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ABSTRACT 

In recent years, Structural Health Monitoring (SHM) has been proposed and 

practiced for condition assessment of structures. SHM covers shortcomings of non-

destructive tests and is comprised of a sensory system, data acquisition system, and 

damage identification system. In this study, numerical and experimental 

investigations are concentrated on the application of Artificial Neural Networks 

(ANNs) and Wavelet Transforms (WTs) for damage identification of civil 

engineering structures. As a major outcome of this research, three novel damage 

identification methods are developed. The first damage identification method enables 

the SHM systems to identify damage to cantilever structures through decomposition 

of mode shapes by integrating WTs and ANNs. The second damage identification 

method enables SHM systems to identify damage to cantilever structures via 

decomposition of response accelerations by means of WTs and ANNs. The third 

damage identification method takes advantage of only ANNs and enables the SHM 

systems to identify seismic-induced damage to concrete shear walls in real-time by 

measuring inter-storey drifts. In addition, a novel optimal strain gauge placement 

method for seismic health monitoring of structures is proposed. This method 

considers the seismicity of construction site and the importance level of structures. 

Results from the first method showed that when the imposed damage levels were 

severe, medium, and light, the proposed method could quantify them with less than 

5%, 12%, and 16% errors, respectively. In addition, the second method quantified 

seismic-induced damage to the studied structure with an averaged error of 8%. 

Moreover, the third method classified damage levels of the studied concrete shear 

walls with a success rate of 91%. The proposed optimal strain gauge placement 

method reduced the number of required sensors for the studied structure from 206 

sensors to 73 sensors. The obtained results demonstrated the feasibility, robustness, 

and efficiency of the proposed methods for damage identification of civil engineering 

structures. 
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ABSTRAK 

Kebelakangan ini, sistem Structural Health Monitoring (SHM) telah 

dicadang dan diamalkan untuk penilaian keadaan struktur. SHM ini boleh mengatasi 

kelemahan ujian tanpa musnah dan melingkungi sistem deria, sistem perolehan data, 

dan sistem penentuan kerosakan. Dalam kajian ini, pelbagai siasatan berangka dan 

eksperimen telah ditumpukan atas aplikasi Artifical Neural Networks (ANN) dan 

Wavelet Transform (WT) untuk menentukan kerosakan struktur kejuruteraan awam. 

Hasil utama penyelidikan ini adalah tiga kaedah baru penentuan kerosakan. Kaedah 

penentuan kerosakan pertama membolehkan sistem SHM untuk menentukan 

kerosakan struktur julur melalui penguraian bentuk mod dengan mengintegrasikan 

WT dan ANN. Kaedah kedua boleh membantu sistem SHM untuk menentukan 

kerosakan atas struktur julur melalui penguraian pecutan balas dengan cara WT dan 

ANN. Kaedah ketiga menggunakan ANN sahaja untuk menentukan kerosakan 

seismik pada dinding ricih konkrit dengan mengukur hanyutan di antara pelbagai 

tingkat. Di samping itu, suatu kaedah penempatan tolok tekanan yang baru juga telah 

dicadangkan untuk pemantauan kesihatan seismik struktur. Kaedah ini mengambil 

kira seismik tapak pembinaan dan tahap kepentingan struktur. Hasil daripada kaedah 

pertama menunjukkan bahawa apabila tahap kerosakan adalah teruk, sederhana, dan 

ringan, kaedah ini boleh mengukurnya dengan masing-masing kurang daripada 5%, 

12%, dan 16% kesilapan. Lebih daripada itu, kaedah kedua telah mengukur 

kerosakan seismik atas struktur yang dikaji dengan ralat purata sebanyak 8%. Selain 

itu, kaedah ketiga telah mengklasifikasikan tahap kerosakan atas dinding ricih 

konkrit dengan kadar kejayaan setinggi 91%. Kaedah penempatan tolok tekanan 

yang dicadangkan juga telah mengurangkan bilangan sensor yang diperlukan 

daripada 206 sensor (pengagihan seragam) kepada 73 sensor. Keputusan yang 

diperolehi telah menunjukkan feasibiliti, keteguhan, dan kecekapan kaedah-kaedah 

yang dicadangkan untuk mengesan kerosakan struktur. 
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 CHAPTER 1  

INTRODUCTION 

1.1 Background 

During the past centuries, the demand of societies for new structures like 

bridges, tunnels, and high-rise buildings had been increasing. On the one hand, 

people reliance on the public structures has reached to a level that picturing a world 

without such structures is not feasible. On the other hand, owing to aging, corrosion, 

overloading, etc. the integrity of in service structures is decreasing such that may 

result in unpredictable disasters. Examples of such disastrous incidences can be 

found worldwide. Collapse of Kaoshiung-Pingtung Bridge in Taiwan in year 2000 

(Figure 1.1), collapse of Mianus River Bridge in Connecticut in year 1983 (Figure 

1.2) and collapse of an eight-lane highway bridge in Minneapolis into the Mississippi 

River in year 2007 are some examples. These incidents indicate that a health 

monitoring and integrity assessment system is required to ensure the reliability and 

safety of in service structures. For decades, engineers have relied on Non-destructive 

Tests (NDT) for condition assessment of in service structures. NDT can be carried 

out by visual inspection, acoustic emission, X-ray, radiography, ultrasonic waves, 

etc. Despite wide application in civil engineering practice, most of NDT techniques 

suffer from major shortcomings.  

NDT presume that damage locates in  the inspected area. However, owing to 

anti-fire coverage or ceilings, damaged areas may remain hidden. NDT is a local 

damage detection method, thereby when it is applied to large 
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structures becomes costly and time-consuming. In addition, results of NDT often 

depend on the experience and proficiency of test takers. 

 

Figure 1.1   Collapse of Kaoshiung-Pingtung Bridge in Taiwan in year 2000(BBC 

NEWS, 2000). 

 

Figure 1.2  Collapse of Mianus River Bridge in Connecticut in year 1983(Morgan, 

1983). 

Over past three decades, extensive researches have been carried out to 

overcome the problems of NDTs. Some researches proposed global damage 

identification techniques that were capable of assessing the condition of the entire 

structure at once. These techniques formed Structural Health Monitoring (SHM) 

systems as a new generation of methods for integrity assessment and health 

monitoring of structures. SHM is defined as “a process of implementing a damage 

detection strategy within a system to enable autonomous state awareness for 

structural integrity” (Sohn et al. 2004). SHM reduces inspection costs, minimizes 
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preventative maintenance, and extends remaining useful life of structures. Moreover, 

SHM data can be used for designing lighter-weight structures and conformity 

assessment of dynamic behaviour for the newly designed structures. SHM consists of 

sensory system, data acquisition system and damage detection system. Along with 

ongoing advances in the sensory and data acquisition systems, many efforts have 

been made to improve the performance of damage detection techniques. Damage 

identification methods can be categorized into two groups that include Time-domain, 

and Frequency-domain approaches. The concept behind Frequency-domain methods 

lies in the fact that, damage alters the stiffness of structures and leads to a change in 

natural frequencies, mode shapes, and modal damping. Therefore, by measuring the 

modal parameters before and after damage, useful information regarding the damage 

presence, location, and severity is obtained. Time-domain damage identification 

techniques make use of dynamic responses in order to identify imposed damage. 

Dynamic responses include structural displacement, accelerations, strains, etc.  

Despite variety in the damage identification algorithms, practical applications 

of SHMs have been associated with significant problems. For example, change in the 

temperature and humidity can alter measured modal parameters (Xia et al., 2006) 

consequently may result in false damage prediction. Such uncertainties in the 

captured data and material properties, has encouraged researcher to focus on the new 

techniques that are less sensitive to the change in the environmental condition and 

noisy data. In this study, numerical and experimental investigations were 

concentrated on the application of Artificial Neural Networks (ANNs), Wavelet 

Transforms (WTs) and Principal Component Analysis (PCA) for damage 

identification of civil engineering structures. ANNs are robust tools for pattern 

recognition and classification. Even in the presence of noise, they provide acceptable 

performance. WTs are a time-frequency analysis based on a windowing technique 

with variable-sized regions. Wavelets are capable of describing a signal in a localized 

time and frequency domain (Chui, 1997; Walter, 1994). PCA is a powerful 

multivariate statistical technique capable of reducing the dimensionality of data and 

reducing noise effects on the measured dynamic responses (Jolliffe, 1986). 



4 
 

As major outcomes of this research, three different damage identification 

methods were developed. These methods cover both Time-domain and Frequency-

domain damage identification approaches. In addition, a novel method for optimal 

strain gage placement for seismic health monitoring of structures was proposed.  

1.2 Problem Statement and Motivation for the Research 

As stated in the introduction, increasingly demands for health monitoring and 

integrity assessment of structures, pushed conventional non-destructive tests toward 

global damage identification techniques that were capable of covering drawbacks of 

NDTs. Although at the beginning, these techniques were only employed to monitor 

damage to structures due to ageing, corrosion, and overloading, soon they were 

adopted for the health monitoring of seismic-induced damaged structures.  

Earthquakes frequently strike areas that are close to active faults. Because of 

ground motion, so many structures that have not been designed for seismic loads 

collapse immediately. However, there are structures that resist against seismic 

actions while having minor to medium damage. For such damaged structures, 

integrity assessment soon after the earthquake is a vital task. The main reason is that 

aftershocks can demolish damaged structures while they are occupied by people. In 

year 2011, a 5.7 magnitude earthquake hit the Turkey’s eastern province of Van 

almost a month after the strong earthquake that had occurred at the same area. 

Although, many of the city's buildings had already been evacuated, the second 

earthquake levelled two hotels that were still occupied and so many people died. 

Events like this emphasis on the urgent need for reliable tools that can assess the 

condition of damaged structures soon after earthquakes.  

Seismic-induced damage significantly differs from damage caused by actions 

like corrosion, fatigue, settlement, etc. Earthquake loads are inherently transient and 
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this transient nature of seismic excitations weaken the performance of the damage 

detection methods that are based on stationary stochastic-excitation assumption 

(Sohen et al., 2001). In seismic damage identification techniques, seismic actions are 

only considered as the cause for damage. In addition, seismic damage identification 

of structures should be accomplished in real-time or soon after the extreme event; 

otherwise, they cannot effectively incorporate in deciding on evacuation or 

occupation of structures.  

Efforts have been made to create practical seismic damage identification 

algorithms. Some of the proposed algorithms estimated the overall damage to 

different types of structures using measured earthquake ground motion indices 

(Lautour and Omenzetter, 2009; Yamazaki et al. 1993; Molas and Yamazaki, 

1995).These algorithms determine the vulnerability of existing structures to seismic 

loads after a seismic event. Other studies have focused on identifying seismic 

damage to structures using their dynamic characteristics (Zhu and Law, 2007; Law et 

al. 2010). These algorithms monitor the seismic health of structures during, or soon, 

after ground motion to detect, localize and estimate the severity of damage. 

Over the past decades, ANNs have been employed for damage identification 

with a certain degree of success (Faravelli and Pisano, 1997; Zapico et al., 2007; 

Bakhary et al., 2010). ANNs are robust and promising tools for pattern recognition 

and classification; even in the presence of noise, they provide acceptable 

performance. The ANN-based damage identification approaches mostly take 

advantage of modal parameter to detect the presence of damage, locate it, or estimate 

its severity. There are several drawbacks for practical implementation of such 

techniques when they are used for seismic damage identification. For example, it is 

not always feasible to measure all required mode shapes. This is because sometimes, 

changes in the stiffness of certain elements only alter higher mode shapes (Mangal et 

al, 1996), which often cannot be measured. Moreover, a full-scale structure test by Ji 

et al. (2011) revealed that when damage was distributed over the height of structure 

rather than being concentrated on a floor, changes in the mode shapes were 

infinitesimal.  This meant that mode shapes might not be sufficient for seismic-



6 
 

induced damage localization. To effectively detect seismic damage, it is essential to 

identify the damage in real-time, or soon after, the ground motions. However, 

measurement of modal parameters takes time and cannot be done during a seismic 

event.  

The above-mentioned facts and findings indicate that for seismic damage 

identification, modal parameters are not appropriate input parameters for neural 

networks. As an alternative approach, several researchers (Cattarius and Inman, 

1997; Zhu and Law, 2007; Law et al. 2010) proposed response-based damage 

identification methods. These techniques make use of dynamic responses in order to 

identify imposed damage. One of the significant advantages of response-based 

techniques is their ability to measure dynamic responses with ease. Moreover, 

dynamic responses can be measured in real-time, meaning that damage identification 

can be carried out during seismic events. Furthermore, dynamic responses can be 

measured for all degrees of freedom at each time interval simultaneously, providing 

significant real-time information about the behaviour of a structure. Despite 

aforementioned advantages, only a few response-based methods have been proposed 

by researcher for seismic-induced damage identification (Celebi et al., 2004, Reda 

Taha, 2006). These techniques have been incapable of damage localization and 

quantification. 

In recent years, in addition to ANNs, Wavelet Transforms (WTs) have 

attracted attention of researchers for damage identification. WTs are a                  

time-frequency analysis based on a windowing technique with variable-sized 

regions. Wavelet transforms are capable of describing a signal in a localized time and 

frequency domain (Chui, 1997; Walter, 1994). When change in the structural 

stiffness occurs, a sharp transition is created in its dynamic responses. This sharp 

transition amplifies wavelet coefficients of the transformed signal. This property is 

used for damage identification (Gogging et al, 2007; Fan and Qiao, 2009; Hester and 

Gonzalez, 2012). Wavelet transforms have been successfully employed for damage 

identification of structures both numerically and experimentally. The main useful 

characteristic of Wavelet transforms is that for damage identification they can be 
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applied to both time and frequency domain data (Todorovska and Trifunac, 2010; 

Wu and Wang, 2011). Moreover, it has been shown that WTs are robust and 

promising tools even when dealing with noisy data. Despite benefits that arise from 

application of WTs, wavelet based methods have some inherent problems. When 

they are applied to the time-domain data only the presence of damage and the time of 

damage occurrence can be detected from the decomposed signals (Todorovska and 

Trifunac, 2010). Moreover, when they are applied to frequency domain data (e.g. 

Mode shapes) damage quantification remains problematic.  

Considering aforementioned facts, this study is intended to investigate 

application of ANNs and WTs for damage identification using time domain and 

frequency domain data. Although this research mostly emphasises on the time 

domain data for seismic-induced damage identification, it also proposes a damage 

identification techniques that takes advantage of frequency domain data. The 

obtained results of this study also brightness limitation and capabilities of WTs, for 

seismic-induced damage identification of structures. In addition, it demonstrates that 

when WTs are combined with ANNs, damage localization, and quantification are 

achievable.  

1.3 Objectives of the study 

The main aim of this research is to develop novel methods for damage 

identification using ANNs and WTs. This research also investigates capabilities and 

limitations of WTs for damage detection of civil engineering structures by means of 

numerical and experimental approaches. The specific objectives of this research are 

as follow: 

1. To develop a vibration-based damage identification method using ANNs and 

WTs. This method employs mode shapes as damage fingerprint.  
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2. To develop a Response-based seismic-induced damage identification method 

using ANNs and WTs. This method employs response accelerations as 

damage fingerprint. 

 

3. To develop a Response-based seismic-induced damage identification method 

using ANNs alone. This method employs inter-story drifts as damage 

fingerprint. 

 

4. To develop an optimal strain gage placement method for seismic health 

monitoring of structures. 

1.4 Research Scope 

This research is intended to propose novel response-based and vibration-

based damage identification methods using ANNs and WTs. The scope of this study 

is limited to the following areas: 

1-  The development of a Vibration-based damage identification method 

using ANNs and WTs suitable for cantilever type structure including following 

subjects: 

a) To determine a suitable dynamic-based damage fingerprint to be used as 

input patterns for ANNs. 

b) To develop finite element models and verify them through experimental test.  

c) To investigate the capabilities and limitations of DWT and CWT for 

vibration-based damage identification methods. 

d) To design an ANN system, based on Network Ensembles for optimized 

network training. 
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2- The development of Response-based seismic-induced damage 

identification methods using ANNs and WTs suitable for cantilever type structures 

including the following subjects: 

a) To determine a suitable response-based damage fingerprint to be used by 

WTs. 

b) To investigate capabilities and limitations of Continuous Wavelet Transform 

(CWT) and Discrete Wavelet Transform (DWT) for seismic-induced damage 

identification. 

c) To investigate capabilities and limitations of Principal Component Analysis 

(PCA) for dimensionality and noise reduction. 

d) To develop suitable nonlinear finite element models for the selected case 

study structure. 

e) To investigate seismic behaviour of the selected case study structure by linear 

and nonlinear analysis. 

f) To design an ANN system, based on Network Ensembles for optimized 

network training. 

3- The development of Response-based seismic-induced damage 

identification methods using ANNs suitable for low and mid-rise concrete shear wall 

buildings including the following subjects: 

a) To determine a suitable response-based damage fingerprint to be used as 

input patterns for ANNs. 

b) To determine suitable nonlinear analyses capable of generating well-

distributed training data sets for ANNs. 

c) To design an appropriate architecture for the ANNs considering the 

determined damage fingerprint.   
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4- The development of an optimal strain gage placement method suitable 

for seismic health monitoring of civil engineering structures including the following 

subject: 

a) To investigate the application of performance-based seismic design of 

structures for sensor installation in SHM systems.  

1.5 Significance of research 

Recent advances in electronic devices as well as unpredictable failure of in 

service structures have encouraged authorities to install structural health monitoring 

systems on important structures. Installation of structural health monitoring systems 

can result in the following advantages (Ansari , 2005): 

1- Monitoring and evaluating of structures in Real-time under service condition.  

2- Reducing downtime of structures. 

3- Improving safety and reliability of structures. 

4- Reducing maintenance cost. 

5- In-service structures can be used more productively.  

Abovementioned advantages are general benefits that arise from application 

of structural health monitoring systems.  Since this study is intended to work on 

seismic-induced damage identification, it also addresses issues related to integrity of 

structures during or soon after earthquakes.  After a strong ground motion, it is 

crucial to estimate the severity of imposed damage on important structures. Because 

based on the estimated severities, people can be asked to evacuate risky buildings 

and reduce the aftershocks hazard. Moreover, by returning low damaged structures to 

operation statues, post-earthquake problems can be significantly decreased. 
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Furthermore, damage localization by SHM reduces required time for visual 

inspections and results in less repairing time and cost. 

1.6 Outline of Thesis 

This thesis consists of nine chapters. The organization of this thesis is as 

below: 

Chapter 1 presents an introduction to the work, describes research objectives 

and scope, and explains significance and motivation of this research. 

Chapter 2 presents a literature review of existing Time-domain and 

Frequency-domain damage identification methods with more emphasis on ANN-

based and WT-based methods. Theoretical backgrounds of artificial neural networks, 

wavelet transforms, and principal component analysis are also presented in this 

chapter. 

Chapter 3 presents the modal testing and experimental modal analysis of the 

selected structures. Theoretical backgrounds of signal processing, frequency 

response function, and modal parameter estimation are presented in this chapter. The 

created finite element models and their verification method are also described. 

Chapter 4 describes the methodology of the proposed methods for damage 

identification and optimal sensor placement. Theses methodologies include the 

proposed vibration-based damage identification method using ANNs and WTs and 

the two Response-based damage identification methods using ANNs and WTs. 

Moreover, the methodology of the proposed method for optimal strain gage 

placement is also described. 
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Chapter 5 presents the obtained results of the proposed vibration-based 

damage identification method using ANNs and WTs. Numerical and Experimental 

demonstrations of the applied method to the selected structure are presented in this 

chapter. 

Chapter 6 presents the obtained results of the proposed response-based 

seismic-induced damage identification method that makes use of ANNs and WTs. 

Numerical demonstration of the applied method to Kuala Lumpur International 

Airport (KLIA) tower is presented in this chapter. This chapter is divided into three 

phases. The first phase describes the selected case study structure and illustrates the 

created finite element models and verification method. The second phase studies 

application of CWT and DWT for seismic-induced damage detection. The last phase 

presents the proposed damage identification technique. 

Chapter 7 presents the obtained results of the proposed response-based 

seismic-induced damage identification method that makes use of ANNs. Numerical 

demonstration of the applied method on a 5-story concrete shear wall building is 

presented in this chapter.   

Chapter 8 presents the proposed method for optimal strain gage installation 

for seismic health monitoring of structures. Numerical demonstration of the applied 

method to Kerman Air Traffic Control (ATC) tower, Iran, is presented in this 

chapter. 

Chapter 9 summarizes the work of this thesis. Recommendations for future 

work are also presented in this chapter. 
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