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ABSTRACT 

Piezoelectric actuators are popularly applied as actuators in high precision 

systems due to their small displacement resolution, fast response and simple 

construction. However, the hysteresis nonlinear behavior limits the dynamic 

modeling and tracking control of piezoelectric actuators. This thesis studies a 

dynamic model of a moving stage driven by piezoelectric stack actuator. The Bouc-

Wen model is introduced and analyzed to express the nonlinear hysteresis term of the 

piezoelectric stack actuator, where the values of the parameters of the model have 

been taken from a previous work. The simulated results using MATLAB/Simulink 

demonstrate the existence of the hysteresis phenomenon between the input voltage 

and the output displacement of the piezoelectric stack actuator, and validate the 

correctness of the model. Moreover, a Luenberger observer is designed to estimate 

the hysteresis nonlinearity of the system, and then combined with the voltage input 

signal to form a Luenberger-based feedforward controller to control the displacement 

of the system. Furthermore, a Proportional-Integral-Derivative (PID) feedback 

controller is integrated with the feedforward controller to achieve more accurate 

output displacement, where the gains of the PID controller are optimized using 

Particle Swarm Optimization. Several performance index formulas have been studied 

to get the best solution of the PID’s gains. An Integral Time Squared Error plus 

Absolute Error performance index formula has been proposed to achieve zero 

overshoot and steady-state error. The simulated results accomplished using 

MATLAB/Simulink show the ability of the designed controllers to vastly reduce the 

amount of error of the output displacement and the response time of the system. 
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ABSTRAK 

Pemacu piezoelektrik popular digunakan sebagai pemacu system 

berketepatan tinggi memandangkan ia memberikan resolusi sesaran yang kecil, 

tindak balas yang cepat dan konstruksi yang mudah. Namun, sifat histerisis yang 

tidak linear menghadkan pemodelan dinamik dan penjejakan bagi pemacu ini. Tesis 

ini mengkaji model dinamik bagi pemacu bergerak berperingkat dipacu oleh aktuator 

piezoelektrik bertingkat. Model Bouc-Wen diperkenalkan dan dianalisis untuk 

menyatakan terma histerisis tidak linear bagi aktuator piezoelektrik bertingkat, di 

mana nilai parameter yang digunakan bagi model ini diambil daripada projek yang 

terdahulu. Keputusan simulasi dengan menggunakan MATLAB/Simulink 

menunjukkan tentang kewujudan fenomena histerisis antara voltan input dan sesaran 

output bagi pemacu piezoelektrik berlapis, dan mengesahkan kesahihan model. 

Tambahan pula, pemerhati Luenberger telah direka untuk menganggarkan histerisis 

tidak linear bagi sistem dan kemudian menggabungkan dengan 

isyarat input voltan membentuk satu pengawal suapbalik hadapan berasaskan 

Luenberger untuk mengawal sesaran sistem. Tambahan pula, satu pengawal 

suapbalik berasaskan Perkadaran-Pembezaan-Kamiran (PID) disepadukan dengan 

pengawal suapbalik hadapan untuk mencapai sesaran output yang lebih tepat, di 

mana peningkatan pengawal PID dioptimumkan menggunakan Particle Swarm 

Optimization. Beberapa indeks prestasi telah dikaji untuk mendapatkan penyelesaian 

yang terbaik untuk nilai gandaan PID. Formula gabungan indek kamiran ralat kuasa 

dua dan  indeks ralat  mutlak telah dicadangkan untuk mencapai lajakan sifar dan 

ralat keadaan mantap sifar. Keputusan-keputusan simulasi yang diperoleh dengan 

menggunakan  MATLAB/Simulink menunjukkan keupayaan pengawal yang direka 

dengan mengurangkan jumlah ralat sesaran output yang besar dan mengurangkan 

masa tindak balas sistem. 
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CHAPTER 1 

INTRODUCTION 

Piezoelectric actuators are widely used for micro/nano manipulation systems 

[1], micro-robots [2], vibration active control [3], precision machining [4], and 

atomic force microscopy [5]. This is due to their special characteristics such as high 

resolution in nanometer range, fast response, and high stiffness. The major advantage 

of using piezoelectric actuators is that they do not have any frictional or static 

characteristics, which usually exist in other types of actuators. However, the main 

disadvantage of piezoelectric actuators is the nonlinearity that is mainly due to 

hysteresis behavior, creep phenomenon and high frequency vibration [6]. 

1.1. Piezoelectricity 

Piezoelectric effect was discovered for the first time in 1880 by the brothers 

Pierre and Jacques Curie. They noticed, that a mechanical deformation in certain 

directions causes opposite electrical surface charges at opposite crystal faces. This 

effect, which was also found afterwards in quartz and other crystals without 

symmetry center, has been called piezoelectric effect by Hankel. The prefix ‘piezo-’ 

is derived from the Greek word ‘piezein’, which means ‘press’. Thus, the word 

piezoelectricity means electricity resulting from pressure [7]. In 1881, Lippmann 

predicted the existence of the inverse piezoelectric effect from thermodynamic 

considerations, and then Pierre and Jacques Curie verified this in the same year [8]. 
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Piezoelectric effect happens due to the existence of polar axes within the 

piezoelectric material structure. This means that there is an electrical dipole moment 

in axis directions caused by the distribution of the electrical charge in the chemical 

bond of the cell structure of the piezoelectric material. Figure 1.1 shows the cell 

structure of quartz. 

 

Figure 1.1. Simplified cell structure of quartz. - (a) arrangement of Si- and O-ions 

with the main crystal axes; (b) two- and three-fold axes. 

The cell consists of negative charged O-ions and positive charged Si-ions and 

has three two-fold polar rotation axes   ,    and    in the drawing plane and a three-

fold rotation axis   vertical on the drawing plane. If there is a deformation of the 

quartz structure along the polar   -axis, an additional electrical polarization   

performs along this axis. The electrical polarization is caused by the displacement of 

the positive and negative ions of the crystal net against each other, resulting an 

electrical charge on the appropriate crystal surfaces  that is vertical on the   -axis, 

and thus an outside electrical polarization voltage. This effect is called direct 

longitudinal piezoelectric effect. Applying compression or tensile stresses vertically 

on the   -axis results an additional electrical polarization in an opposite sign on   -

axis direction. This behavior is called direct transversal piezoelectric effect. Figure 

1.2 shows the direct piezoelectric effect in a cell structure of quartz [8]. 
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Figure 1.2. Direct piezoelectric effect in a cell structure of quartz. - (a) 

longitudinal piezoelectric effect; (b) transversal piezoelectric effect. 

Both longitudinal piezoelectric effects and transversal piezoelectric effect are 

reversible. This means that a contraction or an extension of the quartz structure can 

be achieved under the influence of electrical fields. This effect is called inverse 

piezoelectric effect [8, 9]. This effect is the working principle of all piezoelectric 

actuators. Piezoelectric materials can be divided into the following three types: 

1. Single crystals, such as quartz. 

2. Piezoelectric ceramics, such as lead zirconate titanate. 

3. Polymers, such as polyvinyl fluoride. 

Single crystals and polymers show a weak piezoelectric effect, which makes 

them limited to be used in sensor applications, while piezoelectric ceramics have 

large electromechanical coupling, which makes them suitable for actuator 

applications [10]. 
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1.2. Piezoelectric Actuators 

Piezoelectric actuators are specific actuators using piezoelectric materials as 

active materials. They are several types of piezoelectric actuators, such as stacks, 

benders, flextensional, langevin transducers and various motors. The most popular 

ones are stacks and benders. A stack contains a pile of piezoceramic layers and 

electrodes mounted electrically in parallel and mechanically in series, which 

increases the maximum displacement. The focus of this study is piezoelectric stack 

actuators. Figure 1.3 shows a schematic of piezoelectric stack actuator [7, 11]. 

 

Figure 1.3. Schematic of piezoelectric stack actuator. 

Benders have mechanical motion amplification, where two piezoceramic 

layers are attached with opposing polarization, which makes the first layer expands 

while the other shrinks under voltage excitation. This causes the structure to bend, 

and the overall motion on the actuator tip is greater than the strain of the ceramics 

[7]. Figure 1.4 shows a schematic of piezoelectric bender actuator. 
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Figure 1.4. Schematic of piezoelectric bender actuator. 

1.3. Nonlinearities in Piezoelectric Actuators 

Piezoelectric actuators exhibit nonlinear behavior caused by hysteresis, creep 

and vibration. Hysteresis in piezoelectric actuators causes that the displacement 

depends on the current and the previous excitation voltage. Hysteresis phenomenon 

is based on the crystalline polarization effect and molecular friction [12]. The 

displacement generated by piezoelectric actuator depends on the applied electric field 

and the piezoelectric material constant which is related to the remnant polarization 

that is affected by the electric field applied to piezoelectric material. The deflection 

of the hysteresis curve depends on the previous value of the input voltage, which 

means that piezoelectric materials have memory because they remain magnetized 

after the external magnetic field is removed [13]. Figure 1.5 shows the hysteresis 

curve of piezoelectric actuators. 
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Figure 1.5. Hysteresis curve of piezoelectric actuators. 

Creep is a drift of the output displacement for a constant applied voltage, 

which increases over extended periods of time during low-speed operations. Creep is 

related to the effect of the applied voltage on the remnant polarization of the 

piezoelectric actuator. If the operating voltage of a piezoelectric actuator is increased, 

the remnant polarization continues to increase. This manifests itself in a slow creep 

after the voltage change is complete [14]. Figure 1.6 shows the creep curve of 

piezoelectric actuators. 

 

Figure 1.6. Creep curve of piezoelectric actuators. 
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Vibration effect is caused by exciting the resonant modes of the system. To 

avoid vibration effect, the frequency of the applied voltage should be smaller than 

the lowest resonant peak of the piezoelectric actuator [15]. 

The focus of this study is on hysteresis modeling of piezoelectric actuators, 

since creep and vibration can be negligible in high speed and low frequency 

applications [15]. 

1.4. Displacement Control of Piezoelectric Actuators 

Piezoelectric actuators are commonly used in applications requiring high 

resolution and precision. Their suitable dynamic properties extend the application 

areas into high speed areas. However, nonlinearities in piezoelectric actuators and 

external load effect decrease the open-loop positioning accuracy. If a high accuracy 

is required, nonlinearities and disturbances have to be compensated. The 

compensation is usually accomplished using six control types [7]: 

1. Feedforward voltage control, where nonlinear models are normally used. 

2. Feedback voltage control, where several displacement sensors are used. 

3. Feedforward and feedback voltage control. 

4. Feedforward charge control, where the operating current is controlled. 

5. Feedback charge control, where charge is measured and controlled. 

6. Feedforward and feedback charge control. 

This study focuses on feedforward and feedback voltage control. 
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1.5. Thesis motivations 

Piezoelectric stack actuators are popularly applied as actuators in high 

precision systems due to their small displacement resolution, fast response and 

simple construction. However, the hysteresis nonlinear behavior limits the dynamic 

modeling and tracking control of piezoelectric actuators. 

An accurate hysteresis model is needed to present the hysteresis nonlinear 

behavior of piezoelectric stack actuators, and effective controllers are required to 

achieve high precision and fast displacement of the systems that are driven by 

piezoelectric stack actuators. 

1.6. Problem Statement 

Hysteresis has a high nonlinear effect on piezoelectric stack actuators. This 

effect causes difficulties in modeling and controlling piezoelectric stack actuators, 

and limits their applications in high precision positioning systems. 

Development of an accurate model and efficient control of piezoelectric stack 

actuators is needed to achieve precise accuracy and better dynamic performance. 

1.7. Research Objectives 

The objectives of this study are: 

1. To derive a dynamic model of a moving stage driven by piezoelectric stack 

actuator with hysteresis. 

2. To study the effect of hysteresis on the behavior of the systm 
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3. To design a feedforward controller with Luenberger observer, and a feedback 

PID controller to control the displacement of the moving stage. 

1.8. Scope of Work 

This study focuses on the hysteresis modeling of a moving stage driven by 

piezoelectric stack actuator. Bouc-Wen hysteresis model is used to model the 

hysteresis in the system. The model is studied, derived and then implemented using 

MATLAB Simulink. A feedforward with Luenberger observer is designed and then 

combined with a PID controller that is tuned using PSO method. These two 

combined controllers are then used to control the displacement of the system. 

1.9. Organization of the Thesis 

This thesis is organized as follows: Chapter 1 introduces the topic of this 

thesis. Chapter 2 discusses a literature review about the topic of this thesis. Chapter 3 

presents the methodology that is used in this project. The results of modeling are 

presented and discussed in Chapter 4, while the results of control and optimization 

are presented and discussed in Chapter 5. Finally, a conclusion and future work are 

introduced in Chapter 6. 
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