

FPGA IMPLEMENTATION OF A RECONFIGURABLE ADDRESS

GENERATION UNIT FOR IMAGE PROCESSING APPLICATIONS

KAM KOK HORNG

UNIVERSITI TEKNOLOGI MALAYSIA

FPGA IMPLEMENTATION OF A RECONFIGURABLE ADDRESS

GENERATION UNIT FOR IMAGE PROCESSING APPLICATIONS

 KAM KOK HORNG

A project report submitted in partial fulfilment of the

requirements for the award of the degree of

Master of Engineering (Electrical – Computer and Microelectronics System)

Faculty of Electrical Engineering

Universiti Teknologi Malaysia

JUNE 2013

iii

Specially dedicated to my family, lecturers, fellow friends and those who have guided

and inspired me throughout my journey of education

iv

ACKNOWLEDGEMENT

First and foremost, I would like to take this opportunity to express my

deepest gratitude to my project supervisor, Prof. Dr. Mohamed Khalil bin Hj Mohd

Hani for his guidance, sharing of knowledge and encouragement throughout the

project period.

Special thanks to my company, Intel for funding my part-time Master study at

Universiti Teknologi Malaysia (UTM). I would like to thanks to my manager and my

colleagues for their support and understanding throughout the duration of my studies.

Thanks to my friends and course mates who helped me throughout the studies.

Last, I would like to thanks to my family for their support, understand and

encouragement for me to complete the project.

v

ABSTRACT

Nowadays, the DSP algorithms are being widely used in the world of digital

image processing. Example of the DSP algorithms that used in image processing is

2D correlation, 2D convolution, fast Fourier transforms, FIR filter and etc. The

performance of the DSP algorithm is highly depends on its processing speed and

memory bandwidth. Those algorithms require intensive data manipulation and

calculation happens in parallel. The DSP algorithms also require complex address

pattern calculation. The DSP processor needs to handle the data processing and also

complex address calculation in the same time. The complex address pattern

calculation using RISC processor is not efficient and therefore slower down the

overall memory access speed. Hence, a dedicated hardware blocks to perform the

address generation is essential. Such hardware known as Address Generation

Unit(AGU). The prior arts of AGU have limitations as some of the AGU do not able

to handle image edge condition and data reuse. Besides that, the prior art of the AGU

have not been verified in the actual SOC environment. In this project, a

reconfigurable AGU that targeted for 2D correlation, sum of absolute difference and

Finite Impulse Response (FIR) is proposed. The proposed AGU able to take care of

the image edge conditions by padding it with edge pixels. The proposed AGU also

being integrated into the Altera Avalon fabric and fully verified in Altera DE2-70

FPGA. It also shows 30% to 40% improvements in the performance at certain area.

vi

ABSTRAK

Pada masa kini, algoritma DSP digunakan secara luas dalam dunia

pemprosesan imej digital. Algoritma DSP yang digunakan dalam pemprosesan imeg

digital termasuk kolerasi 2D, convolution 2D, Fast Fourier Transform, penapis FIR

dan lain lain. Prestasi algoritma DSP bergantung kepada kelajuan pemprosesan dan

juga jalur lebar memori. Selain daripada itu, algoritma DSP juga memerlukan

manipulasi data dan pengiraan alamat memori bercorak kompleks. Pemproses DSP

perlu mengendalikan pemprosesan maklumat tersebut secara selari. Pemproses RISC

diketahui kurang cekap dalam mengendalikan manipulasi data yang kompleks. Oleh

kerana ini, blok perkakasan khusus untuk mengira alamat diperlukan. Perkakasan

untuk mengira alamat dikenali sebagai Unit Generasi Alamat (AGU). Generasi

AGU terlebih dahulu tidak mampu mengedalikan keadaan tepi imej dan mengguna

semula data. Selain itu, generasi AGU terlebh dahulu tidak pernah disahkan dalam

persekitaran SOC sebenar. Dalam projek ini, AGU yang boleh dikonfigur semula

untik korelasi 2D, SAD dan penapis FIR dicadangkan. AGU tersebut berupaya

mengendalikan keadaan tepi imej dan juga mengguna data semula. AGU tersebut

akan dimasukkan ke dalam Altera Avalon Fabric dan dilaksanakan dalam papan

Altera FPGA bermodel DE2-70. AGU yang dicadangkan juga mempunyai lebih

kurang 30% ke 40% lebih laju daripada AGU terlebih dahulu dalam keadaan tertentu.

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xvi

 LIST OF APPENDICES xvii

1 INTRODUCTION 1

 1.1 Problem Background 1

 1.2 Problem Statement 2

 1.3 Objective 2

 1.4 Scope of Work 3

2 LITERATURE REVIEW 4

3 THEORY AND METHODOLOGY 13

 3.1 2D Correlation 13

 3.2 Finite Impulse Response 15

 3.3 Sum of Absolute Differences 17

viii

 3.4 Project Methodology 18

 3.5 Tool used in the project 21

4 DESIGN AND IMPLEMENTATION 23

 4.1 2D Correlation 24

 4.1.1 Arch_2D_Corr 25

 4.1.2 AGU_2D_Corr 32

 4.2 Finite Impulse Response (FIR) Filter 35

 4.2.1 Arch_FIR 35

 4.2.2 AGU_FIR 39

 4.3 Sum of Absolute Differences 43

 4.3.1 Arch_SAD 43

 4.3.2 AGU_SAD 49

 4.4 Reconfigurable AGU 52

 4.5 Design Integration 52

 4.5.1 Integration to Avalon Bus 53

5 RESULT AND DISCUSSION 57

 5.1 Verification Methodology 57

 5.2 2D Correlation 59

 5.2.1 Timing simulation using simple dataset 59

 5.2.2 Algorithm modeling in MATLAB 63

 5.2.3 Image pixels extraction 63

 5.2.4 Timing simulation using real image 64

 5.2.5 Verify design in the FPGA 66

 5.2.6 Output pixels extraction 68

 5.2.7 Output image comparison 69

 5.3 SAD 71

 5.3.1 Timing simulation using simple dataset 71

 5.3.2 Algorithm modeling in MATLAB 74

 5.3.3 Image pixels extraction 75

 5.3.4 Timing simulation using real image 75

 5.3.5 Verify design in FPGA 79

ix

 5.3.6 Output result comparison 81

 5.4 FIR 78

 5.4.1 Timing simulation using simple dataset 78

 5.4.2 Verify design in FPGA 79

 5.4.3 Output result comparison 81

 5.5 Performance Analysis 81

6 CONCLUSION AND FUTURE WORK 83

 6.1 Conclusion 83

 6.2 Future Improvements 85

REFERENCES 86

Appendices A-B 85-115

x

LIST OF TABLES

TABLE NO. TITLE PAGE

4.1 RTL-CS table for Arch_2D_Corr 29

4.2 RTL-CS table for Arch_FIR 38

4.3 RTL-CS table for SAD 47

4.4 AGU Top Module Register Information 56

5.1 Comparing the output of Arch_2D_Corr with Matlab 62

 Output for 10x5 image and 3x3 kernel

5.2 Performance comparison between AGU for 82

 2D Correlation, SAD and FIR

xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

2.1 Reconfigurable address generation unit based 4

on matrix Address sequence

2.2 Block diagram of reconfigurable address 5

generation unit based on a matrix address

sequence

2.3 Address sequence for X coordinate and Y 6

coordinate for Arch1

2.4 Functional block diagram of AGU1 7

2.5 Address sequence for X coordinate and Y 8

coordinate for Arch2

2.6 Functional block diagram of AGU2 9

2.7 Hardware schematic of AGU for data fetch of 11

convolution kernel

2.8 Hardware schematic of AGU for accessing data 12

for a Linear Phase FIR Kernel

2.9 Datapath for SAD computation 12

3.1 Simple averaging Filter (w) 14

3.2 Sample 4x4 image(f) 14

3.3 Sample 4x4 image padded with the edge pixel (f) 14

3.4 Results of the correlation (g) 15

3.5 Kernel movements in correlation using 3x3 kernel 15

3.6 FIR Block Diagram 16

3.7 Boxcar Filter 16

xii

3.8 Original image block and block to be compared 17

3.9 SAD Result 17

3.10 Project Flow 18

3.11 Algorithm Modeling and Architecture Development 19

3.12 The High Level Structure of the AGU Design 20

integrated to Avalon Bus

4.1 Arch_2D_Corr 24

4.2 SFG and schedule of Arch_2D_Corr for a 3x3 26

Kernel

4.3 ASM chart of Arch_2D_Corr 27

4.4 Functional block diagram of datapath unit for 28

Arch_2D_Corr for a 3x3 kernel

4.5 Functional block diagram of CU for 29

Arch_2D_Corr

4.6 Functional block diagram for Arch_2D_Corr 31

4.7 Address Sequences for AGU_2D_Corr 32

4.8 ASM chart of AGU_2D_Corr 33

4.9 Functional Block Diagram of AGU_2D_Corr 34

4.10 SFG and schedule of Arch_FIR for a 3x3 kernel 36

4.11 ASM Chart of Arch_FIR 36

4.12 Functional block diagram of DU for Arch_FIR 37

4.13 Functional block diagram of CU for Arch_FIR 38

4.14 Functional block diagram of Arch_FIR 39

4.15 ASM Chart of AGU for linear phase FIR filter 41

4.16 Functional block diagram of DU for AGU_FIR 42

4.17 Signal Flow Graph (SFG) of SAD_Arch 44

4.18 ASM chart of SAD_Arch 44

xiii

4.19 Scheduling and RTL codes of SAD_Arch 45

4.20 Functional block diagram of datapath Unit 46

4.21 Functional block diagram of the CU 47

4.22 Functional block diagram of SAD Arch 48

4.23 Address Sequences for AGU_SAD 49

4.24 ASM Chart of AGU_SAD 50

4.25 Functional Block Diagram of Datapath Unit for 51

AGU_SAD

4.26 Functional block diagram of reconfigurable AGU 52

4.27 Functional block diagram of the top module 53

4.28 Avalon Bus Read Waveform 54

4.29 Avalon Bus Write Waveform 54

4.30 Functional block diagram of the top module with 54

Avalon Bus Decoding Logic

4.31 Structure of the Altera Nios II SOPC with 55

AGU Top Module integrated

5.1 Simulation results of AGU_2D_Corr with 8x4 60

image and 5x5 kernel

5.2 Expected Result (Left) versus Simulation Result 60

(Right)

5.3 Simulation results of AGU2 with 10x5 image 60

and 3x3 kernel

5.4 Expected Result (Left) versus Simulation Result 61

(Right)

5.5 The input RAM memory setup to verify 61

Arch_2D_Corr

5.6 Simulation results of Arch_2D_Corr with 10x5 61

image and 3x3 kernel

5.7 Simulation results of Arch_2D_Corr with 10x5 62

xiv

image and 3x3 kernel – at the end of the image

5.8 MATLAB Code for 2D Correlation Algorithm 63

5.9 MATLAB Code for image pixel extraction for 63

2D Correlation

5.10 Simulation results of AGU_TOP_MODULE in 64

2D Correlation Mode

5.11 2D Correlation Simulation Report 65

5.12 2D Correlation Output Pixel File from ModelSim 66

5.13 C Code to configure the AGU_TOP_MODULE 67

5.14 C Code to configure the AGU_TOP_MODULE 67

for 2D Correlation Mode

5.15 Snapshot of the Nios II output console for 2D 68

Correlation Mode

5.16 Snapshot of the Altera In-System Content editor 69

for 2D Correlation

5.17 MATLAB code to read the ModelSim Result 69

5.18 MATLAB code to process the hex data from 69

FPGA memory

5.19 Comparing the output image of 2D correlation 70

mode for Matlab, Modelsim and FPGA

5.20 Comparing the output image of 2D correlation 70

mode for Matlab, Modelsim and FPGA using

another image

5.21 Simulation results of AGU_SAD using 71

8x4 image

5.22 Expected Result (Left) versus Simulation Result 72

(Right)

5.23 Simulation results of AGU_SAD using 8x4 image 72

5.24 Expected Result (Left) versus Simulation Result 73

(Right)

5.25 The input RAM 1 memory setup to verify 73

Arch_SAD

xv

5.26 The input RAM 2 memory setup to verify 73

Arch_SAD

5.27 Simulation results of Arch_SAD using 8x4 image 74

5.28 MATLAB Code for SAD Algorithm 74

5.29 MATLAB Code for image pixel extraction for 75

SAD

5.30 Simulation results of AGU_TOP_MODULE in 75

SAD Mode

5.31 C Code to configure the AGU_TOP_MODULE 76

for SAD Mode

5.32 Snapshot of the Nios II output console for SAD 76

Mode

5.33 Image 1 is being loaded to input RAM1 while 77

image 2 is being loaded to input RAM2

5.34 Simulation results of AGU for FIR filter 78

5.35 Memory setup for FIR Mode 78

5.36 Simulation results of AGU_TOP_MODULE in 79

FIR Mode

5.37 C Code to configure the AGU_TOP_MODULE 79

for FIR Mode

5.38 Snapshot of the Nios II output console for 80

SAD Mode

xvi

LIST OF ABBREVIATIONS

AGU - Address Generation Unit

ASM - Algorithmic State Machine

DSP - Digital Signal Processing

FPGA - Field-Programmable Gate Array

RTL-CS - Register Transfer Level – Control Signal

FIR - Finite Impulse Response

SAD - Sum of Absolute difference

2D - Two Dimension

xvii

LIST OF APPENDICES

APPENDIX TITLE PAGE

 A Verilog Codes 86

 B C Codes 113

CHAPTER 1

INTRODUCTION

1.1 Problem Background

Nowadays, digital signal processing (DSP) hardware required a large amount

of processing elements running in parallel. Performance gain in a hardware system

are achieved by using techniques such as pipelining, customized functional units,

optimized memory hierarchies and running processes in parallel. Therefore large

amount of the data access is needed.

Most of the DSP hardware is in cooperate with RISC processor. Manipulation

with structure data-types are not efficiently supported by RISC processor. RISC

processor is designed to have minimum number of instruction set and a complex

compiler is needed. Hence, a considerable amount of codes need to be generated to

cater the complex arithmetic manipulation that required by the DSP algorithm. This

creates large amount of overhead on the performance of DSP hardware and many

clock cycles are needed to fetch the data and instruction, decode, execute and process

the data.

DSP algorithm can be used for image processing purposes. Images are stored

in the memory, DSP processor are required to read the image from memory, process

the image and store it back to the memory. Some of the DSP algorithm required

complex address offset calculation and relying on software to calculate the address

offset creates more overhead than a dedicated hardware for address calculation.

2

1.2 Problem Statement

There are several numbers of DSP algorithms which are being widely used

for digital image processing. They are 2D convolution, 2D correlation, fast Fourier

transforms (FFT), FIR filter and etc. Those algorithms require intensive index

manipulations, resulting in complex address pattern. Complex address pattern

calculation using RISC processor is in-efficient and it will slow down the overall

system performance and resulting larger latency for accessing data.

Therefore, hardware accelerator is needed to speed up the address calculation

and reduce the overall latency for accessing data rather than using software to do the

address calculation. Such hardware accelerator for address calculation is known as

Address Generation Unit (AGU).

Prior arts of reconfigurable AGU [1] only focus on the implementation for

2D correlation. It does not support the address generation for DSP algorithms other

than 2D correlation. Furthermore, the prior arts of reconfiguration AGU [1] has only

shows the Modelsim simulation results and never been implemented in FGPA.

Enhancement is needed to the design and more address sequences for

different DSP algorithm need to be added. The AGU needs to be capable of

generating one address per clock in required sequence [6].

1.3 Objective

The main objective of this project is to enhance the prior AGU and

implement it to FPGA. The objectives that need to be achieved in this project are

listed below:

1. Design a reconfigurable AGU that:

 Capable to generate an address per clock.

 Support windows based operation.

3

 Able to be used for various DSP applications.

 The RTL design needs to be able to configure easily through parameter.

 Support different image size and kernel size.

 Take care of image border and considering the data reuse.

2. Prototype and implement the design into the FPGA.

1.4 Scope of work

The project is targeted for the hardware architecture of Address Generation

Unit (AGU) in Altera DE2-70 FPGA. The targeted DSP modules for the AGU in the

project include 2D Correlation, Finite Impulse Response (FIR) and Sum of absolute

difference (SAD). The DSP modules for targeted application are designed and work

together with the AGU. The full design is then integrated to Altera Avalon Bus.

The AGU design is capable to generate an address per clock. Besides that, it

also supports windows based operation with different kernel sizes and image

dimension. The RTL is being parameterized and easy to be configured. The data

reuse and image border consideration is being take care in the design as well.

 MATLAB is being used to model the DSP algorithm and Modelsim is used

as a simulator in the project. Altera Eclipse IDE is used as the environment to

develop the C program to communicate with the design after the full integration of

the design. Image pixels are extracted from simulation result in Modelsim and

memory in the FPGA to compare with the output result from MATLAB.

86

REFERENCES

1. Heng Ai Hoon. Reconfigurable address generation unit for 2D Correlation in

FPGA. 2011.

2. Tetsuo Kawano. Reconfigurable address generation circuit for image

processing, and reconfigurable LSI comprising the same. U.S. Patent 7, 515,

159. 2009.

3. P. Hulina, L. Coraor, L. Kurian, and E. John. Design and VLSI

implementation of an address generation coprocessor. Proc. IEE Computers

and Digital Techniques, 1995. 142(2): 145-151.

4. Ramesh M. Kini, and S. David. Comprehensive address generator for digital

signal processing. International Conference on Industrial and Information

Systems (ICIIS). December 28-31, 2009. Sri Lanka: IEEE. 2009. 325-330.

5. Ramesh M. Kini, and S. David. ASIC implementation of address generation

unit for digital signal processing kernel-processor. ICGST-PDCS, 2011. 11(1):

1-9.

6. Ramesh Kini M and Summam David S. Address Generation for DSP Kernel.

Communications and Signal Processing(ICCSP), 2011 International

Conference. February 10-12, 2011: 112-116

