
 

 

1

REMOVAL OF SULFAMETHOXAZOLE AND CEPHALEXIN FROM WATER 

BY CATALYTIC OZONATION PROCESS

JAVAID AKHTAR 

UNIVERSITI TEKNOLOGI MALAYSIA 



 

 

  REMOVAL OF SULFAMETHOXAZOLE AND CEPHALEXIN FROM WATER 

BY CATALYTIC OZONATION PROCESS

JAVAID AKHTAR  

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy (Chemical Engineering) 

Faculty of Chemical Engineering 

Universiti Teknologi Malaysia 

OCTOBER 2011 



iii

 

 

 

Specially dedicated to my beloved mother and father  

p



iv 

 

 

 

ACKNOWLEDGEMENT 

 Alhamdulillah, Praise to Allah, first, I would like to express my sincere, and 

deep appreciation to my supervisor, Prof. Dr Nor Aishah Saidina Amin for her 

advice, mentoring, guidance and support in my research. I hereby acknowledge her 

valuable contribution to my educational achievements and quality assurance. She 

always encouraged me in difficult times and helped me to surpass through challenges 

during three-year tenure. I hereby also acknowledge valuable support from Prof. 

Madya Dr. Zulkafi Buntat from Faculty of Electrical Engineering to solve my 

experimental issues related to ozone measurement. Finally, I would like to thank 

Prof. Madya Dr. Azmi Aris for his co-operation during analysis of my experimental 

samples.  

 I would like to thank all CREG members for their support and friendship over 

these years. In particular, to Fauzi, Maryam, Zaki, Mahdir, Linda, and Yani are 

greatly acknowledged for their helpful discussions and suggestions. I also 

acknowledge the technical support from Dr. Muhammad Khurram Zahoor from 

faculty of petroleum and renewable energy engineering. I wish them all the success 

in their future endeavors.  

 I would like to thank all laboratory technicians in particular Mr. Latfi, Siti 

Zalita and laboratory staff form FKA, for their assistance and cooperation throughout 

the research work to all the administration personnel in the Faculty of Chemical 

Engineering, Universiti Teknologi Malaysia. I would like to thank especially to Siti 

Zalita from Makmal Bioprocess for her support to run HPLC analysis of my samples. 

Her support enabled me to complete my research in time. Lastly, thanks to everyone 

that I have previously mentioned and to everyone who I may have unintentionally 

not recognized. 



v

 

 

 

o

ABSTRACT 

 This study describes the removal of sulfamethoxazole and cephalexin by 

catalytic ozonation process in two types of reactors i) batch stirred type and ii) water 

circulation type. The first step was to screen a suitable catalyst during ozonation of 

sulfamethoxazole in a batch type reactor. It was observed that loading of Fe2O3/CeO2

did not suppress the adsorption capacity of PAC and that adsorption process was by 

physisorption for Fe2O3/CeO2 loaded PAC or PAC. Moreover, the loading of 

Fe2O3/CeO2 synergized the effectiveness of powdered activated carbon (PAC), for 

removal of sulfamethoxazole during catalytic ozonation. Complete removal of 

sulfamethoxazole was observed using Fe2O3/CeO2 loaded PAC catalyst within 5 min 

of ozonation on batch reactor. Further screening of catalyst suggested granular 

activated carbon (GAC) was a better catalyst compared to CeO2, MnO2, and MnO2-

CeO2 metal oxides. In the presence of GAC as catalyst, approximately 90 % of 

cephalexin was removed in 5 min during batch ozonation process. GAC assisted 

ozonation of two antibiotics was conducted in a newly developed circulating 

reactors. Circulating batch reactor removed > 98 % of sulfamethoxazole and > 80% 

of COD using GAC as catalyst in 15 min duration. Similarly, 80-100% of cephalexin 

was removed using circulation batch reactor. Biodegradability was increased to more 

than 90% and 98% for cephalexin and sulfamethoxazole antibiotics respectively 

using circulating batch ozonation. Finally, a separate study was performed for solid 

phase regeneration of GAC to emulate the effectiveness of in-situ regeneration 

during ozonation process. In situ ozonation regenerated GAC efficiently. BET 

analysis, TPD-N2 and TGA profiles of regenerated GAC resembled more of virgin 

GAC and differed from saturated GAC sample.

o
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oABSTRAK

 Kajian ini menerangkan penyingkiran sulfamethoxazole dan sefaleksin di 

dalam proses ozonisasi pemangkin di dalam dua jenis reaktor, iaitu (i) berkelompok 

teraduk dan (ii) edaran air. Langkah pertama adalah memilih mangkin yang sesuai 

semasa ozonisasi sulfametoksazol dalam reaktor berkelompok teraduk. Pemerhatian 

menunjukkan bahawa pemuatan Fe2O3/CeO2 tidak menyekat keupayaan penjerapan 

serbuk karbon teraktivasi (PAC) dan proses penjerapan adalah berupa physorption

untuk Fe2O3/CeO2 dimuatkan PAC atau PAC sendiri. Tambahan pula, pemuatan 

Fe2O3/CeO2 mensinergikan keberkesanan PAC, untuk penyingkiran 

sulfamethoxazole semasa ozonisasi sebagai pemangkin. Penyingkiran 

sulfamethoxazole yang lengkap telah diperhatikan apabila menggunakan mangkin 

Fe2O3/CeO2 dimuatkan PAC dalam masa 5 minit ozonisasi pada reaktor kelompok. 

Pemeriksaan lanjut pemangkin mencadangkan karbon berbutiran diaktifkan (GAC) 

sebagai pemangkin yang lebih baik berbanding untuk CeO2, MnO2, dan oksida 

logam MnO2-CeO2. Dengan kehadiran GAC sebagai pemangkin, kira-kira 90% 

cephalexin dikeluarkan dalam 5 minit semasa proses ozonisasi kumpulan. GAC 

ozonisasi dibantu dua antibiotik telah dijalankan dalam reaktor berputar yang baru 

dibangunkan. Reaktor kelompok berputar mengeluarkan  > 98% sulfamethoxazole 

dan >  80% COD menggunakan GAC sebagai pemangkin dalam tempoh 15 min. 

Begitu juga, 80-100% cephalexin telah disingkirkan menggunakan reaktor kelompok 

berputar. Biodegradasi telah meningkat kepada lebih daripada 90% dan 98% bagi 

antibiotik cephalexin dan sulfamethoxazole, masing-masing menggunakan kumpulan 

ozonisasi berputar. Akhir sekali, satu kajian berasingan telah dilaksanakan untuk 

penjanaan semula fasa pepejal GAC untuk mengikuti keberkesanan penjanaan 

semula in-situ semasa proses ozonisasi. Ozonisasi in-situ menjana semula GAC 

dengan cekap. Analisis BET, TPD-N2 dan profil TGA untuk GAC yang dijana 

semula didapati menyerupai GAC asal dan berbeza dari sampel GAC tepu. 
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CHAPTER 1 

INTRODUCTION 

1.1 Pharmaceuticals as Water Pollutant

 Advancements in personal care sector injected numerous varieties of 

pharmaceuticals in modern day health facilities. Although medications served as life 

saving drugs both for human and animals, their indirect addition to ecosystem has 

raised many questions to the environment protection [1]. Medicines are stable 

structures chemically to prolong medication time within the body, which sense non-

degradability of such items [2]. Persistence of pharmaceuticals in industrial and 

municipal water streams is one of environmental hazards polluting ecosystem. 

Clotrimazole, Mefenamic, diclofenac, erythromycin, colifibric acid [3], Ibuprofen 

[4], sulfamethoxazole [5] are examples of pharmaceuticals frequently detected in 

municipal and waste water treatment plant effluents. Researchers have raised 

concerns about the transportation of pharmaceutically polluted water resources as 

drinking water supplies or long-term implications to the aquatic life. Although direct 

effect of pharmaceutical polluted water is less susceptible since concentration of 

pharmaceuticals in water, streams far lower than prescribed dosages level. 

Pharmaceuticals are design to interact with biological matter in living organisms and 

in their physico-chemical behavior. Many of the pharmaceuticals are lipophilic to 

ease their passage through cell membranes and are reactive to specific types of 

metabolic interactions only; otherwise remain persistent in the body cells. In a way 

these pharmaceuticals easily bioaccumulate within the body and induce the harmful 

effects of terrestrial or aquatic organisms. Figure 1.1 illustrates the exposure, fate, 

and long-term effects of medical compounds on aquatic organisms. Pharmaceuticals 
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undergo biodegradation into metabolites during the fate of such substances in the 

environment. Occurrence of pharmaceutical active compounds and metabolites in the 

environment depends upon their resistance to the biodegradability. However, 

presence of these pharmaceutically active substances in ground water, surface, or 

ocean water shows their persistence for longer time duration and mobile nature.  

Figure 1.1  Pathways for pharmaceutical compounds in aquatic environment [6] 

1.2 Removal of Pharmaceuticals at Point Source 

 Major sources for induction of in the aquatic environment are urban 

wastewater, hospitals, pharmaceutical manufacturing facilities, and treatment plants. 

Proper treatment of these substances at the exit of their source points may reduce the 

significant volume of pharmaceuticals in the aquatic environment. Treatment at the 
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exit point seems one viable option if we are to save our water supplies from such 

pollutants.  

 Several methods have been adopted in water treatment ranging from 

conventional filtration [7], biological treatments [8], coagulation [8] to activated 

carbon [9], electrochemical and advanced oxidation processes [10-11].These 

processes differ in treatment capability, operational cost, selectivity and removal 

efficiency. Biological methods like biofilters, activated sludge are quite effective for 

biodegradable pollutants. Physical techniques like adsorption, coagulations 

flocculation, and precipitations are suitable to remove insoluble suspended particles. 

Activated carbon can effectively remove dissolved organic contaminations. Reverse 

osmosis, micro, and nano filtrations are other methods for selective removal of micro 

pollutants. Other than these, advanced oxidation processes such as ozonation, UV, 

H2O2/O3, UV/O3, chlorination are capable of oxidizing soluble, insoluble organic and 

inorganic contaminants [5]. However, it is true most of the organic and inorganic 

toxins are removable through water treatment techniques, none of techniques is 

solely appropriate to handle all types of contaminations. Biological methods cannot 

grasp synthetic and inorganic pollutions; coagulations and flocculation are inefficient 

to dissolved micro pollutants; membranes are costly, chock able, and unable to treat 

macro pollutants; production of DBPs in advanced oxidation processes question 

usefulness of such operations. Presence of pharmaceuticals in wastewater treatment 

plants (WWTPs) effluents and water streams also confirms inefficiency of traditional 

techniques like coagulations, flocculation, and sedimentations [3, 5, 12]. Though it is 

true, the most WWTPs are equipped to handle various types of contaminations by 

integration of techniques in series. Bar screening, preliminary clarification, trickling 

filter, active sludge and UV treatment scheme is an example of such integrations 

applied in Howdon water treatment works [3]. It is believed that inclusion of 

ozonation or advanced oxidation processes within this integration may reduce 

soluble contaminations. Some researchers have reported removal of soluble 

pollutants using ozone and ozone-assisted oxidations [13-16]. Thus, advanced 

oxidation processes may be capable of reducing pharmaceuticals and synthetic dyes 

in wastewater streams.  
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 Advanced oxidation processes (AOPs) have been employed for removing 

pharmaceuticals active compounds [17-19]; dyes and dyestuff [14, 20-21]; bacterial 

disinfection [22-23]; pesticides degradation [24-25] and soil decontaminations [26-

27]. AOPs rely on production of hydroxyl radicals (OH) through chemical, 

photochemical and photo catalytic energy that is capable of converting organics into 

dehydrogenated products [28]. Conventional oxidants within AOPs category include 

ozone, H2O2, chlorine, chlorine dioxide, Hydroxyl ions [29]. These are called 

aqueous phase oxidants, which attach almost all types of organic and inorganic 

contaminations. Oxidation potential is one criterion to judge pollutants removal 

efficiency in such treatments like ozone OH (2.86), O (2.42), O3 (2.07), H2O2 (1.78), 

Cl (1.36), ClO2 (1.27). Performance of individual process is also dependent upon 

generation of hydroxyl ion (OH•) which is the most powerful oxidant of this group. 

For this reason, ozone and H2O2 are preferable due their ability to oxidize 

contaminations directly and through OH ion generation [30]. Due to this ability, 

ozone has emerged as one major pollutant oxidizer for microorganism’s inactivation, 

metals and suspended solids oxidation, dyes and pigments discoloration, dissolved 

organic matter and humic acids oxidation, micro pollutants removal. Whilst chlorine 

and its derivates are enough to disinfect bacteria present in water their ability to 

generate lethal chlorinated organic compounds by reacting organic species has 

limited their role as disinfectants [31]. Electrochemical, Fenton, Photo-Fenton [32], 

TiO2/UV [33]  are names of AOPs oxidation processes in which induce energy is 

utilized to generate radicals and ions. Fenton reagents and TiO2 mediums generate 

radicals by absorbing near-UV radiations within 300-400 nm range. Electrochemical 

oxidation involves anodic reactions at high voltage electrodes thus breaking water 

molecule into hydroxyl radical (OH). In literature, Pt, PbO2, doped PbO2, doped 

SnO2 have been employed dominantly as anode. Ion generation reaction in equation 

2.1 [28]. 

−+• ++→ e    H    OH      OH 2        (1.1) 

 AOPs are suitable to waste water treatments containing chemically stable, 

lethal, and/or non-biodegradable pollutants. AOPs have property to degrade any type 

of contaminations indiscriminately without producing any toxic intermediates at 
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room temperatures [20]. AOPs effluents are biodegradable due radical’s ability to 

replace chlorines attached to ring structures of organic compounds. Rate constant of 

organic molecules destruction remains in order of 106-109 M-1 S-1, thus minimizing 

process residence times [29]. AOPs have certain advantages over conventional water 

treatment methods. AOPs are not refractory to wide varieties of feed contaminations 

and disinfection byproducts are not usually produced which simplifies operations. 

AOPs are better than bioremediation and chemical coagulations because later 

produce sludge waste materials and operate selectively on specific types of 

pollutants. Post processing is costly in membrane processes due to choking problem 

while AOPs completely mineralize organic matter and avoid any further processing 

of organic materials. Carbon catalyst poisoning is the major drawback in activated 

carbon absorption whereas no such problems are associated with AOPs (Spartan 

water treatment). However, high capital and operating cost of AOPs is a major 

drawback when compared to biological treatments and chemical coagulations. 

Literature usually recommends integration of different oxidants for treatment process 

like O3/UV, O3/H2O2, Photo/Fenton, TiO2/UV [30, 34] mainly due their inability to 

produce high concentrations of hydroxyl ions (OH) individually. One of the 

commonly used advanced oxidant (ozone) is highly energy intensive consumes high 

voltages in order of 4-20 kV. As ozone is degradable to simpler oxygen at room 

temperatures, high concentrations of ozone need continuous ozone generation. Other 

AOPs, Fenton/H2O2 systems produce considerable amounts of iron sludge wastes 

[35].  Electrochemical processes usually involve costly electrodes.  

 Irrespective of the practical limitations, advanced oxidation processes 

continued their penetration in water and wastewater treatments. Ozone has emerged 

as one of the popular oxidant in recent times [13, 15, 17, 19, 21, 36-38]. Probably 

this is because i) ozone is easily soluble in water (0.57 g/L 20 oC), ii) ozone 

decomposes readily into hydroxyl ion (OH), iii) oxidation potential is high (2.87 V) 

[38]. Major pollutants divisions which have been tested for ozone dosages are i) 

metals and inorganic substances removal ii) Oxidation of suspended and dissolved 

organic matter iii) bacterial and viral disinfection iv) Discoloration and v) 

detoxification of harmful chemicals [13, 39]. Camel and Bermond, [39] divided 

existing literature on ozonation in three dosage levels pre-oxidation, intermediate 
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ozonation and final disinfection. Ozone is added at pre-oxidation stage to remove 

colorants and odors, inorganic and suspended materials; to increase coagulations-

decantation. Micro pollutants and DBPs are generally removed in second stage 

dosage, which also enhances biodegradability of organic matter. Final disinfection 

stage is capable of removing all types of microorganisms, micro pollutants and 

reducing DBPs [39]. Number of citations notified effects of ozonation on 

pharmaceuticals degradation from wastewater streams [17, 36, 40-43]. Thus, 

ozonation processes are widely accepted techniques in removal of micro pollutants 

like pharmaceuticals from water streams. 

1.3 Problem of Statement 

 Organic compounds such as pharmaceuticals, active personal care products 

(PPCPs), industrial and household chemicals are potential threat to human health and 

aquatic ecosystem. These organic chemical collectively called mircopollutants 

involve endocrine disrupting effects and chronic effects on long-term exposure [44]. 

Some of the pharmaceuticals have shown ineffectiveness to advance treatment 

technologies such as membrane separation, activated carbon adsorption, ultraviolet 

radiations, and ozonation [45]. Pharmaceutical compounds are even more likely in 

effluents of conventional treatment plants. Therefore, it seems necessary to 

investigate on modern technologies to treat these new types of pollutants in water 

resources. Moreover, due to low concentration of these micropollutants, conventional 

treatments based on physical or biological treatments fail to eliminate these 

compounds from water properly. It may be helpful to investigate on modern 

treatment methods for treatment of micropollutants. 

 Ozonation is one attractive option to degrade pharmaceuticals at the exit of 

point source. Simple procedure can be the reaction of dissolved ozone with 

pharmaceutical compound. Pharmaceuticals are relatively active species due to the 

presence of different functional groups that are designed to interact with metabolism. 

Therefore, it is presumable that main pharmaceutical compound can degrade in short 

exposure to dissolved ozone. However, degree of mineralization might be low. 
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Simple ozonation also may not be effective in achieving high ozone mass transfer 

efficiency. Coupling of simple ozonation with a suitable adsorptive catalyst such as 

activated carbon might perform effective role in removing pharmaceutical 

compounds from water. Activated carbon acts as an adsorbent and catalyst during the 

process. Activated carbon can absorb sufficient amount of pharmaceuticals on its 

surface in origin and oxidized byproducts form due to its porous structure and non-

selective nature. At the same time, activated carbon can decompose the dissolved 

ozone into oxidants such as OH/O radicals. Decomposition of dissolved ozone also 

induces the transfer of ozone mass from gas to liquid.  

 In general, sufficient amount of ozone pass through the reactor column in un-

utilized form during ozonation process. That might be due to many reasons such as 

excess amount of ozone in the feed gas, incapability of system to dissolve gas phase 

ozone into the solution or inefficient reasons between pharmaceutical and ozone. 

Addition of catalyst as activated carbon may help the better utilization of input ozone 

gas. Various studies highlighted such an issue where outgoing gas retains sufficient 

quantity of ozone gas which either need to trap in solutions or to destroy [22, 29]. 

Extended post processing of gas adds capital and operation cost of ozonation 

processes besides wasting costly O3 into atmosphere. Proper utilization of generated 

O3 is challenging in ozonation processes that may be solved by utilizing proper 

absorber design, catalyzed ozonation, and ozone diffusers.  

 In this research we focused on the maximizing the ozone utilization during 

the ozonation process. Options that we tried include the usage of activated carbon as 

catalyst and adsorbent. Secondly, we proposed the circulating absorber column 

reactor with using venturi mixture. Two antibiotics were selected (sulfamethoxazole 

and cephalexin) as model compounds. These two are commonly prescribed 

medicines in daily healthcare activities across the world and are often detected in the 

urban water and in effluents of wastewater treatment plants. Secondly, these two 

belong to different class of antibiotics and represent major prescribed antibiotic 

classes. By using these two antibiotics, it is assumed, ozonation can be  applied to 

other antibiotics or pharmaceuticals as well.  
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1.4 Research Objectives 

Major objectives of the research are as follows 

1. To study the degradation of two antibiotic compounds (sulfamethoxazole and 

cephalexin) during catalytic ozonation process.  

2. To screen suitable catalyst for removal of antibiotics during ozonation, 

3. To compare the performance of stirred batch reactor and circulating reactor 

for removal of two antibiotic compounds. 

1.5 Scope of Research 

1. Initial screening of catalyst is performed for degradation of sulfamethoxazole 

antibiotic. Initial screening is performed by comparing the performance of 

activated carbons, metal oxides and metal loaded activated carbon catalysts. 

The selected catalyst is investigated further to assess the effect of operating 

parameters and kinetics of sulfamethoxazole. Removal of cephalexin is 

investigated with screened catalyst only.  

2. Dissolved ozone concentration is investigated to compare the ozone 

decomposition behavior of catalysts. Dissolved ozone concentration is 

measured in case of selected catalyst for both sulfamethoxazole and 

cephalexin. Some experiments are conducted to measure ozone utilization 

efficiency for both antibiotics.   

3. Performance comparison of two reactors is investigated by degrading 

cephalexin and sulfamethoxazole antibiotics in circulating reactor and 

comparing the results with that of stirred batch reactor.  

4. Analysis of the antibiotics is performed using high performance liquid 

chromatography (HPLC) to measure their concentration during experiments. 

Degree of mineralization is measured by TOC and COD analysis. While for 

cephalexin is analyzed by COD and biological oxygen demand (BOD) 

analysis. Secondary byproducts for two antibiotics are analyzed in gas 

chromatography mass spectroscopy (GC-MS). 
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