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ABSTRACT 

 

 

 

 Gallium Arsenide nanowires (GaAs NWs) have been grown on GaAs and 

Silicon (Si) substrates by gold-assisted and using metal-organic chemical vapor 

deposition (MOCVD) method.  The structural properties and electrical conductivity 

were studied and was found to be strongly dependent on the pre-annealing temperature, 

growth temperature, growth period and V/III ratio.  Pre-annealing process at 600 oC 

has produced an eutectic point of Au and GaAs substrate and initiated the growth of 

the NWs.  The NWs were uniform in diameter and composition at a growth 

temperature of 460 oC, growth period of 30 minutes and V/III ratio of 166.  Activation 

energy for the NWs in the temperature range (420 – 480) oC was found to be 58.86 

kJ/mol.  Energy dispersive X-ray analysis (EDX) indicated the presence of Au, Ga and 

As.  From the field-emission scanning electron microscopy (FE-SEM), the growth of 

the NWs were at an elevation angle of 90o, 60o, 65o and 35o with respect to the GaAs 

substrate for (111)B, (311)B, (110) and (100) orientations respectively.  The NWs 

grew vertically, randomly and horizontally on the Si(100) substrate when there was no    

pre-annealing process, pre-annealing process at a temperature of 600 oC for 10 minutes 

and an extended pre-annealing process at 450 oC for 7 minutes respectively.  High-

resolution transmission electron microscope (HRTEM) micrograph showed the NWs 

that grew on the GaAs(100) substrate has less structural defects when compared to the 

GaAs(111)B.  The electrical conductivity of the NWs from the measurement of the 

conductive atomic force microscope (CAFM) showed similar to that of a p-n junction 

characteristics. The energy gap for the GaAs NW was found to be 1.50 eV. 
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ABSTRAK 

 

 

 

 Dawai nano Galium Arsenida (GaAs) telah ditumbuhkan di atas substrat GaAs 

dan Silikon (Si) dengan bantuan zarah emas dan menggunakan kaedah pemendapan 

wap kimia logam organik (MOCVD). Kajian sifat struktur dan kekonduksian elektrik 

menunjukkan dawai nano GaAs sangat bergantung kepada suhu pra-sepuhlindap, suhu 

pertumbuhan, masa pertumbuhan dan nisbah V/III.  Proses pra-sepuhlindap pada    

suhu 600 oC menghasilkan titik eutektik antara Au dan substrat GaAs, dan mula 

merangsang penumbuhan dawai nano.  Diameter dan komposisi yang seragam pada 

dawai nano diperolehi pada suhu pertumbuhan 460 oC, masa pertumbuhan 30 minit 

dan nisbah V/III 166.  Tenaga pengaktifan dawai nano pada julat suhu (420 – 480) oC 

adalah 58.86 kJ/mol.  Analisis tenaga pembelauan sinar-X (EDX) menunjukkan 

kehadiran Au, Ga dan As.  Melalui kajian pancaran-medan mikroskop imbasan 

elektron (FE-SEM), dawai nano GaAs tumbuh pada sudut kecondongan 90o, 60o, 65o 

dan 35o terhadap permukaan substrat GaAs dengan masing-masing orientasi (111)B, 

(311)B, (110) dan (100).  Dawai nano tumbuh secara menegak, rawak dan mendatar di 

atas substrat Si(100) masing-masing apabila tiada proses pra-sepuhlindap, pra-

sepuhlindap pada suhu 600 oC selama 10 minit dan pra-sepuhlindap tambahan pada 

suhu 450 oC selama 7 minit.  Mikrograf mikroskop pemancaran elektron resolusi 

tinggi (HRTEM) menunjukkan dawai nano yang tumbuh pada substrat GaAs(100) 

kurang struktur cacat berbanding substrat GaAs(111)B.  Kekonduksian elektrik dawai 

nano daripada pengukuran mikroskop konduktif daya atom (CAFM) menunjukkan 

kesamaan terhadap pencirian simpang p-n.  Jurang tenaga dawai nano GaAs yang 

diperolehi adalah 1.50 eV.  
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CHAPTER 1 

 

 

 

BACKGROUND OF RESEARCH  

 

 

 

1.1 Introduction 

 

 Nanotechnology is one of the fastest growing and most dynamic areas of 

research in this decade.  The growth can be felt with the emergence of increasingly 

smaller electronic equipment such as smaller and higher performance computer 

notebooks, handphones with sizes as small as two fingers, and slim but accessorised 

with many applications, and many more electronic equipments. Similarly, the 

information of a library can be loaded into the portable hard drives as the size of a 

quarter of A4 size paper.  For that reason, the quantity of raw materials necessary for 

functioning devices and power consumption has been decreased.  The cost required 

for an operation will be reduced.  The waste released into the air will be reduced 

when the materials used decrease.  Hence, this will trim down the release of carbon 

dioxide into the environment and will save the earth.  Malaysia is also actively 

promoting the green earth.  So as not to be left behind in the modernisation and 

without missing the flow of life to enjoy the sophisticated and advanced technology, 

many nano-based researches have been and are being actively carried out.  This is 

reflected in the establishment of centres such as Ibnu Sina Institute for Fundamnetal 

Science Studies, Universiti Teknologi Malaysia, Institute of Science of Universiti 

Teknologi Mara, Nanocomposite Center of Universiti Putra Malaysia, Institute for 

Nano Electronics Engineering of Universiti Malaysia Perlis and many others. 
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 The original idea of nanotechnology was presented by a physicist, Richard P. 

Feynman in 1960 in his famous talk “There’s plenty of room at the bottom” 

(Feynman, 1960).  Nanotechnology is the study and fabrication of devices on the 

nanometer scale (10-9), where one nanometer is one billionth of a meter.  One 

nanometer is approximately the length equivalent to 10 hydrogen or five Si atoms 

aligned in a line (Guozhong, 2005).  The novel materials and devices made on 

nanoscale offer unique and entirely different properties and applications as compared 

to conventional technology.  Materials in the microscale mostly exhibit physical 

properties the same as that of bulk form.  However, it is different in the nanoscale.  

For example, the melting point of Au nanoparticle is lower than that of bulk Au since 

it reduces lattice constant and number of surface atoms and becomes significant in 

the thermal stability.  Size effects become important when at least one dimension of a 

crystal is reduced to the order of hundreds of atoms which is the length scale of 

nanometers.  This has instigated the explosive growth of the fields of nanoscience 

and nanotechnology. 

 

Many of the results in nanotechnology today are focused on applications of 

semiconductor materials.  Semiconductors are materials in which the electrical 

conductivity depends on applied energy such as temperature due to the electronic 

band structure of the material.  The band gap between energy bands is sufficiently 

narrow and the movement of electrons into the next energy band may occur with a 

reasonable probability.  This allows the materials to conduct electricity when 

sufficient energy is supplied.  This thesis focuses on GaAs materials which is the   

III-V semiconductor compounds. It has a direct band gap (1.43 eV) meaning that 

electrons and holes can combine directly while conserving momentum, a process that 

results in the emission photon (Brozel and Stillman, 1996) and applicable for optical 

applications (Lieber, 2003).   The mobility carrier of GaAs is very high which is 

8500 cm2V-1s-1 (Wang et al., 2008) compared to Si, which make it ideal for high 

frequency electronic applications (Lauhon et al., 2004 and Haraguchi et al., 1992). 

 

Nanomaterials are commonly classified according to their dimensionabilities 

as zero dimensional (dots), one dimensional (nanowires (NWs), nanotubes and 

nanobelts) and two dimensional (thin films).  These categories refer to the number of 

dimensions in which the material is outside the nano regime (Wang, 2003).  Much 
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work has been focused on the development and application of thin films and 

quantum dots (QDs) compared to NWs.  The formation and properties of thin films 

are now well-understood, and these materials form the cornerstone of many high-

precision products including commercialized lasers, silicon microelectronics and 

NASA quality optical components (Baca and Ashby, 2005).  QDs are also easily 

synthesized through wet chemistry and aerosol spray, and have been developed in the 

past few decades into a host of commercial applications such as QD lasers and single 

electron transistors (Coleman, 1997).  Many researchers traditionally have not 

pursued research into NWs due to their complex and corresponding lack of control 

over their synthesis.  However, NWs have grown and synthesis techniques have 

greatly improved with the increasing of publications in NWs in the last ten years.  

The potential for use in commercial environment, electronic and biological 

applications have increased interest researchers from almost all science disciplines 

and even to general public.  Yet, the formation of NWs is incomplete, limited control 

and contains structural defects.  Also, an understanding of the basic process of NWs 

has not fully understood and still in debate. 

 

 

 

1.2 Semiconductor Nanowires  

 

 In the production of semiconductor NWs that meet the criteria of an 

electronic device, epitaxial growth of NWs need to be highlighted.  The tiny, wire-

shape structures with diameter less than 100 nanometers and length greater than 1 

micron are effectively NWs.  The other requirement for the future advanced 

industrial application of NW materials are straight NWs, uniform in compositional 

and uniform diameters. 

 

 Various techniques have been used to synthesized GaAs NWs such as metal-

organic chemical vapour deposition (MOCVD) (Hiruma et al., 1995; Hannah et al., 

2008 and Paiman et al., 2009), molecular beam epitaxy (MBE) (Ihn et al., 2007a; 

Plante and LaPierre, 2008) and chemical beam epitaxy (CBE) (Persson et al., 2004).  

GaAs NWs are commonly growth using vapor-liquid solid (VLS) technique by 

applying metal Au as catalyst to initiate crystal growth.  The VLS method was first 
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discovered by Wagner and Ellis (1964).  Due to the presence of the metal on the 

substrate, the geometry and atomic structure of the interface have been found to be 

very critical to the NW growth.  By regulation and preparation of the atomic 

structure of interfaces, it can help produce high quality NWs. 

 

 Annealing temperature plays an important role in the eutectic alloy generated 

of Au nanoparticle catalyst and substrate surfaces.  In the eutectic phase, Au 

nanoparticles can absorb vapours from the vaporization of the organic materials to 

form NW crystal underneath the droplet particle.  If the Au is in the solid phase, it 

will not absorb any material and NW crystal did not occured.  Investigation of the 

annealing process has already been done by many researchers in the formation of 

GaAs NWs (Seifert et al., 2004; Wang et al., 2008 and Ghosh et al., 2009).  

However, many studies and observations of colloidal gold particles on GaAs 

substrate at the early stages of formation were given less attention.  Kawashima et al. 

(2008) has reported the initial stages of Si NWs growth using transmission electron 

microscopy (TEM).  Other groups reviewed on the initial formation of Au catalyst on 

the surface of the GaAs substrate using TEM and XRD (Ghosh et al., 2009; Mariager 

et al., 2010).  Atomic force microscopy (AFM) morphological studies of the surface 

charatcerization of eutectic Au/Ga interface is reraly been done.  AFM can image 

surface structures down to atomic size near native conditions i.e, without capping the 

sample the conductive layer. 

 

 An interesting subject in the VLS growth of NWs is changing their crystalline 

orientation.  Typically, the commonly used GaAs(111)B substrate results in III-V 

semiconductor NWs grown in to the [111]B direction.  This has been reported by 

several groups in the growth of GaAs NWs (Hiruma et al., 1993 and Borgstrom et al., 

2004), InP NWs (Bhunia et al., 2004) and InAs NW (Dayeh et al., 2007a).  

Important features found in the study of NW when it is grown in the [111] 

orientation is a high density of twin stacking faults than growing in other orientation.  

Moreover, NWs also crystallise in a hexagonal structure with higher grown 

temperature and higher V/III ratio.  Thus, from the perspective of quality crystal 

produced, the NW growth with orientation other than [111] would be beneficial.  

One method that can be used to change the direction of NW growth is by using 

different substrate orientation.  There are several problems that may arise as result of 
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different substrate orientation such as catalyst particle annealing (Krishnamachari et 

al., 2004) and chemical treatment of the substrate surface (Ghosh et al., 2009), which 

can affect the substrate surface.  On the basis of energy consideration, Wang et al. 

(2008) concludes that the (111)B direction is favourable as it minimises the surface 

free energy of the liquid-solid interface. 

 

 In previous studies of GaAs NWs using MOCVD, mostly dealt with only 

much thicker NWs (Hiruma et al., 1995; Hannah et al., 2007 and Dick et al., 2010).  

A fundamental question remains on GaAs NWs, that is the minimum diameter of the 

crystal NW which is attainable by the growth method.  In order to address the 

question, the growths of GaAs NWs are needed to study quantitatively.  By applying 

the Gibbs-Thomson effect, the growth rates of GaAs NWs have to be plotted with 

variable diameters of NWs.  It is found that GaAs NWs of smaller diameters are 

likely to grow slower than those of larger diameters.  The critical diameter which is 

the minimum diameters of GaAs NW can be calculated from the plotted graph. 

 

 Si(100) substrate is widely used as a substrate in electronic industry for the 

formation of resonant tunneling diodes (RTD) (Tan et. al, 2004a), light emitting 

diodes (Roest et. al., 2006) and solar cells (Jayadevan and Tseng, 2005).  The 

application of NWs in the devices requires the fabrication of materials in the form of 

horizontal to the substrate surface.  Kang et al. (2010) in their studies had grown 

GaAs buffer layers on Si substrate to minimize the lattice mismatch and by adding 

the annealing temperature to the layer, the surface structure are formed in quality.  

Horizontal growth of GaAs NW parallel to substrate offer a benefit of fabricating 

integrated nanodevice arrays, but there are only a couple of reports about the growth 

of laterally aligned NWs.  Until now, there are a few studies on the horizontal growth 

of Ga2O3, ZnO and In2O3 NWs on sapphire and Si substrates (Kuo and Huang, 2008; 

Nikoobakht et al., 2004 and Hsin et al., 2007), but essentially no reports describing 

the direct horizontal growth of GaAs NWs on a substrate surface using MOCVD 

method.   

 

 Characterisation of nanostructures is a challenging task because of the very 

sensitivity required due to high surface to volume ratio.  Although additional 

characterisation tools are required to fully understand the chemical and structural 
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details of the chemical defects, electrical testing can provide a snapshot of the 

underlying defects in the material.  The uses of conductive atomic force microscopy 

(CAFM) in nanoscale semiconductor devices are preferred because the conductivity 

of any point can be measured by only probing the AFM tip in a few nanometers 

distance from the surface.  With the probe tip diameter of approximately 100 nm, the 

conductivity of the material is measured more accurately as compared to the 

conventional I-V measurements (Yanev et al., 2009).  Accordingly, by using excess 

CAFM, the electrical conductivity of horizontally grown GaAs NW can be measured 

effectively, especially in different structures of the surface. 

 

 The electrical properties of NWs are critically dependent on their dimensions 

and crystal structure (Dayeh, 2010).  Small changes in the diameter of a NW can 

significantly influence the separation of electronic energy states within the wire 

owing to quantum confinement.  Conductivity variations of this magnitude reflect 

significant differences in dopant or defect concentrations in the wires.  III-V 

semiconductor NW, which is grown via VLS technique often contain numerous 

stacking defects composed of ZB and WZ GaAs phase region (Banerjee et al., 2006).  

These defects may influence the luminescence spectrum (Adu et al., 2006) and may 

increased resistivity due to increasing the number of carbon-related impurities 

(Thelander et al., 2010). 

 

 

 

1.3 Problems Statement 

 

 GaAs NWs is one of the most fascinating III-V semiconductor NWs to be 

further investigated for application in electronic and optoelectronic devices due to 

their direct bandgap and higher mobility carrier (Lauhon et al., 2004; Wang et al., 

2008 and Lieber, 2003).  For the fabrication of NWs, a small size is not the only 

requirement.  For any practical application, the processing conditions need to be 

highly controlled in such a way that the resulting NWs achieved the desired and 

quality crystal structure with identical size (uniform size distribution), identical shape 

or morphology and identical chemical composition. 
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 Previous reports on GaAs NWs, however, still exhibit non-uniform 

morphology such as tapering and high density of structure defects that should be 

avoided (Hiruma et al., 2006; Borgstrom et al., 2007 and Ihn et al., 2006).  Thereby a 

well-controlled NW growth process with appropriate growth parameters must be 

done in order to achieve GaAs NWs with uniform diameters and chemical 

composition, less defect structure and higher electrical conductivity.  Hence, this 

study will be conducted in order to investigate the effect of variable growth 

parameters on structural and electrical conductivities of GaAs NWs.  Optimum 

growth parameters and growth control will be selected in order to produce high 

quality GaAs NWs. 

 

 

 

1.4 Research Objectives 

 

 There are four objectives outlined in this thesis as follows: 

 

i) to determine the effect of growth parameters i.e; annealing 

temperature on gold colloids, growth temperature, growth period and 

V/III ratio on the growth structure of GaAs NWs using MOCVD. 

ii) to investigate the effect of annealing temperatures of gold colloids on 

the growth direction of GaAs NW 

iii) to characterize the effect of substrate orientation to the structure of 

GaAs NWs 

iv) to obtain the energy band gap of GaAs NWs from electrical 

conductivity measurement using CAFM. 

 

 

 

1.5 Research Scopes 

 

 This thesis focuses on the structural and electrical properties of GaAs NWs 

grown on GaAs(111)B, GaAs(311)B, GaAs(110), GaAs(100) and Si(100) substrates 

by VLS mechanism.  GaAs NWs were grown using vertical flow MOCVD that is 
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using purified hydrogen, H2 as a carrier gas to transport the precursor materials.  

Substrate was first treated with gold colloids as catalyst to initiate the growth of NWs.  

The growth parameters addressed in these studies are growth temperature in the 

range of 380 – 600 oC, growth period (10 – 60 mins), V/III ratio (17 to 297) and 

substrate of different orientation.  The metal-organic source was trimethylgallium 

(TMGa) and organo-substitude hydride (AsH3) was used as group V source.  

Annealing temperatures are deeply studied for the formation of NW structures by 

changing the process of annealing temperature on gold colloids particle. 

  

 Field emission scanning electron microscopy (FE-SEM) was used to visualise 

very small topographic details on the substrate surface and GaAs NW itself whether 

in plan view or in cross-section.  Energy dispersive X-ray spectroscopy (EDX) was 

used to measure the changes in elemental composition of gold colloid particles, 

GaAs NWs and the substrate used.  Crystallinity and orientation of GaAs NWs were 

studied by X-ray diffraction (XRD) technique.  Transmission electron microscopy 

(TEM) was used to obtained accurate information about defects and structure in 

GaAs NWs.  Electrical conductivity of GaAs NW at different point along the NW 

was investigated by conductive atomic force microscopy (CAFM).  With extracting 

data from a current-voltage measurement, the energy gap (Eg) at different section on 

the GaAs NW can be calculated. 

 

 

 

1.6 Significance of the Study 

 

 Coupled with the emergence of high technology NW fabrication, 

semiconductor NW is produced in atomic arrangement and can be applied in the 

electronic and optoelectronic application.  GaAs NWs due to its properties such as 

high electron mobility, direct band gap and high quantum efficiency are potentially 

use in solar cells and lasers. 

 

 On the fabrication, the vertical reactor used in this study are rarely been used 

by other researchers.  Various parameters such as annealing temperature on gold 

colloids, growth temperature, growth period, V/III ratio and substrate orientation can 
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be modified to produce an optimum value of effective NWs. Although many studies 

have been done on the different growth temperature, the values that were found are 

different.  This may depend on the characteristics of the device itself.  The detailed 

studies of catalyst forming also are not fully explored.  In this regard, studies relating 

the effect of annealing on gold colloids and NW formation will be discussed in 

detailed.  Direct horizontal growth of GaAs NWs was determined by applying 

extended annealing process on the gold colloids.  GaAs NWs have successfully been 

grown on different orientation substrate such as (100), (311)B and (110) with 

minimal twin defect structure compared to when using (111)B substrate.  Another 

factor that influences the structure of the GaAs NW is the growth rate of NWs.  

Through the observation of growth rate of NWs, the activation energy of a substance 

and minimum diameter of GaAs NW can be calculated. This was also a significant 

study of GaAs NW and the Au nanoparticles catalyst. 

 

 In the structural characterisation of GaAs NWs, the equipment that is used 

does not only measure the micro size, but even up to atomic level resolution 

including FE-SEM and TEM.  In electrical properties, measurements made were 

based on actual usage of applications in semiconductor industries.  This is in contrast 

with the other characterisations which focused on the chemical analysis.  The tool 

used in the characterisation of the electrical properties is conductive atomic force 

microscopy (CAFM). Study on the structural and electrical properties can enhance 

the basic understanding on the effect of those parameters on the GaAs NWs. 

 

 

 

1.7 Outline of Thesis 

 

 Chapter 1 presents a general background of nanotechnology, semiconductor 

NWs and the growth review of GaAs NWs.  This is followed by the objectives and 

scopes of the study.  The general physical properties of bulk GaAs are presented in 

Chapter 2.  Theory on vapour-liquid-solid related to the NW growth is also 

described.  Chapter 3 focuses on the experimental works including GaAs NW growth 

and characterisation process.  A brief overview of each characterisation technique 

was discussed.  Results and analyses are reported in Chapter 4.  This chapter is 
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divided into four sections referring to the four different objectives but closely related.  

Section One is related to optimal parameters.  The effects of different growth 

parameters such as annealing effect on the gold colloids, growth temperature, growth 

period and V/III ratio are studied in order to achieve optimised growth conditions.  

Section Two involves the annealing process on the NW formation.  Section Three is 

referring to different orientation substrates used to NW structure and lastly the 

electrical characterisation of GaAs NWs was discussed in Section Four.  Chapter 5 

concludes the thesis by describing the main observations and recommending some 

future works. 
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