DESIGN OF CARBON DIOXIDE ABSORPTION FROM POLLUTED CITY AIR

ALIREZA RAFIEI

A dissertation submitted in partial fulfillment of requirements for the award of Degree of Master of Engineering(Chemical)

Faculty of Chemical Engineering Universiti Technologi Malaysia

MARCH 2013

ABSTRACT

Global climate change is the most serious environmental problem which the world is facing now. To avoid dangerous climate change, the growth of atmospheric concentrations of greenhouse gases must be halted and may have to be retarded. The concentration of carbon dioxide, CO₂, the most dominant greenhouse gas, has increased from 280ppm in the pre-industrial age to more than 380ppm now and is now increasing by more than 2ppm per year driven by global CO₂ emissions that are now increasing at more than 3.3% per year. Controlling the level of carbon dioxide in the atmosphere without limiting access to fossil energy resources is only possible if carbon dioxide is collected and disposed of from the atmosphere. While it may be cost-advantageous to collect the carbon dioxide at concentrated sources without ever letting it to enter the atmosphere but this approach is not available for the many diffuse sources of carbon dioxide. Similarly, for many older plants a retrofit to collect the carbon dioxide is either impossible or prohibitively expensive. For this reason current research investigate the possibility of collecting carbon dioxide directly from the atmosphere. In this case a small scale packed column was designed to be portable and can be operated in polluted city centers. 2-amino-2-methyl-1propanol (AMP) solution was used as absorbent in the packed column. In order to investigate efficiency of the proposed design by employing mass and heat transfer equations a model was proposed for the system. The model was solved numerically and was validated successfully with experimental data of the literature. Finally the model was used to predict carbon dioxide removal from Tokyo city. It was found that the contactor able to capture at least 50% at each run which is designed in small scale. Furthermore, a parameter sensitivity test including physicochemical properties and operation condition was carried out.

ABSTRAK

Perubahan iklim global adalah masalah yang paling serius alam sekitar yang dihadapi dunia sekarang. Untuk mengelakkan perubahan iklim yang berbahaya, pertumbuhan kepekatan atmosfera gas rumah hijau mesti dihentikan dan mungkin perlu terbantut. Kepekatan karbon dioksida, CO₂, gas rumah hijau yang paling dominan, telah meningkat daripada 280ppm dalam usia pra-industri kepada lebih daripada 380ppm sekarang dan kini semakin meningkat oleh lebih daripada 2ppm setahun didorong oleh pelepasan CO₂ di seluruh dunia yang kini meningkat pada lebih daripada 3.3% setahun. Mengawal tahap karbon dioksida di atmosfera tanpa menghadkan akses kepada sumber tenaga fosil hanya boleh dilakukan jika karbon dioksida dikumpul dan dilupuskan dari atmosfera. Walaupun ia mungkin kos berfaedah untuk mengumpul karbon dioksida pada sumber pekat tanpa pernah membiarkan ia memasuki atmosfera tetapi pendekatan ini tidak tersedia untuk banyak sumber meresap karbon dioksida. Begitu juga, bagi tumbuh-tumbuhan yang lebih tua banyak retrofit untuk mengumpul karbon dioksida adalah sama ada mustahil atau terlampau mahal. Bagi penyelidikan sebab ini semasa menyiasat kemungkinan mengumpul karbon dioksida secara langsung dari atmosfera. Dalam kes ini penuh skala kecil tiang telah direka untuk menjadi mudah alih dan boleh dikendalikan di pusat-pusat bandar yang tercemar. 2-amino-2-metil-1-propanol (AMP) penyelesaian telah digunakan sebagai penyerap dalam ruang yang penuh sesak. Dalam usaha untuk menyiasat kecekapan reka bentuk yang dicadangkan oleh jisim dan persamaan pemindahan haba yang menggunakan model telah dicadangkan untuk sistem itu. Model ini telah diselesaikan secara berangka dan telah disahkan berjaya dengan data eksperimen kesusasteraan. Akhirnya model telah digunakan untuk meramal penyingkiran karbon dioksida dari bandar Tokyo. Ia telah mendapati bahawa kontaktor mampu untuk menangkap sekurang-kurangnya 50% pada jangka setiap yang direka dalam skala kecil. Tambahan pula, ujian parameter sensitiviti termasuk hartanah fizikokimia dan keadaan operasi telah dijalankan.

TABLE OF CONTENTS

CHAPTER	TITLE		PAGE	
	DEC	ii		
	DED	ICATION	iii	
	ACK	NOWLEDGEMENT	iv	
	ABS'	TRACT	v	
	ABS'	TRAK	vi	
	TAB	LE OF CONTENTS	vii	
	LIST	T OF TABLES	X	
	LIST	T OF FIGURES	xi	
	LIST	T OF SYMBOLS	xiii	
1	INTI	RODUCTION	1	
	1.1	Background of the Study	1	
	1.2	Statement of Problem	4	
	1.3	Purpose of the Study	4	
	1.4	Scope of the Study	5	
2	LITI	ERATURE REVIEW	6	
	2.1	Greenhouse gases, Global Warming and		
		CO ₂ Emission	6	

		2.1.1	Greenhou	ise Effects	on Earth's Atmosphere	7
		2.1.2	Climate	Change and	l it's Impacts	10
		2.1.3	Greenhou	ise gases en	mission sources	12
		2.1.4	The Effec	ets of Indus	trial Activities on	
			CO ₂ Emis	ssion		12
	2.2	History	of CO ₂ Ca ₁	pture from	Air	12
		2.2.1	Oxygen F	Plants		13
		2.2.2	Space Cra	aft		14
		2.2.3	Submarin	ies		15
		2.2.4	Relevance	e to CO ₂ C	apture from Air	16
	2.3	Actions	on climate	change and	d CO ₂ reduction strategies	17
		2.3.1	CO ₂ capti	ure technol	ogies from flue gases	17
		2.3.2	CO ₂ capti	ure by post-	-combustion	
			Technolo	gies		18
			2.3.2.1	Absorption	on	18
			2.3.2.2	Adsorption	on	18
			2.3.2.3	Membran	e Separation	19
			2.3.2.4	Cryogenie	cs	19
			2.3.2.5	Photocata	llystic Reduction	20
		2.3.3	Backgrou	ınd of absoı	rption	22
			2.3.3.1	Absorption	on technique	22
				2.3.3.1.1	Chemical Absorption	22
				2.3.3.1.2	Physical Absorption	23
			2.3.3.2	Chemica	l Absorption Solvent	23
		2.3.4	CO ₂ Captui	re technique	e from air	23
	2.4	Routes	to CO ₂ capt	ture from a	ir	24
		2.4.1	Organic c	earbon prod	uction	24
		2.4.2	Metal-car	bonate pro	duction	25
		2.4.3	Metal hyd	droxide sor	bents	25
	2.5	CO ₂ ca ₁	pture techno	ologies fron	n air	26
	2.6	Air con	tactor for C	O ₂ capture	from air	33
3	RESI	EARCH I	METHOD	OLOGY		35
	3.1	Introdu	ction			35

	3.2	Design	of the CO ₂ absorber	36
		3.2.1	Basic principles of mass-transfer with	
			Chemical reaction	37
			3.2.1.1 Mass-Transfer Phenomena	37
			3.2.1.2 Mass-Transfer Coefficient	
			in Turbulent Flow	39
		3.2.2	Effect of Chemical Reactions on mass	
			transfer phenomena	42
	3.3	Packed	l Column Model	45
		3.3.1	Models Published in the Literature	45
		3.3.2	Kinetic of Reaction	47
		3.3.3	Pandaya's Model	48
		3.3.4	Auxillary equations	50
		3.3.5	Vapor-liquid equilibrium thermodynamic	53
	3.4	Physica	al Properties	54
		3.4.1	Liquid Density	54
		3.4.2	Specific heat of liquid solution	55
		3.4.3	Physical Solubility	56
		3.4.4	Diffusion Coefficient	57
		3.4.5	The physical and chemical properties	
			used in the model	58
4	RES	ULT AN	D DISCUSSION	62
	4.1	Valida	tion	62
	4.2	Modell	ling measurement through	
		the hei	ght of absorption column	64
	4.3	Case st	tudy Tokyo-subway station	73
5	CON	ICLUSIC	ON	77
	5.1	Conclu	asion	77
	5.2	Future	Work	79
REFEREN	CES			80

LIST OF TABLE

TABLE NO	TITLE	PAGE
2.1	Effects and impacts of climate change	11
2.2	Comparison of CO ₂ post-combustion capture technologies	21
3.1	Physical properties of Carbon dioxide-air/AMP system	
	with mass transfer resistance in both gas and liquid phases	52
3.2	Parameter of the Density Equation for Pure Fluids	55
3.3	Parameters of Heat Capacity for AMP Aqueous Solution	56
3.4	Parameters in the Diffusivity Equation for Aqueous	
	Alkanolamine Solution	58
3.5	Physical and Chemical properties used	
	in the absorber model for AMP	59
4.1	Absorption characteristics	64
4.2	Characteristics data and constant for dumped packing	65
4.3	Absorber inlet condition	65
4.4	Absorber Condition and Specification	74

LIST OF FIGURE

FIGURE NO	. TITLE	PAGE
2.1	Schematic of the Direct Air Capture Equipment	26
2.2	Sketch of a convection tower that could	
	either provide electricity or CO ₂ capture	27
2.3	Air capture with calcium hydroxide	28
2.4	Air capture with sodium hydroxide	28
2.5	Schematic for Process Option A	29
2.6	Schematic for Process Option B	30
2.7	Schematic of CO ₂ capture process	
	from air using concentrated solar power	30
2.8	Atmospheric CO ₂ capture process proposed by Zeman	31
2.9	Prototype design. NaOH spray absorbs CO ₂ from air	
	pulled through by a blower while CO ₂	
	concentration is measured at the inlet and outlet	32
2.10	Block diagram for chemical recovery using titanates in	
	air capture	32
3.1	Concentration profile of diffusing component A in gas liquid	38
3.2	Film theory	40
3.3	Penetration theory	41
3.4	Gas phase and liquid phase concentration profile for kinetic	
	Regimes A and B	43
3.5	Gas phase and liquid phase concentration	
	profile for kinetic Regimes C and D	43
3.6	Gas phase and liquid phase concentration	

	profile for kinetic Regimes E and F	44
3.7	Gas phase and liquid phase concentration	
	profile for kinetic Regimes G and H	45
3.8	Schematic diagram of a packed column	49
3.9	Flowchart for air-CO ₂ -AMP simulation model	61
4.1	Modeled results (lines) and experimental data (dot)	
	for the amp-CO ₂ system.	
	(a) Concentration profiles. (b) Liquid temperature profiles	63
4.2	Model results for air.	
	(a) Concentration profiles. (b) Gas temperature profiles.	
	(c) Liquid temperature profiles	66
4.3	Effect of carbon dioxide concentration on absorption profile	68
4.4	Effect of gas temperature on absorption profile	69
4.5	Effect of gas density on absorption profile	69
4.6	Effect of liquid density on absorption profile	70
4.7	Effect of carbon dioxide diffusion on absorption profile	70
4.8	Effect of surface tension on absorption profile	71
4.9	Effect of gas viscosity on absorption profile	71
4.10	Effect of liquid viscosity on absorption profile	72
4.11	Simplified network map of Tokyo subway	73
4.12	Model results for Tokyo subway station.	
	(a)Concentration profiles. (b) Gas temperature profiles.	
	(c) Liquid temperature profiles.	75

LIST OF SYMBOLS

$a_{\rm w}$ - specific wetted area for mass transfer, $m^2/$	$/m^3$
--	--------

 A_C – specific wetted area for mass transfer, m^2

 c_{AMP}^0 – specific wetted area for mass transfer, mol/ m^3

 $c_{p,i}$ — molar heat capacity of component i in the gas phase, J $mol^{-1}K^{-1}$

 $c_{p,L}$ — molar heat capacity of the liquid, J $mol^{-1}K^{-1}$

 $C_{A,1}$ — concentration of the componenet A at the begining of the transfer path

 $C_{A,2}$ — concentration of the componenet A at the end of the transfer path

 $D_{i,L}$ – diffusivity of component i in the liquid, m^2/s

G – molar gas flow, mol/s

h – heat transfer coefficient in gas, J $s^{-1}K^{-1}m^{-2}$

 H_{CO_2} — Henry's Law constant for CO2, Pa $m^3 mol^{-1}$

 ΔH_{H_2o} — heat of condensation of H_2o , J/mol

 ΔH_{CO_2} - heat of absorption of CO_2 , J/mol

 $k_{G,i}$ — gas — side mass — transfer coefficient of component i,

 $\text{mol } m^{-2}s^{-1}Pa^{-1}$

 $k_{L,i}$ – liquid – side mass – transfer coefficient of component i, m/s

 k_L^o – liquid mass – transfer coefficient

 k_2 - rate constant, $m^3 mol^{-1} s^{-1}$

 $K_{G,i}$ – overall mass – transfer coefficient of component i,

 $\text{mol } m^{-2}s^{-1}Pa^{-1}$

 K_{CO_2} — Combined Henry's Law and chemical equilibrium constant for

CO₂ partial pressure, Pa

L − molar liquid flow, mol/s

 N_i — molar flux of component i, mol $m^{-2}s^{-1}$

N_A – mass – transfer flux or the component A

 p_i — partial pressure of component i in the bulk gas phase, Pa

 p_i^* — partial pressure of component i gas phase if it were in

equilibrium with the liquid, Pa

q – heat flux, J $m^{-2}s^{-1}$

 T_G – gas – phase temperature, K

 T_L – liquid – phase temperature, K

 x_i – liquid – phase mole fraction of component i, mol/mol

 X_{CO_2} — liquid — phase mole fraction of CO_2 in both reacted and unre — acted forms

 y_i – gas – phase mole fraction of component i, mol/mol

z — height of packing, m

E – Enhancement factor

M – dimensionless number used in the enhancement factor

$$\operatorname{Fr}_L = \frac{\operatorname{u}_L^2}{g d_h}$$
 Froude number of liquid

$$Re_L = \frac{u_L d_h}{v_L}$$
 Reynolds number of liquid

 $Re_V = \frac{u_V}{v_V a}$ Reynolds number of gas or vapour

$$Sc_L = \frac{v_L}{D_L}$$
 Schmidt number of liquid

 $Sc_V = \frac{v_V}{D_V}$ Schmidt number of gas or vapour

We = $\frac{u_L^2 \rho_L d_h}{\sigma_L}$ Weber number of liquid

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

To avoid dangerous climate change, the growth of atmospheric concentrations of carbon dioxide must be halted, and may have to be reduced. The concentration of carbon dioxide, the most important greenhouse gas, has increased from about 280 ppm in the preindustrial age to more than 385 ppm and it is now increasing by more than 2 ppm per year driven by global CO₂ emissions that are now increasing at more than 3.3% per year (Keith and Ha-Duong, 2003)

Carbon capture and storage (CCS) technologies target CO₂ removal from large fixed-point sources such as power plants. Dispersed sources, however, emit more than half of global CO₂ emissions. Direct capture of CO₂ from ambient air, "air capture", is one of the few methods capable of systematically managing dispersed emissions. Therefore, while air capture is more expensive than capture from large point sources it still remains necessary to capture CO₂ from dispersed sources such as transportation which can be very expensive to mitigate (Keith and Ha-Duong, 2003).

Carbon dioxide adsorption by plants indicates the physical possibility of CO₂ capturing from the air. On the other hand, it is more than half a century that technologies have been developed for cleaning the atmosphere of carbon dioxide. Chemical sorbents, in all methods, play the essential role. They deliver carbon dioxide from the concentrated stream which can be pressurized and stored, respectively. Chemical reactions employed in these capture devices have the advantages of being fast with low energy demand. Therefor a system, which can effectively collect carbon dioxide, is reachable. But, being physically feasible is not enough. Commercial viability of the system must be also demonstrated. In a systems analysis approach showed that air capture can be fulfilled at a slightly higher cost and energy penalty than that of direct CO₂ scrubbing from a conventional power plant flue stack. It can be concluded that a commercially viable system is not beyond the reach (Lackner, 2001).

Air capture can be implemented without modifying or abandoning existing infrastructures. This removes a major obstacle to its introduction. It also suggests that air capture as a solution may become more widespread than would be justified based on first principles. It also suggests that the time for its introduction could be quite short. On a country scale, it could be as fast as the transition to nuclear energy in France, which was essentially completed within twenty years (Lackner, 2001).

Air capture can serve many needs, as a commercial use, for better oil recovery by providing carbon dioxide. In these regards, the reduction of greenhouse either coincidentally or as a byproduct would be desirable. However, these collected carbon dioxides can be used for the development and enhancement of the technology. The next step after establishing the technology in such a niche is to capture and utilize the carbon dioxide from the air for the primary purposes. These purposes can be offsetting emission of carbon dioxide at other places. Unlike uncertain offset scheme comparing actual emissions with theoretical ones, which is always considered as a business scenario, a true carbon offset option is provided when deal with capture of carbon dioxide from the air and its combination with

carbon storage technologies. Undoubtedly, additional baselines need to be defined in terms of carbon dioxide capture and storage. As long as gasoline and diesel are persistently sold, an air capture carbon management system will have developed. At $\in 30$ / ton CO₂, which is a reasonable price goal, the carbon dioxide capture cost surrounded in the price of gasoline would amount to 7ϕ /liter (Lackner, 2001).

Air capture could go further and function in other carbon dioxide emission reductions. For example, it could be used to treat the residual emission from power plants after 85% of the carbon dioxide has been removed. Zero emission is reachable with the help of carbon dioxide capture from air. Air capture would be usefully used for poor developing countries which have not yet succeed to manage their own carbon footprint. In compare with the cost of removing at the source, the air capture cost does not increase significantly as net reductions approach 100%. Therefore, the reduction of the atmospheric level of carbon dioxide by scrubbing more carbon dioxide than which is emitted would be feasible. The technology of air capture is one of the rare technological choice that truly allow the return to smaller levels of carbon dioxide in the air with no need to natural processes for absorbing the carbon dioxide (Dubey et al., 2002).

In the case of carbon dioxide for playing this role in carbon management, a safe and reliable storage of carbon dioxide is necessary as well. Several technologies such as geological storage, mineral sequestration and sub-ocean storage have shown promise but still need to be improved before a sink for the carbon dioxide has been established. A report on carbon dioxide capture and storage have been described in the IPCC (Dubey et al., 2002).

Air capture technology in combination with carbon dioxide storage and synthetic fuel production provide a pathway toward the development of energy infrastructure that preserves the wanted characteristics of the existing infrastructure as well as solving the main challenge of atmosphere changes (Dubey et al., 2002).

1.2 Statement of Problem

CO₂ is long-lived in the atmosphere, and it seems increasingly likely that CO₂ emissions will overshoot the limit on the cumulative total that is likely to be needed to limit a global temperature rise to below 2⁰C above pre-industrial levels. It may, therefore, become necessary to remove CO₂ from the atmosphere. It will be difficult or impossible to achieve such a significant reduction in direct emissions in some sectors like agriculture and food production, air or marine transport. However, reduction carbon dioxide strategies in industrial activities could be promising way. But there are various limitations and restrictions in post capture processes in industries which obstacle for implementing such approaches especially in developing countries. Therefore designing and developing process for CO₂ extraction from the polluted air have been identified as having potential to remove CO₂ from the atmosphere. Most of the components in capturing carbon dioxide from ambient air operate in existing industrial, but the component making contact with air for initial extraction of CO₂ (contactor) is not well understood.

1.3 Objective of the Study

The main purpose of this research is to design and model an absorber packed column process to capture atmospheric CO₂ in order to reduce CO₂ accumulation in big cities.

1.4 Scope of the Study

- i. A computer model was solved in MATLAB for the simulation of the absorption of carbon dioxide (CO₂) from polluted air in aqueous 2-amino-2-methyl-1-propanol (AMP) solution in a packed column.
- ii. Predict the concentration profile along the packed column for the Air-CO₂-Amp system.
- iii. A parameter sensitivity test including physicochemical properties and operation condition has been carried out.
- iv. As a case study the model applied for a high CO₂ concentration location in Tokyo.

REFERENCES

- Amdur, I., J. W. Irvine, E. A. Mason and J. Ross . (1952). Diffusion Coefficients of the Systems CO₂-CO₂ and CO₂-N₂O. *J. Chem. Phys.* . 20: 436-443. .
- Astaria, G., Savage, D.W.andBisio, A. (1983). Gas treating with chemical solvents.
- Baciocchi, R., Storti, G.andMazzotti, M. (2006). Process design and energy requirements for the capture of carbon dioxide from air. *Chemical Engineering and Processing*. 45(12), 1047-1058.
- Bertram, C. (2010). Ocean iron fertilization in the context of the Kyoto protocol and the post-Kyoto process. *Energy Policy*. 38(2), 1130-1139.
- Bhatkhande, D.S., Pangarkar, V.G. and Beenackers, A.ACM., (2001). "Photocatalytic
- Degradation for Environmental Application-A Review," J. Chem. Technol.
- Biotechnol., 77, 102,...
- Billet, R.andSchultes, M. (1999). Prediction of mass transfer columns with dumped and arranged packings. *Trans IChemE*. 77(Part A), 498-504.
- Bolland, O. (2004). "CO₂ Capture Technologies-an Overview," The Second Trondheim
- Conference on CO₂ Capture, Transport and Storage, .
- Bosch, H., Versteeg, G.andVan Swaaij, W. (1990). Kinetics of the reaction of CO< sub> 2</sub> with the sterically hindered amine 2-Amino-2-methylpropanol at 298 K. *Chemical Engineering Science*. 45(5), 1167-1173.
- Buesseler, K.O.andBoyd, P.W. (2003). Will ocean fertilization work? *Science*. 300(5616), 67.
- Caruso, H.G., 2006. Reduction of CO₂ emissions from cement plants. University of Waterloo.

- Castle, W.F. (2007). "Fifty-Years' Development of Cryogenic Liquefaction Processes", Chap.
- 8, Springer New York.
- Chiu, L.F.andLi, M.H. (1999). Heat capacity of alkanolamine aqueous solutions. *Journal of Chemical & Engineering Data*. 44(6), 1396-1401.
- Chiu, L.F., Liu, H.F.andLi, M.H. (1999). Heat capacity of alkanolamines by differential scanning calorimetry. *Journal of Chemical & Engineering Data*. 44(3), 631-636.
- Clarke, J. (1964). Kinetics of Absorption of Cardon Dioxide in Monoethanolamine Solutions at Short Contact Times. *Industrial & Engineering Chemistry Fundamentals*. 3(3), 239-245.
- Danckwerts, P. (1951). Significance of liquid-film coefficients in gas absorption. *Industrial & Engineering Chemistry*. 43(6), 1460-1467.
- Dubey, M.K., Ziock, H., Rueff, G., Elliott, S., Smith, W.S., Lackner, K.S.andJohnston, N.A., 2002. Extraction of carbon dioxide from the atmosphere through engineered chemical sinkage, 1 ed, pp. 81-84.
- Elliott, S., Lackner, K., Ziock, H., Dubey, M., Hanson, H., Barr, S., Ciszkowski, N. andBlake, D. (2001). Compensation of atmospheric CO2 buildup through engineered chemical sinkage. *Geophysical Research Letters*. 28(7), 1235-1238.
- Falk-Pedersen, O.andDannström, H. (1997). Separation of carbon dioxide from offshore gas turbine exhaust. *Energy Conversion and Management*. 38, S81-S86.
- Feron, P.H.M., and Jansen, A.E., (1997). "The Production of Carbon Dioxide from Flue
- Gas by Membrane Gas Adsorption," Energy Convers. Mgmt., 38 (Suppl.), S93,

. .

Gabrielsen, J., Michelsen, M.L., Stenby, E.H.andKontogeorgis, G.M. (2005). A model for estimating CO2 solubility in aqueous alkanolamines. *Industrial & engineering chemistry research.* 44(9), 3348-3354.

- Gabrielsen, J., Michelsen, M.L., Stenby, E.H.andKontogeorgis, G.M. (2006). Modeling of CO2 absorber using an AMP solution. *AIChE Journal*. 52(10), 3443-3451.
- Geankoplis, C.J. (1993). Transport Processes and Unit Operations, Third Edition
- Hassan, S.M.N. (2005). Techno-Economic Study of CO2 Capture Process for Cement Plants. *Waterloo, Ontario, Cananda*.
- Heinrich, J.J. (2003). "CO₂ capture from Air Current Practices" Publication No. LFEE 2003-
- 001-WP, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Henni, A., Hromek, J.J., Tontiwachwuthikul, P.andChakma, A. (2003). Volumetric properties and viscosities for aqueous AMP solutions from 25 C to 70 C. *Journal of Chemical & Engineering Data*. 48(3), 551-556.
- Herzog, H. (2003). Assessing the Feasibility of Capturing CO₂ from the Air. Massachusetts Institute of Technology, Laboratory for Energy and the Environment, Publication No. LFEE. 2.
- Higbie, R., 1935. The rate of absorption of a pure gas into still liquid during short periods of exposure. THE UNIVERSITY OF MICHIGAN.
- Hocking, D.and (2005). "Air quality in airplane cabins and similar enclosed spaces". *Pg 357-364 Springer*.
- House, K.Z., Baclig, A.C., Ranjan, M., van Nierop, E.A., Wilcox, J.andHerzog, H.J. (2011). Economic and energetic analysis of capturing CO₂ from ambient air. *Proceedings of the National Academy of Sciences*. 108(51), 20428-20433.
- Hsu, C.H.andLi, M.H. (1997). Densities of aqueous blended amines. *Journal of Chemical & Engineering Data*. 42(3), 502-507.
- IPCC (2001). Intergovernmental Panel on Climate Change (IPCC): Summary for policymakers; in
- Climate Change 200J: The Scientific Basis, Cambridge University Press

- IPCC, 2007. Climate change 2007: the physical science basis: contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Pr.
- Kaya, Y. (1990). Impact of carbon dioxide emission control on GNP growth: interpretation of proposed scenarios. *IPCC Energy and Industry Subgroup, Response Strategies Working Group, Paris.* 76.
- Keith, D.W.andHa-Duong, M., 2003. CO2 Capture from the Air: Technology Assessment and Implications for Climate Policy, in: J. GaleandY. Kaya (Eds.), Greenhouse Gas Control Technologies 6th International Conference. Pergamon, Oxford, pp. 187-192.
- Keith, D.W., Ha-Duong, M.andStolaroff, J.K. (2006). Climate strategy with CO 2 capture from the air. *Climatic Change*. 74(1), 17-45.
- Kheshgi, H.S. (1995). Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. *Energy*. 20(9), 915-922.
- Klaus S. Lackner, P.G.andZiock., H.-J., 1999. CARBON DIOXIDE EXTRACTION FROM AIR: IS IT AN OPTION?, p. 2.
- Ko, J.J., Tsai, T.C., Lin, C.Y., Wang, H.M.andLi, M.H. (2001). Diffusivity of nitrous oxide in aqueous alkanolamine solutions. *Journal of Chemical & Engineering Data*. 46(1), 160-165.
- Kucka, L., Müller, I., Kenig, E.Y.andGórak, A. (2003). On the modelling and simulation of sour gas absorption by aqueous amine solutions. *Chemical Engineering Science*. 58(16), 3571-3578.
- Lackner, K., Grimes, P.andZiock, H., 1999. Carbon dioxide extraction from air? Los Alamos National Laboratory. LAUR-99-5113, Los Alamos, NM.
- Lackner, K.S. (2009). Capture of carbon dioxide from ambient air. *The European physical journal-special topics*. 176(1), 93-106.
- Lackner, K.S., Grimes, P.andZiock, H.J., 2001. Capturing carbon dioxide from air.
- Lackner, K.S., Grimes, P. & Ziock, H. J. Year. (2001). Capturing carbon dioxide from air.

- Levenspiel, O. (1972). Chemical reactions engineering. *John Wiley&Sons,New York*. 67, 02.
- Lewis, W.andWhitman, W. (1924). Principles of Gas Absorption. *Industrial & Engineering Chemistry*. 16(12), 1215-1220.
- Lipinsky, E.S. (1991). Final report on R&D status of carbon dioxide separation, disposal,
- and utilization technologies to TransAlta Utilities Corporation, Battelle, Columbus, Ohio, .
- Lowry, J.K.S.G.V.andKeith, D.W. (2005). CO2 capture from ambient air: An example system.
- Maddox, R.N. (1982). Gas conditioning and processing. Vol. 4: gas and liquid sweetening.
- Mahmoudkhani, M.andKeith, D.W. (2009). Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—Thermodynamic analysis. *International Journal of Greenhouse Gas Control.* 3(4), 376-384.
- McCarthy, J.J., 2001. Climate change 2001: impacts, adaptation, and vulnerability: contribution of Working Group II to the third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Pr.
- Meisen, A.andShuai, X. (1997). Research and development issues in CO2 capture. Energy Conversion and Management. 38, S37-S42.
- Meisen, A.andShuai, X. (1997). Research and development issues in CO< sub> 2</sub> capture. *Energy Conversion and Management.* 38, S37-S42.
- Nikulshina, V., Galvez, M.andSteinfeld, A. (2007). Kinetic analysis of the carbonation reactions for the capture of CO₂ from air via the Ca (OH) 2-CaCO₃-CaO solar thermochemical cycle. *Chemical Engineering Journal*. 129(1-3), 75-83.
- Nikulshina, V., Hirsch, D., Mazzotti, M.andSteinfeld, A. (2006). CO₂ capture from air and co-production of H2 via the Ca (OH) ₂-CaCO₃ cycle using concentrated solar power-Thermodynamic analysis. *Energy.* 31(12), 1379-1389.

- Nikulshina, V.andSteinfeld, A. (2009). CO₂ capture from air via CaO-carbonation using a solar-driven fluidized bed reactor-Effect of temperature and water vapor concentration. *Chemical Engineering Journal*. 155(3), 867-873.
- Pacheco, M.A.andGary, T. (1998). Rate-based modeling of reactive absorption of CO₂ and H2S into aqueous methyldiethanolamine. *Industrial & engineering chemistry research.* 37(10), 4107-4117.
- Pandya, J. (1983). Adiabatic gas absorption and stripping with chemical reaction in packed towers. *Chemical Engineering Communications*. 19(4-6), 343-361.
- Perry, R.H., Green, D.W.andMaloney, J.O., 1984. Perry's chemical engineers' handbook. McGraw-Hill New York.
- Plasynski, S.andChen, Z. (2000). Review of CO₂ capture technologies and some improvement opportunities. *Papers of the American Chemical Society*. 220, U391.
- Ranjan, M.andHerzog, H.J. (2011). Feasibility of air capture. *Energy Procedia*. 4(0), 2869-2876.
- Reid, R.C., Prausnitz, J.M.andPoling, B.E. (1987). The properties of gases and liquids.
- Ruthven, D.M., 1997. Encyclopedia of separation technology. Wiley New York.
- Saha, A.K., Bandyopadhyay, S.S.andBiswas, A.K. (1993). Solubility and diffusivity of nitrous oxide and carbon dioxide in aqueous solutions of 2-amino-2-methyl-1-propanol. *Journal of chemical and engineering data*. 38(1), 78-82.
- Saha, A.K., Bandyopadhyay, S.S.andBiswas, A.K. (1995). Kinetics of absorption of CO< sub> 2</sub> into aqueous solutions of 2-amino-2-methyl-1-propanol. *Chemical Engineering Science*. 50(22), 3587-3598.
- Simon, L.L., Elias, Y., Puxty, G., Artanto, Y.andHungerbuhler, K. (2011). Rate based modeling and validation of a carbon-dioxide pilot plant absorbtion column operating on monoethanolamine. *Chemical Engineering Research and Design.* 89(9), 1684-1692.

- Smith, J., Van Ness, H.andAbbott, M., 2003. Introduction to chemical engineering thermodynamics 6th edition. McGraw-Hill Korea, Seoul.
- Stolaroff, J.K., 2006. Capturing CO₂ from ambient air: a feasibility assessment. Carnegie mellon university.
- Stolaroff, J.K., Keith, D.W.andLowry, G.V. (2008). Carbon dioxide capture from atmospheric air using sodium hydroxide spray. *Environmental science & technology*. 42(8), 2728-2735.
- Stolaroff, J.K., Lowry, G.V.andKeith, D.W. (2005). Using CaO-and MgO-rich industrial waste streams for carbon sequestration. *Energy Conversion and Management*. 46(5), 687-699.
- Tamimi, A., Rinker, E.andSandall, O. (1994). Diffusivity of nitrous oxide in aqueous solutions of N-methyldiethanolamine and diethanolamine from 293 to 368 K. *Journal of chemical and engineering data.* 39(2), 396-398.
- Tamimi, A., Rinker, E.B.andSandall, O.C. (1994). Diffusion coefficients for hydrogen sulfide, carbon dioxide, and nitrous oxide in water over the temperature range 293-368 K. *Journal of chemical and engineering data*. 39(2), 330-332.
- Thambimuthu, K.a.D., J., (2004). "Overview of CO₂ Capture," 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, .
- Tontiwachwuthikul, P., Meisen, A.andLim, C.J. (1992). CO₂ absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. *Chemical Engineering Science*. 47(2), 381-390.
- Treybal, R.E., 1980. Mass-transfer operations. McGraw-Hill Singapore.
- Usubharatana, P., McMartin, D., Veawab, A.andTontiwachwuthikul, P. (2006). Photocatalytic process for CO2 emission reduction from industrial flue gas streams. *Industrial & engineering chemistry research.* 45(8), 2558-2568.
- Van Krevelen, D.andHoftijzer, P. (1948). Kinetics of gas- liquid reactions part I. General theory. *Recueil des travaux chimiques des Pays-Bas.* 67(7), 563-586.
- Vázquez, G., Alvarez, E., Navaza, J.M., Rendo, R.andRomero, E. (1997). Surface tension of binary mixtures of water+ monoethanolamine and water+ 2-amino-

- 2-methyl-1-propanol and tertiary mixtures of these amines with water from 25 C to 50 C. *Journal of Chemical & Engineering Data*. 42(1), 57-59.
- Versteeg, G.F.andVan Swaalj, W. (1988). Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. *Journal of chemical and engineering data*. 33(1), 29-34.
- Wellek, R., Brunson, R.andLaw, F. (1978). Enhancement factors for gas-absorption with second-order irreversible chemical reaction. *The Canadian Journal of Chemical Engineering*. 56(2), 181-186.
- White, C.M., Strazisar, B.R., Granite, E.J., Hoffman, J.S.andPennline, H.W. (2003). Separation and capture of CO2 from large stationary sources and sequestration in geological formations—coalbeds and deep saline aquifers. *Journal of the Air & Waste Management Association.* 53(6).
- Wilson, M., Wrubleski, R.and Yarborough, L. (1992). Recovery of CO₂ from power plant flue gases using amines. *Energy Conversion and Management*. 33(5-8), 325-331.
- Wolsky, A., Daniels, E.andJody, B. (1994). CO₂ Capture from the flue gas of conventional fossil- fuel- fired power plants. *Environmental Progress*. 13(3), 214-219.
- Zeman, F. (2007). Energy and material balance of CO₂ capture from ambient air. *Environmental science & technology*, 41(21), 7558-7563.
- Zeman, F. (2008). Experimental results for capturing CO₂ from the atmosphere. *AIChE Journal*. 54(5), 1396-1399.
- Zeman, F.S. and Lackner, K.S. (2004). Capturing carbon dioxide directly from the atmosphere. *World Resource Review*. 16(2), 157-172.