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ABSTRACT

Radio over Fiber (RoF) is a promising technology capable of serving huge 
demands in the ever expanding wireless communication system. A number of studies 
have employed four RoF system architectures namely optical heterodyning, external 
modulation, optical transceiver, and up- and down-conversion for signal generation 
to solve the problem of system congestion. In this study, the millimeter-wave (mm- 
wave) frequency band has been identified in resolving the congestion problem. In 
particular an up-conversion RoF system architecture which uses a Remote Optical 
Local Oscillator (ROLO) is proposed. The optical signal, generated using a 10 GHz 
radio frequency (RF) signal utilises the Stimulated Brillouin Scattering (SBS) 
technique at the Central Station (CS). At the Base Station (BS), this signal is used to 
up-convert a modulated intermediate frequency (IF) signal by using a microwave 
mixer. The mixer is developed using a Heterojunction Bipolar Transistor (HBT) as 
its main active component due to its high internal gain. In addition, the mixer also 
functions as the frequency conversion stage. This study discovered that the proposed 
RoF-ROLO system is effective in reducing the dispersion effect which normally 
restricts the performance of mm-wave RoF system, in which the frequency 
conversion is done at the BS. The system was designed and simulated using the 
OptiSystem software for up to 40 GHz mm-wave carrier. Besides, the HBT mixer 
configuration has been successfully modelled and simulated using Microwave Office 
(MWO) software. Verification was carried through real-time measurement. The 
simulated conversion gain of the mixer achieved ranges between 2.11 dB to 7.97 dB 
for modulated IF input power ranging from -30 dBm to -10 dBm, respectively. These 
values were obtained by fixing the Local Oscillator (LO) power to 0 dBm. Moreover, 
the system has practically up-converted RF signal at 12.92 GHz. The new 
configuration between the SBS mm-wave signal generation with the up-conversion 
technique has been found to be practical by omitting the necessity of mm-wave LO 
at the BS; yet the frequency conversion still can be done at the BS.



ABSTRAK

Radio melalui gentian (RoF) merupakan satu teknologi utuh yang mampu 
memenuhi permintaan yang luas di dalam sistem komunikasi tanpa wayar yang 
semakin berkembang. Beberapa kajian telah menggunakan empat sistem seni bina 
RoF iaitu pengheterodinan optik, pemodulatan luar, penghantar-terima optik, dan 
penukaran-naik dan -turun untuk penjanaan isyarat bagi menyelesaikan masalah 
kesesakan sistem. Di dalam kajian ini, jalur frekuensi gelombang milimeter telah 
dikenal pasti dalam menyelesaikan masalah kesesakan frekuensi di dalam sistem 
tersebut. Khususnya satu penukaran-naik seni bina sistem RoF yang menggunakan 
pengayun optik tempatan jauh (ROLO) telah dicadangkan. Isyarat optik tersebut 
dijana menggunakan 10 GHz isyarat frekuensi radio (RF) menggunakan teknik 
serakan Brillouin terangsang (SBS) di stesen pusat (CS). Di stesen pangkalan (BS), 
isyarat ini digunakan untuk menaik-tukar isyarat frekuensi perantaraan (IF) 
termodulat dengan menggunakan pengadun gelombang mikro. Pengadun tersebut 
dibangunkan menggunakan transistor dwikutub heterosimpang (HBT) sebagai 
komponen aktif utama disebabkan oleh gandaan dalamannya yang tinggi. Di 
samping itu, pengadun tersebut juga berfungsi sebagai tahap penukaran frekuensi. 
Kajian ini mendapati bahawa sistem RoF-ROLO yang dicadangkan berkesan dalam 
mengurangkan kesan sebaran yang biasanya menghadkan prestasi gelombang 
milimeter sistem RoF, di mana penukaran frekuensi dilakukan di BS. Sistem ini telah 
direka dan disimulasi menggunakan perisian OptiSystem sehingga 40 GHz pembawa 
gelombang milimeter. Disamping itu, konfigurasi pengadun HBT telah berjaya 
dimodelkan dan disimulasi menggunakan perisian Microwave Office (MWO). 
Pengesahan telah dijalankan melalui pengukuran masa sebenar. Gandaan penukaran 
secara simulasi bagi pengadun tersebut dicapai antara julat 2.11 dB sehingga 7.97 dB 
bagi kuasa masukan IF termodulat masing-masing antara julat -30 dBm hingga -10 
dBm. Nilai-nilai ini telah diperolehi dengan menetapkan kuasa pengayun tempatan 
(LO) kepada 0 dBm. Selain itu, sistem ini telah menukar-naik isyarat RF secara 
praktikal pada 12.92 GHz. Konfigurasi baru di antara penjanaan isyarat gelombang 
milimeter SBS dengan teknik penukaran-naik didapati sangat praktikal dengan 
mengabaikan keperluan LO di BS; namun penukaran frekuensi masih boleh 
dilakukan di BS.
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INTRODUCTION TO THE PROJECT

1.1 Research Background

Over the past decade, mobile radio infrastructures have been the principal 

form of communication system. Booming requirements on high channel capacity, 

larger service coverage, multimedia services and broadband applications entail a 

technology that can meet those demands in the upcoming future. The need for 

reliable and cost effective communications has consequently led to the use of fiber- 

based wireless system. Such system greatly provides superior possible bandwidths 

for both fiber and free-space applications. Therefore, radio over fiber (RoF) 

technology is the most capable solution to deal with the improved capacity and 

mobility. The RoF technology also able to lessen the costs of base stations (BSs) 

whereby most of the signals such as radio frequency (RF) generation, coding, 

multiplexing and modulation can be processed at the central station (CS).

RoF system is characterized by having both a fiber optic link and free-space 

radio path. The use of free-space radio path as the final drop to the end-users 

provides flexibility since the end-users do not have to be fixed in location. Such 

systems are important in a number of applications, including mobile 

communications, wireless local area networks (LANs), and wireless local loop, 

among others. Rapid developments in both lightwave and microwave enabling 

technologies have fuelled an intense effort into the research and development of 

these networks [1-3].



Another advantage of RoF is that it is very reliable and is a prominent key in 

increasing users’ density and mobility in their daily life. In particular its application 

could be used in places such as airports, shopping malls, hotels, and office buildings. 

However, due to the limited availability of the RF bands, it has been expected that 

the millimeter wave (mm-wave) bands would be used to meet the demand for higher 

signal bandwidth and frequency congestion will not be a constraint in the future RoF- 

based optical-wireless access networks [1].

RoF technology permits a microcellular network system to be realized by 

using a fiber-fed distributed antenna network as shown in Fig. 1.1. The received RF 

signals at each base station (BS) are then being sent out over an analog optical fiber 

link to a CS where all the demultiplexing and signal processing are carried out. Each 

microcell simply consists of a linear analog optical transmitter, an amplifier as well 

as the smaller and low power transceiver of antenna. Therefore, the expenses on 

microcellular antenna site can be significantly reduced. In addition by having such a 

distributed antenna network, can give some advantages such as low RF power of 

BSs, high density allocations, frequency reuse, high quality signal, enhanced 

coverage plus low fiber attenuation. All the mentioned advantages make RoF an 

appealing technology for many dissimilar signal radio applications especially in 

mobile communication network.

RoF technology involves the use of optical components and techniques to 

allocate RF signals from the CS to the BSs. Thus, RoF makes it possible to centralize 

the RF signal processing function in one shared location (CS). It also offers the use 

of optical fiber that has a very low signal loss (about 0.22 dB/km for 1550nm and 0.4 

dB/km for 1310nm wavelengths) to distribute the RF signals to the BSs [4]. As we 

are concern, the integration of wireless and optical networks is a potential solution 

for increasing capacity and mobility as well as decreasing costs in the access 

network.



Figure 1.1 RoF technology for microcellular network system

1.2 Problem Statements

The immense growth of wireless communication system in the last decade 

has resulted in the significant increase in the demand for high user capacity and high 

data rate services. In particular a wider radio frequency spectrum is very much 

needed over a radio link. It is essential for radio link to employ higher frequency 

carriers because spectrum congestion occurs at low frequencies. Numerous research 

works have been conducted in mm-wave signal generation with optical mm-wave 

production being a vital technique in RoF system [5-6]. The use of optical fiber for 

signal distribution in mm-wave radio communication systems has also been widely 

investigated [7-9] since they provide high bandwidths and pico-cell sizes.

By using RoF, the capacity of optical networks can also be integrated with 

the flexibility and mobility of wireless access networks. Considering these



conditions, the combination of wireless and optical networks could provide a 

solution for the increasing capacity and mobility as well as reducing the costs in the 

access network. In this study, the concept of RoF has been implemented since it is 

able to provide several advantages such as it can reduce the complexity at the 

antenna site and the radio carriers can be allocated dynamically to the different 

antenna sites (frequency reuse).

On the other hand, RoF link might suffer from the dispersion effect when 

transmission of higher frequency like mm-wave signal is involved. Even though the 

dispersion effect can be compensated with the use of dispersion-shifted fiber (DSF) 

where zero dispersion wavelengths occur, such fiber is quite expensive and could 

increase the cost of creating a new fiber link or replacing the existing link. In 

addition, due to the zero dispersion wavelength, the attenuation coefficient of the 

fiber is slightly increased which, might degrade the performance of the signal. 

Considering these issues, several techniques were proposed by number of works in 

avoiding or minimizing the dispersion effects.

1.3 Motivation

Motivated by the mm-wave implementation in RoF system, this study 

presents the development of a new configuration of RoF system architecture known 

as remote optical local oscillator (ROLO) system which RF signal is optically 

generated by using the stimulated Brillouin scattering (SBS) technique at the CS. 

This optical frequency carrier is transmitted through the fiber and photo-detected by 

p-i-n photodiode (PD) at the BS. While, at the BS, the RF generated signal is used to 

up-convert the modulated intermediate frequency (IF) signal by a microwave mixer. 

The new configuration of RoF-ROLO system is capable of reducing the dispersion 

effect that limits RoF system performance at higher frequency, in which the 

frequency up-conversion is done at the BS. The new integration between the all 

optical signal generation based on SBS technique and the frequency up-conversion 

seemed to be more practical by omitting the necessity of local oscillator (LO) at the 

BS. This study also gives detail description of the work involved in realizing the



proposed system in terms of modeling, designing, fabricating and demonstrating of 

the system. The performance and achievement of the work are presented and 

explained in detail in the assigned chapters.

1.4 Research Objectives

The main objectives of this research are as follow:

• To model an optical RF signal generator utilizing SBS technique up to 
mm-wave frequency band at low optical carrier input power through 
simulation.

• To design a microwave mixer based on heterojunction bipolar transistor 
(HBT) as the main active component to achieve high conversion gain at 
up-converted frequency of 12.4 GHz.

• To develop a heterodyne RoF system architecture by integrating the 
optical RF generated signal model with the HBT RF mixer with optimum 
dispersion effect.

• To demonstrate experimentally the proposed RoF-ROLO system 
architecture at microwave frequency.

1.5 Scopes of Works

This research intends to concentrate on the following scopes:

1. Investigate and study the current research and technology in RoF for 

mm-wave band.

2. Investigate the mm-wave signal generation techniques including the 

optically RF signal generation utilizing SBS technique.

3. Study and understand the concept and fundamental of optical signal 

generation based on SBS technique, RF mixing, HBT as a mixer, and 

RoF-ROLO as a system.



4. Model and simulate an optical signal generation based on SBS up to mm- 

wave region by using OptiSystem version 10.0 as a simulation tool.

5. Study the performance of the SBS model by the changing effects of the 

SBS fiber loop length, optical carrier power of the continuous wave 

(CW) laser and different responsivity values of the p-i-n  PD.

6. Model and develop a microwave mixer based on available HBT in 

Microwave Office (MWO) version 7.03 simulator.

7. Realize the RF mixer through fabrication for up-conversion frequency of

12.4 GHz with high conversion gain.

8. Model and develop a RoF-ROLO system by integrating the model of all 

optical signal generation based on SBS technique and the model of RF 

mixer in the OptiSystem environment.

9. Obtain and evaluate the performance parameters of the system by mainly 

studying the dispersion effect in RoF link.

10. Demonstrate the system through experimental arrangement and 

investigate the performance between the simulation and measurement.

1.6 Research Methodology

In order to address the research objectives, a work flow of the research is 

constructed and presented in Fig. 1.2. This work flow shows the development of the 

system and covers all the issues that have to be considered throughout this project. At 

the initial stage, investigation on the current research in RoF is conducted. This 

involves focusing on the literature on RoF system as well as all the related research 

works. It is important to study and comprehend the concept of generation signal 

based on SBS technique, the RF mixing concept, RF mixer design and specification 

and RoF-ROLO as a system.

This stage also covers the investigation on the architecture of RoF optical 

receiver and any other signal generation technique. It is necessary to differentiate the 

system architecture and the subsystem characteristics from the previous works. In 

this work, the RoF-ROLO system has been designed to meet the important



characteristics which are lower input power level, high system conversion gain as 

well as minimizing the dispersion effect. In addition, understanding on the software 

to be used, which are the MWO and OptiSystem is also required. Detailed 

information about the software is available in Appendix A. All suitable circuit 

designs and architectures are clarified appropriately. Other research activities under 

this module are carried out at the second stage progress.

In the second stage, the modeling and designing of the main components of 

the system which are the optical signal generation model based on SBS technique by 

using OptiSystem and the HBT RF mixer model by using the MWO simulator are 

developed. The simulation of SBS model development is within the parameters of 

setting up of the performance analysis. As for the HBT mixer model development, it 

is significant to consider the main design characteristics such as the S-parameter and 

matching circuit during the simulation. The performance of the HBT mixer model is 

also determined. It is important that the results obtained from the simulation have to 

be analyzed and verified. An optimum design and operating conditions of the mixer 

are determined before it is fabricated. The fabricated mixer is then being tested and 

analyzed and integrated with the SBS model of the optical signal generation. Both 

subsystems development will be explained in detail in chapter 3 and 4 respectively.

Consequently, the best configuration from the simulation of both models is 

then integrated to become a one full system known as a RoF-ROLO system are 

continued in stage 3. This system is developed and simulated in OptiSystem 

environment. The performance of the system is investigated before it is realized 

through hardware implementation and demonstration. It is expected that the design is 

tested successfully on the system; hence the measurement results are in line with the 

simulation analysis. The description and specification of the equipments used for the 

experiment are available in Appendix B.

This stage is the most crucial because it is where all the results from both 

simulation and hardware implementation are analyzed thoroughly. It is important to 

compare both results so that an optimum design can be determined. In addition, 

should there be any problems or limitations on the design, it will then be rectified 

and further implications, suggestions and possible recommendations will be given.



Results analysis and 
performance study

Results analysis and 
performance study

Stage 2 

Stage 3

System simulation and 
performance study

System demonstration through experimental 
arrangement

Comparison and results 
analysis

End

Figure 1.2 Flow chart of the research methodology



1.7 Thesis Outline

Much of this work is devoted to the study of RoF-ROLO system for radio 

over fiber. In Chapter 1, an overview of the research, aims, motivation, problems 

and reasoning of the study are discussed. The scopes of research work are also 

presented accordingly. Methodology of the research work that covers the matters in 

completing the work is thoroughly given.

Chapter 2 broadens the discussion and provides more detail background and 

reviews of the RoF system and technology, mm-wave signal generation techniques, 

carrier signal generation utilizing SBS technique, frequency conversion based on 

mixing technique, as well as the general idea of the proposed RoF-ROLO system is 

introduced.

In Chapter 3, the development of the all-optical signal generation utilizing 

SBS technique is discussed. This chapter begins with the presentation of the block 

diagram of proposed system with explanation of each sub-block followed by the 

flowchart of the optical signal generation based on SBS technique. Next, the SBS 

simulation model development in OptiSystem environment is given. The 

performance of the model through the changing effect of different optical fiber loop, 

different optical carrier power and different responsivity of p-i-n PD are discussed. 

Finally this chapter presents the experimental demonstration of the SBS 

configuration.

Chapter 4 firstly presents the flowchart of the RF mixer designs. The 

explanation covers the fundamental of RF mixing and its characteristics followed by 

the modeling and simulation of the mixer by using MWO as the simulation tool. The 

development of HBT mixer, design consideration and the simulation results are 

presented. The performance of the model with the effect of different input power and 

conversion gain study are also highlighted. The fabrication process of the mixer is 

explained before the experimental arrangement of the mixer is demonstrated. Later, 

the performance of the mixer is discussed based on the comparison between the 

simulation and experimentation.



In Chapter 5, the development of RoF-ROLO system is presented by 

integrating both SBS signal generation model and RF mixer model covered from 

previous chapters. This model is acting as a whole proposed system that simulated in 

OptiSystem environment. Results analysis based on the simulation and measurement 

are compared, discussed and concluded.

Finally in Chapter 6, a concluding remarks and recommendations for future 

prospects for this work are given. The original contributions are highlighted, and all 

the publications and awards related to this work are also presented.
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