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ABSTRACT 

 

 

 

 Direct Torque Control is a control technique used in AC drive systems to 

obtain high performance torque control. The conventional DTC drive contains a pair 

of hysteresis comparators, a flux and torque estimator and a voltage vector selection 

table. The torque and flux are controlled simultaneously by applying suitable voltage 

vectors, and by limiting these quantities within their hysteresis bands, de-coupled 

control of torque and flux can be achieved. However, as with other hysteresis-bases 

systems, DTC drives utilizing hysteresis comparators suffer from high torque ripple 

and variable switching frequency. The most common solution to this problem is to 

use the space vector depends on the reference torque and flux. The reference voltage 

vector is then realized using a voltage vector modulator. Several variations of 

DTC-SVM have been proposed and discussed in the literature. The work of this 

project is to study, evaluate and compare the various techniques of the DTC-SVM 

applied to the induction machines through simulations. The simulations were carried 

out using MATLAB/SIMULINK simulation package. Evaluation was made based on 

the drive performance, which includes dynamic torque and flux responses, feasibility 

and the complexity of the systems.   
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ABSTRAK 

 

 

 Sistem kawalan tenaga putaran secara terus adalah teknik kawalan yang 

digunakan dalam pemacu sistem arus ulang-alik dimana ia bertujuan mencapai 

kawalan tenaga putaran yang lebih baik. Sistem kawalan yang ada sekarang ini 

terdiri daripada pembanding histeresis, penafsiran fluks dan tenaga putaran dan juga 

jadual pemilihan vektor voltan. Fluks dan tenaga putaran dapat dikawal secara 

serentak dengan mengenakan vektor voltan yang sesuai dan menghadkan 

kuantiti-kuantiti ini dalam batasan yang telah ditetapkan, maka kawalan tenaga 

putaran dan fluks secara berasingan dapat dicapai. Walaubagaimanapun, pengunaan 

pembanding histeresis boleh menghasilkan riak tenaga putaran yang tinggi di 

samping perubahan yang tidak menentu dalam frekuensi pensuisan. Biasanya, 

penyelesaian untuk masalah ini adalah dengan menggunakan ruangan vektor (space 

vector) yang bergantung kepada fluks dan tenaga putaran. Voltan rujukan 

kemudiannya direalisasikan menggunakan pemodulat vektor voltan. Beberapa 

kaedah DTC-SVM telah dicadangkan dan dibincangkan dan pelaksanaan tugas untuk 

projek ini adalah untuk mengkaji, menilai dan membuat perbandingan secara 

simulasi bagi beberapa teknik DTC-SVM yang diaplikasikan terhadap motor 

induktor. Simulasi dijalankan dengan menggunakan pakej MATLAB/SIMULINK. 

Penilaian dibuat berdasarkan perihal prestasi pemacu yang mana terdiri daripada 

dinamik untuk tenaga putaran, kebolehlaksaan, dan kerumitan dalam sistem. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 OVERVIEW OF INDUCTION MOTOR 

 

 

The induction motors have more advantages over the rest of motors. The 

main advantage is that induction motors do not require an electrical connection 

between the stationary and the rotating parts of the motor. Therefore, they do not 

need any mechanical commutator (brushes), leading to the fact that they are 

maintenance free motors. 

 

 

Besides, induction motors also have low weight and inertia, high efficiency 

and a high overload capability. Therefore, they are cheaper and more robust, and less 

proves to any failure at high speeds. Furthermore, the motor can work in explosive 
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environments because no sparks are produced. 

 

 

Taking into account all of the advantages outlined above, the induction 

motors must be considered as the perfect electrical to mechanical energy converter. 

However, mechanical energy is more than often required at variable speeds, where 

the speed control system is not an insignificant matter. 

 

 

The only effective way of producing an infinitely variable induction motor 

speed drive is to supply the induction motor with three phase voltages of variable 

frequency and variable amplitude. A variable frequency is requires because the rotor 

speed depends on the speed of the rotating magnetic field provided by the stator. A 

variable voltage is required because the motor impedance reduces at the low 

frequencies and consequently the current has to be limited by means of reducing the 

supply voltages.[1][2]    

 

 

Induction motors are also available with more than three stator windings to 

allow a change of the number of pole pairs. However, a motor with several windings 

is more expensive because more than three connections to the motor are needed and 

only certain discrete speeds are available.  

 

 

Another alternative method of speed control can be realized by means of a 

wound rotor induction motor, where the rotor winding ends are brought out to slip 
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rings. However, this method obviously removes most of the advantages of the 

induction motors and it also introduces additional losses. By connecting resistors or 

reactance in series with the stator windings of the induction motors, poor 

performance is achieved.[2][33]    

 

 

Historically, several general controllers have been developed: 

 

¾ Scalar controllers: Despite the fact that “Voltage-Frequency” (V/f) is simplest 

controller, it is the most widespread, being in the majority of the industrial 

applications. It is known as a scalar control and acts by imposing a constant 

relation between voltage and frequency. The structure is simple and it is normally 

used without speed feedback. However, this controller does not achieve a good 

accuracy in both speed and torque responses, mainly regarding to the fact that the 

stator flux and torque are not directly controlled. Even though, as long as the 

parameters are identified, the accuracy in the speed can be 2% (except in a very 

low speed), and the dynamic response can be approximately around 50ms.[3][4] 

 

¾ Vector Controllers: In these types of controller, there are control loops for 

controlling both the torque and the flux.[5] The most widespread controllers of 

this type are the ones that use vector transform such as either Park or Ku. Its 

accuracy can reach values such as 0.5% regarding the speed and 2% regarding 

the torque, even when at stand still. The main disadvantages are the huge 

computational capability required and the compulsory good identification of the 

motor parameters.[6] 
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¾ Field Acceleration Method: This method is based on the maintaining the 

amplitude and the phase of the stator current constant, whilst avoiding 

electromagnetic transients. Therefore, the equations can be simplified saving the 

vector transformation, which occurs in the vector controllers. This technique has 

achieved some computation reduction, thus overcoming the main problem with 

vector controllers and allowing this method to become an important alternative to 

vector controllers.[8][10]   

 

 

 

 
 

Figure 1.1: Overview of induction motor control methods.[11][9] 
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Direct torque control (DTC) has emerged over the last decade to become one 

possible alternative to the well-known Vector Control of Induction Machines. Its 

main characteristic is the good performance, obtaining results as good as the classical 

vector control but with several advantages based on its simpler structure and control 

diagram.[7]  

 

 

DTC is said to be one of the future ways of controlling the induction machine 

in four quadrants.[1][11] In the DTC, it is possible to control directly the stator flux 

and the torque by selecting the appropriate inverter state. This method still required 

further research in order to improve the motor’s performance, as well as achieve a 

better behavior regarding environment compatibility (Electro Magnetic Interference 

and Energy), that is desired nowadays for all industrial applications. 

 

 

 

 

1.2 AIM OF THE RESEARCH PROJECT 

 

 

The main objective of this project is to study on the various techniques of 

direct torque control (DTC) based on Space Vector Modulation (DTC-SVM) applied 

to induction motor drive systems. With DTC-SVM, it is possible to achieve fixed 

switching frequency and low torque ripple, hence overcoming the major drawbacks 

of conventional DTC. This project will simulate and perform analysis on some of the 

present DTC-SVM drives using MATLAB/SIMULINK simulation package.   
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The conventional DTC is firstly analyzed and proved by means of 

MATLAB/SIMULINK simulation. Then, the various technique of direct torque 

control based on Space Vector Modulation will be presented and also the pros and 

cons of the present DTC-SVM control strategies will be highlighted.  

 

 

 

 

1.3 SCOPE OF WORK PROJECT 

 

 

The project is divided into three stages. This is to ensure that the project is 

conducted within its intended boundary and is heading to the right direction to 

achieve it objectives:   

 

¾ The first stage is to study on the working principle of the direct torque control 

of induction motor drive that utilizes hysteresis comparators and to 

understand on the limitations of this conventional control technique. 

 

¾ Secondly, it will concentrate on performing the simulations on the various 

types of DTC-SVM for induction motor drive systems. 

 

¾ The third stage of the project is to analyze on the performance of the various 

control techniques of DTC-SVM based on the MATLAB/SIMULINK 

simulation results.  
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1.4 THESIS OUTLINE 

 

 

This section will give an outlines of the structure of the thesis. The following 

is an explanation for each chapter. 

 

 

Chapter 2 discusses a mathematical model of cage rotor induction motors. 

Different ways of implementing these models are presented. The elements of space 

phasor notation are also introduced and used to develop a compact notation. Then, all 

the model equations will be applied on the further chapter. 

 

 

Chapter 3 is devoted to introduce different Direct Torque Control (DTC) 

strategies. This chapter summarizes different induction motor controllers, such as the 

very well known vector control and “V/Hz”. The principles of DTC are thoroughly 

discussed and presented. 

 

 

Chapter 4 deals with different kinds of Direct Torque Control with Space 

Vector Modulation (DTC-SVM) control techniques. All the basic principles and 

detail derivation of voltage reference for each control schemes are discussed within 

this chapter. Actually, the comparison between each control algorithm already can be 

observed on this chapter.   
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Chapter 5 gives the analysis and states the differences between conventional 

DTC, DTC-SVM with torque control, DTC-SVM with flux loop control and 

DTC-SVM with torque and flux loop control in term of torque response, control 

technique, stator flux trajectory and etc.     

 

 

Chapter 6 presents the conclusions and recommendation for future works. 

 

Finally, all C-programming used in the simulations are listed in the appendixes. 
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