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ABSTRACT 

 

Nowadays, the DSP algorithms are being widely used in the world of digital 

image processing. Example of the DSP algorithms that used in image processing is 

2D correlation, 2D convolution, fast Fourier transforms, FIR filter and etc. The 

performance of the DSP algorithm is highly depends on its processing speed and 

memory bandwidth. Those algorithms require intensive data manipulation and 

calculation happens in parallel. The DSP algorithms also require complex address 

pattern calculation. The DSP processor needs to handle the data processing and also 

complex address calculation in the same time. The complex address pattern 

calculation using RISC processor is not efficient and therefore slower down the 

overall memory access speed. Hence, a dedicated hardware blocks to perform the 

address generation is essential. Such hardware known as Address Generation 

Unit(AGU). The prior arts of AGU have limitations as some of the AGU do not able 

to handle image edge condition and data reuse. Besides that, the prior art of the AGU 

have not been verified in the actual SOC environment. In this project, a 

reconfigurable AGU that targeted for 2D correlation, sum of absolute difference and 

Finite Impulse Response (FIR) is proposed. The proposed AGU able to take care of 

the image edge conditions by padding it with edge pixels. The proposed AGU also 

being integrated into the Altera Avalon fabric and fully verified in Altera DE2-70 

FPGA. It also shows 30% to 40% improvements in the performance at certain area. 
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ABSTRAK 

  

Pada masa kini, algoritma DSP digunakan secara luas dalam dunia 

pemprosesan imej digital. Algoritma DSP yang digunakan dalam pemprosesan imeg 

digital termasuk kolerasi 2D, convolution 2D, Fast Fourier Transform, penapis FIR 

dan lain lain. Prestasi algoritma DSP bergantung kepada kelajuan pemprosesan dan 

juga jalur lebar memori. Selain daripada itu, algoritma DSP juga memerlukan 

manipulasi data dan pengiraan alamat memori bercorak kompleks. Pemproses DSP 

perlu mengendalikan pemprosesan maklumat tersebut secara selari. Pemproses RISC 

diketahui kurang cekap dalam mengendalikan manipulasi data yang kompleks. Oleh 

kerana ini, blok perkakasan khusus untuk mengira alamat diperlukan. Perkakasan 

untuk mengira alamat dikenali sebagai Unit Generasi Alamat (AGU).  Generasi 

AGU terlebih dahulu tidak mampu mengedalikan keadaan tepi imej dan mengguna 

semula data. Selain itu, generasi AGU terlebh dahulu tidak pernah disahkan dalam 

persekitaran SOC sebenar. Dalam projek ini, AGU yang boleh dikonfigur semula 

untik korelasi 2D, SAD dan penapis FIR dicadangkan. AGU tersebut berupaya 

mengendalikan keadaan tepi imej dan juga mengguna data semula. AGU tersebut 

akan dimasukkan ke dalam Altera Avalon Fabric dan dilaksanakan dalam papan 

Altera FPGA bermodel DE2-70. AGU yang dicadangkan juga mempunyai lebih 

kurang 30% ke 40% lebih laju daripada AGU terlebih dahulu dalam keadaan tertentu. 
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CHAPTER 1  
 

INTRODUCTION 
 

1.1 Problem Background 

  

Nowadays, digital signal processing (DSP) hardware required a large amount 

of processing elements running in parallel. Performance gain in a hardware system 

are achieved by using techniques such as pipelining, customized functional units, 

optimized memory hierarchies and running processes in parallel. Therefore large 

amount of the data access is needed.  

Most of the DSP hardware is in cooperate with RISC processor. Manipulation 

with structure data-types are not efficiently supported by RISC processor. RISC 

processor is designed to have minimum number of instruction set and a complex 

compiler is needed. Hence, a considerable amount of codes need to be generated to 

cater the complex arithmetic manipulation that required by the DSP algorithm. This 

creates large amount of overhead on the performance of DSP hardware and many 

clock cycles are needed to fetch the data and instruction, decode, execute and process 

the data.  

DSP algorithm can be used for image processing purposes. Images are stored 

in the memory, DSP processor are required to read the image from memory, process 

the image and store it back to the memory. Some of the DSP algorithm required 

complex address offset calculation and relying on software to calculate the address 

offset creates more overhead than a dedicated hardware for address calculation. 
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1.2 Problem Statement 

 

There are several numbers of DSP algorithms which are being widely used 

for digital image processing. They are 2D convolution, 2D correlation, fast Fourier 

transforms (FFT), FIR filter and etc.  Those algorithms require intensive index 

manipulations, resulting in complex address pattern. Complex address pattern 

calculation using RISC processor is in-efficient and it will slow down the overall 

system performance and resulting larger latency for accessing data. 

Therefore, hardware accelerator is needed to speed up the address calculation 

and reduce the overall latency for accessing data rather than using software to do the 

address calculation. Such hardware accelerator for address calculation is known as 

Address Generation Unit (AGU).   

Prior arts of reconfigurable AGU [1] only focus on the implementation for 

2D correlation. It does not support the address generation for DSP algorithms other 

than 2D correlation. Furthermore, the prior arts of reconfiguration AGU [1] has only 

shows the Modelsim simulation results and never been implemented in FGPA. 

Enhancement is needed to the design and more address sequences for 

different DSP algorithm need to be added. The AGU needs to be capable of 

generating one address per clock in required sequence [6]. 

 

1.3 Objective 

 

The main objective of this project is to enhance the prior AGU and 

implement it to FPGA. The objectives that need to be achieved in this project are 

listed below: 

1. Design a reconfigurable AGU that: 

 Capable to generate an address per clock. 

 Support windows based operation. 
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 Able to be used for various DSP applications. 

 The RTL design needs to be able to configure easily through parameter. 

 Support different image size and kernel size. 

 Take care of image border and considering the data reuse. 

2. Prototype and implement the design into the FPGA. 

 

1.4 Scope of work 

 

The project is targeted for the hardware architecture of Address Generation 

Unit (AGU) in Altera DE2-70 FPGA. The targeted DSP modules for the AGU in the 

project include 2D Correlation, Finite Impulse Response (FIR) and Sum of absolute 

difference (SAD). The DSP modules for targeted application are designed and work 

together with the AGU. The full design is then integrated to Altera Avalon Bus. 

The AGU design is capable to generate an address per clock. Besides that, it 

also supports windows based operation with different kernel sizes and image 

dimension. The RTL is being parameterized and easy to be configured. The data 

reuse and image border consideration is being take care in the design as well.  

 MATLAB is being used to model the DSP algorithm and Modelsim is used 

as a simulator in the project. Altera Eclipse IDE is used as the environment to 

develop the C program to communicate with the design after the full integration of 

the design. Image pixels are extracted from simulation result in Modelsim and 

memory in the FPGA to compare with the output result from MATLAB.
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