresponds to their use in texts. Although, many techniques 

and methods have been implemented based on Harris’ (1968) distributional hypothesis in 

learning taxonomy from texts, new techniques are expected to produce better quality in 

terms of recall and precision. Though several methods have achieved the goal in 

taxonomy learning from text, some draw backs still exist.  

 

Conceptual clustering methods which have been used for taxonomy induction are 

hierarchical agglomerative clustering (HAC) algorithms, divisive algorithms such as 

Bisecting K-Means and Formal Concept Analysis (FCA).  FCA and HAC attract a lot of 

attentions since the clustering result is presented in the form of a tree structure or lattice. 

These methods are based on Harris’s distributional hypothesis (Harris, 1954) to 

automatically derive taxonomies from texts. Even though these methods have produced 

good results, there are few issues shared by these methods such as data sparseness. 

Cimiano (2006) states that certain contextual features which are extracted from  the texts 

are accidental and erroneous due to missing data or grammatical mistakes, thus not 

corresponding to real-world or semantic similarities. On the other hand, these approaches 

suffer from the incapability to appropriately label the obtained clusters.  

 

Various attempts to overcome data sparseness have been made as can be seen in 

Buitelaar et al. (2003), Cimiano et al.(2004a; 2004b), Reinberger and Spyns (2005) and 

Blohm and Cimiano (2007). Cimiano (2005) for example, introduces a novel algorithm 

called Guided Agglomerative Hierarchical Clustering (GAHC) and a technique called 

smoothing in another different taxonomy learning system which is based on Formal 

Concept Analysis (FCA). GAHC exploits WordNet and Hypernym Oracle (HO) to guide 

the clustering process in order to create reasonable clusters even without enough data. 

The HO is populated by pairs of hypernym/hyponym. In order to find the hypernym and 

hyponym, GAHC uses pattern matching-based approach. GAHC produces better results 
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compared to other unsupervised techniques such as HAC or FCA (Cimiano, 2006). The 

smoothing technique is used in order to overcome data sparseness by using the 

conditional probability to filter the extracted terms before the similarity between terms 

are measured using cosine metric. 

 

However, approaches based on pattern matching as being used in GAHC suffer 

from a very low recall which is due to the fact that the lexico-syntactic patterns are very 

rare. The  more technical and specialized the texts are, the less basic knowledge will be 

found stated in an explicit manner (Cimiano, 2006). Besides, Lian Tze and Hussein 

(2006) states that WordNet too often includes many rare senses while missing domain-

specific senses. In this study, the WordNet has been functionally tested thoroughly and it 

is found that WordNet is unsuitable to be translated as representation of Malay senses. 

This is because translation is not merely an act of linguistic transfer, but it also involves 

the interaction of cultures and that transference of culture which imposes far greater 

problems than linguistic transfer (Elkateb et al., 2006). For example, ‘prophetess’ exists 

in WordNet which is completely taboo in the Malay/Muslim world. Moreover, the 

smoothing technique used by Cimiano (2005) doesn’t improve the results of the FCA-

based approach (Ryu et al., 2006). 

 

Furthermore, the discovery of taxonomy from Malay texts is conspicuous by its 

absence in the research literature, yet it is a very real issue. The Malay language belongs 

to the Austronesian family of languages (Nik Safiah, 1995). Even though the Malay 

language has the same Subject-Verb-Object grammatical structure as English, to Malay 

grammarian Malay is different from English. Azhar (1988) has shown evidence in his 

work from an Englishmen’s opinion that Malay is different from English because Malay 

is a context-dependent and terse language, i.e. brief, direct to the point and ‘effectively 

cut short’ language. Ontology engineers need guidelines about the effectiveness, 

efficiency and trade-offs of different methods in order to decide which techniques to 

apply in which settings. But there is no comparative work that systematically analyze 

different techniques and algorithms on learning concept hierarchies from Malay text. 

This scenario is a major impediment for this study as it leads to lack of guidelines 

problem (Cimiano, 2006). Lack of guideline refers to the lack of research on related 

fields resulting in no guidelines about the effectiveness, efficiency and trade-offs of 

different methods to support the automatic creation of ontology from Malay text. While 
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this research is based on the assumption that existing taxonomy learning from texts 

methods can be applied to Malay texts but how should such a system be realized? 

 

In summary, the proposed solution to these problems must be robust for the 

following issues that make this a taxing task as highlighted by Cimiano (2005 & 2006) 

as follows. 

1. The texts content is noisy therefore the extracted features can be erroneous, i.e. 

not all derived features are correct, 

2. Not all the extracted features are ‘relevant’ in the sense that the extracted 

features will help to discriminate between the different objects (terms); and  

3. The assumption of completeness of information will never be fulfilled, i.e. the 

text collection will never be ‘big enough’ to find all the possible occurrences  

(Ziph, 1932). 

Artificial Immune System (AIS) has been the attention to many researchers in dealing 

with data sparseness and noise. Previous work has shown that an AIS, has attributes that 

fulfill these criteria. There are a number of motivations for using the immune system as 

inspiration for both taxonomy learning and text mining which include robustness, 

reliability, recognition, diversity, memory, self regulation, and learning (Dasgupta, 

1999). This sophisticated natural system provides insight for solving the data sparseness 

and noise faced by GAHC. It is believed that these features will give the system the 

ability to adapt to noise and incomplete data. The fundamental challenge in learning 

taxonomy from Malay texts is the selection of features that are best to represent a 

concept. With the assumption that the existing English syntactic features and lexico-

syntactic pattern may work on Malay text, the available clustering methods and the 

proposed approaches will be used to test this basic notion. However, it is believed that 

Malay language has its own unique characteristics that need to be identified to 

complement existing syntactic features and lexico-syntactic patterns introduced in Hearst 

(1992) and Cimiano (2006). 

 

 

 

 

1.3 Problem Statement 
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The solution of the taxonomy learning from Malay texts problem can be briefly 

described as follows: 

Given a Malay texts, the challenges is to (semi) automatic acquisition of 

taxonomy from the texts while it is a norm in this approach that the extracted 

datasets from the text are sparse and contains noise. At the same time, the 

computational method must be capable of producing better taxonomy in terms 

of F-measure of taxonomic overlap (i.e., FTO) which is defined by taxonomic 

recall and precision.   

 

In light of the above statement, a robust system is required since the existing 

unsupervised conceptual clustering algorithms for learning taxonomy are not fault 

tolerance especially when handling data sparsity and noise.  Therefore, it is desirable to 

come up with a new technique for taxonomy learning that is robust to noise and data 

sparsity. In order to derive knowledge in a form of taxonomy from texts (semi)-

automatically, researchers have proposed  conceptual  clustering methods which are 

based on Harris (1968) distributional hypothesis. However, there are two main issues in 

learning taxonomy from texts.  

 

First, a robust conceptual algorithm that can cope with data sparsity and noise and 

second, an efficient feature selection mechanism. The first issue is raised as the extracted 

attributes for some terms can be accidental or erroneous which leads to noise in data. 

Furthermore, data sparseness is always an issue when learning taxonomy from texts. 

Thus, if existing clustering technique such as bisecting K-means is used for learning 

taxonomy from text, only specific aspect of the whole dataset is taken into account (de 

Castro et al., 2007.) Artificial Immune System (AIS) has been known for its mechanism 

of clonal expansion and network suppression that can produce more accurate data 

representations in handling data sparseness. Even though AIS is known for its 

robustness, to date, AIS has not been applied and tested in learning taxonomy from texts.  

 

 The second issue is about answering the question of how to provide the necessary 

attributes (features) for every terms in an effective and efficient ways. The feature 

selection issue is still not solved if the source is in Malay. As potential way out of this 

problem, Cimiano’s methodology that acquires collective knowledge from the Web 
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using Google can be adopted. In particular, a modified Google-based text miner can be 

developed to test whether it is effective in developing a better taxonomy. 

 

A new immune-inspired algorithm may surpass the existing taxonomy learning 

technique and methods in precision and recall, and is able to cope with data sparsity 

and noise for better performance and robust taxonomy learning system. Therefore, it 

is necessary to demonstrate that the immune-inspired algorithm and the Google-

based text miner indeed make a significant difference in building better taxonomy 

models. In this thesis, the question of whether the immune-inspired mechanism 

matters, i.e., does it lead to building better taxonomy, where by “better” we assume 

superior clustering and later classification performance. The following are the 

research questions that will be addressed to answer the above problem statement. 

 

i. How to model AIS in learning taxonomy from texts? 

ii. How to design a new hybrid method between Guided Agglomerative 

Hierarchical Clustering and aiNet and Clonal Selection Algorithm and 

Bisecting K-mean? 

iii. How can the Artificial Immune System improve the result compared to 

the existing clustering methods? 

iv. Is Harris’s distributional hypothesis applicable in learning taxonomy from Malay 

texts? 

v. Can hybridization of Artificial Immune System with other conceptual clustering 

methods leads to better result? 

vi. Which affinity measurement should be used in the proposed learning system that 

will lead to better result? 

vii. Can a Google-based Text Miner help to overcome data sparseness for better 

result? 

viii. Can English lexico-syntactic pattern be exploited in learning taxonomy from 

Malay texts?  

ix. How to optimize the proposed immune-inspired learning algorithm parameters? 

  

The research questions are based on the effects of dataset (i.e., extracted from texts), 

metric set and feature selection and extraction technique. Based on the research 

questions above, the following hypotheses have been stated. 
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i. The proposed immune-based learning system improves the quality of generated 

taxonomy, compared to the available comparison methods. 

ii. The hybridization of Artificial Immune System with other conceptual clustering 

methods leads to better result compared to existing approaches. 

 

 

 

 

1.4 Aim of the Research 

 

 

The aim of this research is to develop and enhance the hybrid artificial immune 

system that will improve the conceptual clustering performance, able to deal with data 

sparseness for taxonomy learning from Malay texts.  

 

 

 

 

1.5 Objectives of the Study 

 

 

In order to achieve the aim of this research, it is guided by the following objectives. 

1. To propose a new hierarchical clustering algorithm based on the Artificial 

Immune System that is able to handle data sparsity robustly for learning 

taxonomy from Malay texts. 

2. To develop an immune-inspired hybrid model for learning taxonomy from Malay 

texts. 

3. To investigate the effect of the proposed feature selection scheme which consists 

of a new pseudo-syntactic pattern and Google-Based text miner for developing 

context distribution from Malay texts to overcome data sparsity?  

4. To evaluate and validate the performance of the proposed hybrid methods and 

feature selection approaches with benchmark methods on three different sets of 

data in learning taxonomy from texts. 
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1.6 Scope of the Research 

 

 

 This research will engage in an in-depth learning taxonomy from Malay texts 

using bio-inspired algorithm.  Thus, the research work in this study is focused to validate 

the effectiveness of (semi-)automatic acquisitions of taxonomy from Malay texts using 

immune-inspired algorithm and linguistic pattern-based approach. There are three main 

paradigms exploited to induce taxonomies from textual data (Buitelaar et al, 2003). The 

first one is the application of lexico-syntactic patterns to detect hyponymy relations. The 

second paradigm is based on Harris’ distributional hypothesis for synonym extraction 

and term clustering. The third paradigm is from the information retrieval community and 

relies on a document-based notion of term subsumption. The scope of this study is 

limited to the combination of first and second paradigm.  Thus, the proposed methods 

will be compared to the available state-of-the-art hierarchical clustering technique. The 

mathematical definitions of these measurements are presented in Chapter 4. The 

proposed methods will be compared to the available state-of-the-art hierarchical 

clustering technique. The mathematical definitions of these measurements are presented 

in Chapter 4.  

 

This research also concerns on studying the effect of using the existing 

grammatical features and lexico-syntactic pattern to the performance of the learning 

algorithm from Malay texts.  In order to extract features from the texts, two techniques 

will be applied in this study. The techniques are the syntactic dependency technique 

which has been used by Cimiano et al. (2006) and the lexico-syntactic pattern introduced 

by Hearst (1992). New grammatical features and lexico-syntactic patterns for Malay will 

also be investigated. In this research, only the hypernym/hyponymy or IS-A relation 

serves as a basis for the natural sub-concept/super-concept. Other relations than IS-A is 

beyond the scope of this research.  

 

It is beyond the scope of this investigation to perform any testing regarding 

differing Malay Natural Language Processing tools and as such is left for future 
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research. As with other immune-inspired learning algorithms, the scope of discussions in 

this thesis is narrowed down to the working of antibodies and antigens in clonal selection 

and immune network. 

Therefore, the scopes of the study can thus be enumerated as follows. 

i. The study focuses on the (semi-) automatic acquisition of taxonomy from three 

Malay texts representing three different domains which are: 

a. Fiqh (Islamic Jurisprudence). 

b. Biochemistry. 

c. Information Technology (IT).  

ii. This research investigates the use of Google-based feature extraction in order to 

overcome data sparseness. 

iii. To investigate the best affinity measurement for the proposed algorithms, three 

affinity measurements are tested which are Hamming, Jaccard and Rand 

Coefficient. 

iv. For the purpose of comparison, five clustering techniques are developed as 

follows. 

a. Guided Agglomerative Hierarchical Clustering. 

b. Bi-Secting K-Means. 

c. Hierarchical Agglomerative Clustering: Single Linkage.  

d. Hierarchical Agglomerative Clustering: Average Linkage. 

e. Hierarchical Agglomerative Clustering: Complete Linkage.  

v. The quality of the produced taxonomies is measured by using measurements 

introduced by Cimiano (2006). The measurements are Cimiano’s Taxonomic 

Overlap measurements which are Lexical Precision (LP), Lexical Recall (LR), 

Lexical F1 (F1), Precision Taxonomic Overlap Precision (PTO), Recall 

Taxonomic Overlap (RTO) and F-Measure Taxonomic Overlap (FTO).  

 

 

 

1.7 Theoretical Framework 
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The theoretical framework of the research is based on Maedche and colleagues’ 

method (Kietz et al., 2000). The research framework depicted in Figure 1.1 consists of 

four activities:  

 

 

 

 

Figure 1.1: The traditional framework for learning taxonomy from texts 

 

Activity 1. Select sources. The sources are documents which are heterogeneous in their 

format and contents. The documents can be domain text or generic text documents. In 

this study, the World Wide Web and general corpus provide the general documents since 

it is the largest repository in the world. 

 

Activity 2. Preprocessing. During the pre-processing phase, the main technique used is 

natural language processing (NLP). Generally, the NLP involved in this study are 

tokenization, part-of-speech tagging, shallow syntactic analysis (or parsing), term and 

word extraction and stemming. Using NLP tools, meaningful features or attributes for 

each term are extracted. Extracting meaningful features in this study consists of 

preprocessing of the documents and construction of a vector space. 

 

Activity 3. Concept and Relation Learning. Its goal is to acquire concepts which are 

extracted from texts by means of mainly NLP tools that use pattern-based extraction and 

conceptual clustering such as Bisecting K-Means or Hierarchical Agglomerative 

Clustering. In this study, the learned concepts will only be linked with Subclass-Of 

relation or also known as IS-A relation. Relations between concepts of the domain are 

learnt by means of pattern-based extraction.  

 

Activity 4. Evaluation. Its goal is to evaluate the resulting taxonomy by comparing it 

with a reference taxonomy.  

 

 

 

 

Pre-
processing

Select 
Sources 

Concept  and 
Relation Learning 

Evaluation 
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1.8 Definition of Terms 

 

i) Robust or Robustness 

 

The hierarchical clustering method is robust if it can produce an acceptable clustering 

performance regardless of data behavior such as sparsity or noise.  

 

ii) Data Sparsity or Data Sparseness 

 

Refers to a situation in which the extracted contextual features from texts are sparse and 

insufficient to identify similarities between terms.  Since the contextual feature for a 

term is represented in binary, data sparseness also refers to a string of binaries that is 

populated primarily with zeros. 

  

iii) Noise Tolerance 

 

The ability of a method to recognize the antigens without the need of an absolute 

recognition as the method is tolerant to noise. 

 

iv) Vanilla Parameter 

 

In information technology, vanilla is an adjective meaning plain, basic or standard. In the 

context of this research, the vanilla parameter refers to the values which are commonly 

used by researchers to find optimal solution in their experiment.  

 

 

 

 

1.9 Summary and Thesis Outline 
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This chapter has presented the motivation of the research by reviewing the 

background of the problem, as well as an outline of the purpose and objective of the 

research. In addition, the potential contribution of the research has also been 

highlighted. This thesis consists of eight chapters as depicted in Figure 1.2. Figure 

1.2 also shows the mapping between the research objectives and the chapters in the 

thesis.  

 

The structure of this thesis is as follows.   

i. The first chapter gives a brief introduction to the research and briefly explains 

the problem statement, research objectives, research scope and brief 

discussion on the research methodology.  

ii. Chapter 2 reveals the background to the research with a formal and 

mathematical definition of taxonomy. This chapter presents in detail the field 

of taxonomy learning from textual data, in particular describing the history 

and state-of-the-art in this area.  

iii. Chapter 3 introduces the basics necessary to understand the immune system. 

The aim of this chapter is it serves to impart technical knowledge to the 

reader to allow for comprehension of the later chapters. Secondly it serves to 

provide evidence that the use of an AIS and the chosen problem domain are 

both justified in the context presented in this thesis. 

iv. Chapter 4 describes the methodological approach of the research. 

v. Chapter 5 presents the methodology, implementation and experimental results 

for the first taxonomy induction approach which makes use of the proposed 

immune-inspired algorithm named GCAINT (Guided Clustering with 

Artificial Immune Network).  

vi. Chapter 6 presents the methodology, implementation and experimental results 

for the second taxonomy induction approach named CLOSAT – Clonal 

Selection Algorithm for Taxonomy Learning.  

vii. Chapter 7 presents the methodology, implementation and experiment results 

for  a new approach in feature selection from Malay texts by using a Google-

Desktop search engine. The methodology and implementation of the 

automatic parameter tuning is presented in this chapter. 
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viii. Finally in Chapter 8, the thesis further discuss the results and interpretation of 

the obtained taxonomy. This chapter concludes by offering some thoughts on 

the use of intelligent systems for taxonomy learning in the long term. 
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Figure 1.2: Thesis outlines and research objectives mappings 
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