COLLABORATIVE BEAMFORMING FOR WIRELESS SENSOR NETWORK USING PARTICLE SWARM ANALYSIS

NIK NOORDINI NIK ABD MALIK

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > FEBRUARY 2013

ABSTRACT

In Wireless Sensor Network (WSN), nodes can collaborate to monitor, gather and select only the required data to transmit to the receivers. However, the nodes are working in uncertain hazardous environments that lead to undesirable high battery power consumption. Thus, it is desirable to improve radiation beampattern performance by introducing intelligent Collaborative Beamforming (CB) concept. It manages to increase the antenna gain and performance by aiming at desired objectives through intelligent capabilities. In this thesis, the nodes are designed to cooperate and collaborate among themselves and act as a collaborative antenna array. An optimal CB algorithm for intelligent sensor node array has been developed which combines CB and Particle Swarm Optimisation (PSO) in the presence of node geometry location uncertainties. The collaborative nodes are modelled in linear and circular array configurations. Firstly, a theoretical foundation employing CB inside WSN is developed consisting of three main stages: parameter initialisation, activation and optimisation setup. Then, newly proposed Intelligent Linear Sensor Node Array (ILSA) and Intelligent Circular Sensor Node Array (ICSA) are successfully optimised by applying Hybrid Least square improved PSO (HLPSO). The HLPSO has been developed using global constraint boundaries variables and, reinitialisation of particle's position and velocity. It incorporates with Least Square approximation algorithm. For intereference occurence case at six unintended receivers, ILSA manages to significantly suppress Sidelobe Level (SLL) up to 85.54% in average. For null placement, the peak SLL within the null ranges angles have been greatly minimised up to 103%. The ICSA with multi-objective optimisation has outstandingly reduced SLL to 213% with 36° First Null Beamwidth size increment. Both ILSA and ICSA can effectively improve radiation beampattern performance and coverage by intelligently adjusting the shape of the beampatterns under different constraints as per desired usage. So, it accomplishes significant improvements compared to the referenced CB algorithm.

ABSTRAK

Dalam Rangkaian Penderia Wayarles (WSN), nod penderia boleh bekerjasama untuk memantau, mengumpul dan memilih hanya data yang diperlukan untuk dihantar kepada penerima. Walau bagaimanapun, nod ini bekerja dalam persekitaran berbahaya yang meningkatkan penggunaan kuasa bateri. Maka, pencapaian alur sinaran perlu ditingkatkan dengan memperkenalkan konsep Kerjasama Pembentukan alur (CB) pintar. Ia dapat menambah gandaan dan pencapaian antena berdasarkan objektif yang diingini melalui keupayaan pintar. Dalam tesis ini, nod direka bentuk untuk saling bekerjasama dan bertindak sebagai antena tatasusunan. Satu CB optimum algoritma untuk tatasusunan nod penderia pintar telah dibangunkan dengan menggabungkan CB dan Teknik Kerumunan Zarah (PSO) dalam kehadiran ketidakpastian lokasi geometri nod. Nod kerjasama dimodel sebagai konfigurasi tatasusunan lelurus dan bulatan. Pertamanya, teori asas melibatkan CB dalam WSN dibangunkan. Ia terdiri daripada tiga peringkat: pemulaan parameter, pengaktifan dan pengoptimuman. Kemudian, tatasusunan nod penderia lurus pintar (ILSA) dan bulatan pintar (ICSA) berjaya dioptimumkan dengan menggunakan PSO kuasa dua terkecil hibrid (HLPSO). HLPSO dibangunkan dengan pembolehubah sempadan kekangan global dan, pemulaan semula kedudukan dan halaju zarah. Ia juga digabungkan dengan algoritma penghampiran kuasa dua terkecil. Bagi kes gangguan enam penerima yang tidak disengajakan, ILSA begitu berjaya menindas paras cuping sisi (SLL) sehingga 85.54% secara purata. Bagi penempatan nol, puncak SLL dalam julat sudut nol telah dikurangkan dengan jayanya sehingga 103%. ICSA dengan pengoptimuman kepelbagaian objektif telah mengurangkan SLL sebanyak 213% beserta peningkatan saiz lebaralur nol pertama sebesar 36°. ILSA dan ICSA berkesan meningkatkan prestasi pembentukan alur sinaran dan liputan dengan menyesuaikan bentuk corak alur mengikut kehendak pengguna secara bijak. Dengan ini, kemajuan yang signifikan dicapai berbanding algoritma CB yang dirujuk.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENTS	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	T OF TABLES	xi
	LIST	OF FIGURES	xiii
	LIST	COF ABBREVIATIONS AND SYMBOLS	xxi
	LIST	T OF APPENDICES	xxvi
1	INTF	RODUCTION	1
	1.1	Research Background	1
	1.2	Problem Statement	5
	1.3	Research Objective	6
	1.4	Research Methodology	7
	1.5	Research Contributions	9
	1.6	Thesis Organization	11
2	COL	LABORATIVE BEAMFORMING IN	13
	WIR	ELESS SENSOR NETWORK	
	2.1	Introduction	13
	2.2	Beamforming	14

	2.2.1	Array Antennas	16
2.3	Wirele	ess Sensor Network	19
	2.3.1	A Review on Beamforming in WSN	22
	2.3.2	A Review on Computational Intelligence in	32
		WSN	
2.4	Evolut	tionary Algorithms	35
	2.4.1	Genetic Algorithm	37
	2.4.2	Particle Swarm Optimization Algorithm	39
2.5	Chapte	er Summary	50
AN I	MPROV	VED PARTICLE SWARM	52
OPT	IMIZAT	TION ALGORITHM TAILORED FOR	
WIR	ELESS	SENSOR NETWORKS	
3.1	Introd	uction	52
3.2	Impro	ved Particle Swarm Optimization Algorithm	52
	3.2.1	Global Constraint Boundaries Variables	55
	3.2.2	Particle's Position and Velocity	56
		Reinitialization	
5.3	Simula	ation Environment	59
	3.3.1	Linear Antenna Array	59
	3.3.2	Circular Antenna Array	77
3.4	Chapte	er Summary	80
PRO	POSED	COLLABORATIVE	82
BEA	MFORN	AING DESIGN CONCEPT	
4.1	Introd	uction	82
4.2	Proble	em Formulation	83
	4.2.1	Assumptions and Definition	83
	4.2.2	Initialization and Activation Stage	86
	4.2.3	Sensor Node Array Setup Stage	87
4.3	Simula	ation Environment	98
	4.3.1	Least Square Line-Fitting Linear Array	98
	4.3.2	Circular Sensor Node Array	101

3

4

viii

4.4	Chapte	er Summary	
INTI	ELLIGE	NT LINEAR SENSOR NODE	
ARR	AY		
5.1	Introdu	action	
5.2	Relate	d Works	
5.3	Systen	n Models	
	5.3.1	The Network Model	
	5.3.2	The Geometrical Array Model	
5.4	Hybric	Least Square Improved PSO (HLPSO)-	
	based	Collaborative Beamforming Organization	
	Schem	e Description	
	5.4.1	Stage 1: Parameter Initialization Stage	
	5.4.2	Stage 2: Manager Node and Active Cluster	
		Activation Stage	
	5.4.3	Stage 3: ILSA Optimization Setup Stage	
5.5	Simula	tion Environment	
5.6	Optimi	zation Result and Performance Analysis	
	5.6.1	Sidelobe Level Suppression	
	5.6.2	Null Placement	
	5.6.3	First Null Beamwidth	
	5.6.4	Multi-objectives	
	5.6.5	The Effect of Changing the Desired	
		Angles or Scanning Ranges	
	5.6.6	The Effect of Different Line Angles	
	5.6.7	Multiple Base Stations Deployment	
	5.6.8	Occurrence of Interferences Located	
		Nearest to Mainlobe	
5.7	Chapte	er Summary	
INTI	ELLIGE	NT CIRCULAR SENSOR NODE	
ARR	AY		
6.1	Introdu	iction	

ix

	6.2	Relate	d Works	162
	6.3	System	n Models	165
		6.3.1	The Network Model	165
		6.3.2	The Geometrical Model	165
	6.4	Hybric	Least Square Improved PSO-based	166
		Collab	orative Beamforming Organization Scheme	
		Descri	ption	
		6.4.1	Stage 1: Parameter Initialization Stage	167
		6.4.2	Stage 2: Manager Node and Active Cluster	168
		Activa	tion Stage	
		6.4.3	Stage 3: ICSA Optimization Setup Stage	168
	6.5	Simula	tion Environment	174
	6.6	Optimi	zation Result and Performance Analysis	179
		6.6.1	Sidelobe Level Suppression	179
		6.6.2	Null Placement	183
		6.6.3	First Null Beamwidth	187
		6.6.4	Multi-objectives	191
		6.6.5	The Effect of Changing the Desired	197
			Angles or Scanning Ranges	
		6.6.6	The Effect of Different Virtual Circles	200
		6.6.7	Multiple Base Stations Deployment	202
		6.6.8	Occurrence of Interferences Located	205
			Nearest to Mainlobe	
	6.7	Chapte	er Summary	207
7	CONC	CLUSI	ON AND FUTURE WORKS	208
	7.1	Conclu	sions	208
	7.2	Future	Works	211
REFERENC	ES			212
Appendices A	– J			223-245

LIST OF TABLES

TABLE	TITLE	
NO.		
2.1	Review on CB in WSNs	25
2.2	Properties of Basic CI Paradigms	33
2.3	A Summary of Swarm Intelligence Applications in WSNs	36
2.4	A Review on PSO in Antenna Array	43
3.1	List of Parameters and Values used in ImPSO	62
3.2	List of Parameters used for Objective Function	62
3.3	Iteration Values with Maximum SLL of 8-element ImPSO-	66
	based LAA	
3.4	Element Position of the 8-element ImPSO-based LAA	66
3.5	Iteration Values with Maximum SLL Of 12-Element	69
	ImPSO-based LAA	
3.6	Element Position of the 12-element ImPSO-based LAA	69
3.7	Element Position of the 2N-element LAA using ImPSO	74
3.8	Element Position of the N-element ALAA using ImPSO	81
4.1	Coordinates of ULA, U_i and LFA, Q_i	99
4.2	Different Attempts of Least-square Line Fitting	100
	Constructions	
4.3	Coordinates of UCA, A_i and CSA, R_i	103
5.1	List of Parameters Used in WSN Scheme Implementation	126
5.2	List of Parameters Used in HLPSO	126
5.3	Coordinates of E_n and S_n with difference Euclidean distance,	129
	\mathcal{E}_n	
5.4	Percentage Improvement of SLL Performance for ILSA in	133
	Different Cases	

5.5	Percentage Improvement of Null Placement for ILSA in	137
	Different Cases	
5.6	Gain and FNBW of <i>N</i> -elements of ULA	139
5.7	Element Position of the 8-element ImPSO-based LAA	152
5.8	Coordinates of 8-node ILSA and 8-node LFA for adaptive	156
	angle -40° with $MN_1 = (22.62, 21.49)$	
5.9	Coordinates of 8-node ILSA and 8-node LFA for adaptive	156
	angle 20° with $MN_2 = (12.22, 5.61)$	
6.1	Communication Radius for each N-node ICSA	175
6.2	List of Parameters Used in HLPSO implementation	175
6.3	Parameters and Values from 8-node ICSA Simulation	176
6.4	Coordinates of B_n and M_n with difference Euclidean	178
	distance, ε_n	
6.5	Percentage Improvement of SLL Performance for ICSA in	179
	Different Cases	
6.6	Performance Improvement of Null Placement for ICSA in	183
	Different Cases	
6.7	Coordinates of R_n and M_n	186
6.8	Values of Gain and FNBW of N-elements UCA and ULA	187
6.9	Performance Improvement of Controllable FNBW for ICSA	191
	in Different Cases	
6.10	Radius of Different Virtual Circles	200
6.11	Coordinates of 8-node ICSA and 8-node CSA for adaptive	203
	angle -110° with $MN_1 = (24.08, 26.25)$	
6.12	Coordinates of 8-node ICSA and 8-node CSA for adaptive	203
	angle 0° with $MN_2 = (14.10, 15.16)$	
6.13	Coordinates of 8-node ICSA and 8-node CSA for adaptive	203
	angle 130° with $MN_3 = (18.00, 23.21)$	

LIST OF FIGURES

FIGURE	TITLE	PAGE
NO.		
1.1	The Collaborative Beamforming Concept in Region of	4
	Interest of WSNs	
2.1	Human Analogy of Smart Antenna	15
2.2	Basic Beamformer and Control System	15
2.3	Geometry of LAA in 2-dimensional	17
2.4	Geometry of LAA in 3-dimensional	18
2.5	Geometry of CAA	19
2.6	WSN Architecture with Multi-hop Routing	20
2.7	The Sensor Nodes Composition	21
2.8	A Collaborative Beamforming Example	23
2.9	Blind Beamformer for a WSN	24
2.10	Collaborative Beamforming Concept	24
2.11	Use of a UAV in WSN	28
2.12	(a) Transmit Cluster and (b) Adaptive Beamformer in	28
	WSN	
2.13	Beampattern of a 10x1 Linear Array	30
2.14	An Overview of WSN Challenges and The CI Paradigms	34
	Applied to WSNs	
2.15	The Genetic Algorithm	37
2.16	Flow-chart of Genetic Algorithm	39
2.17	Flow-chart of PSO	48
3.1	Flow-chart of Improved PSO	54
3.2	Flow-chart for Global Constraint Boundaries Variables	56
3.3	Flow-chart for Particle's Position and Velocity	58

Reinitialization

3.4	N-element LAA Geometry	60
3.5	Radiation Beampattern of 14-element ImPSO-based LAA	63
	with SLL Suppression	
3.6	Radiation Beampatterns of 10-element ImPSO-based LAA	64
	with Null Placements	
3.7	Radiation Beampattern of 10-element ImPSO-based LAA	65
	with Desired Multi-objectives	
3.8	Objective Function Value at 50 th Iterations	66
3.9	Radiation Beampattern of 8-element ImPSO-based LAA	66
	with Desired Multi-objectives at 50 th Iteration	
3.10	Objective Function value at 150 th Iterations	67
3.11	Radiation Beampattern of 8-element ImPSO-based LAA	67
	with Desired Multi-objectives at 150 th Iterations	
3.12	Objective Function Value at 500 th Iterations. Convergence	67
	Time at 277 th Iterations	
3.13	Radiation Beampattern of 8-Element ImPSO-based LAA	68
	with Desired Multi-objectives. Convergence Time at 277 th	
	Iterations	
3.14	Radiation Beampattern of 12-Element ImPSO-based LAA	69
	with Desired Multi-objectives at 150 th Iterations	
3.15	Objective Function Value at 400 th Iterations. Convergence	70
	Time at 350 th Iterations	
3.16	Radiation Beampattern of 12-Element ImPSO-based LAA	70
	with Desired Multi-objectives at 350 th Iterations.	
3.17	Radiation Beampattern Of 6-Element ImPSO-based LAA	71
	Controlled FNBW of 66° and SLL Suppression	
3.18	Radiation Beampattern of 6-Element ImPSO-based LAA	72
	Controlled FNBW of 42° and SLL Suppression	
3.19	Radiation Beampattern of 10-Element ImPSO LAA with	73
	FNBW of 26°	
3.20	Radiation Beampattern of 12-element ImPSO LAA with	73
	FNBW of 24°	

3.21	Radiation Beampattern of 6-element ImPSO-based ALAA	75
	with Adaptive Angle of 80° and FNBW of 66°	
3.22	Radiation Beampattern of 6-element ImPSO ALAA with	76
	Adaptive Angle of 80° and FNBW of 29°	
3.23	Radiation Beampattern of 8-element ImPSO-based ALAA	76
	with Adaptive Angle of 80° and FNBW of 22°	
3.24	Radiation Beampattern of 8-element ImPSO-based with	77
	Adaptive Angle of 120° and FNBW of 60°	
3.25	Geometrical Model of UCA	78
3.26	Radiation Beampattern of 6-element ImPSO-based CAA at	79
	Steering Angle of 80°	
3.27	The Relationship between SLL Performance and Steering	80
	Angle for 6-element CAA	
4.1	Definition of Notation	85
4.2	The Least Squares Line-Fitting method	89
4.3	Flow Chart for LFA Sensor Node Setup Stage	92
4.4	Flow Chart for LFA and CSA Algorithm	94
4.5	Proposed CB Design Concept of Intelligent Linear Sensor	96
	Node Array	
4.6	Proposed CB Design Concept of Intelligent Circular	97
	Sensor Node Array	
4.7	900 Random Nodes in Sensor Field of Size 30m x 30m	98
4.8	Virtual Red Line for ULA with 20° and Nodes for (a) Blue	99
	Stars depict U_i and (b) Blue Circles depict Q_i .	
4.9	900 Random Nodes in Sensor Field of Size 60m x 60m	100
4.10	1 st Attempt of Least-square Line Fitting Construction of	101
	49°	
4.11	900 Random Nodes in Sensor Field of Size 30m x 30m	102
4.12	Blue Virtual Circles for UCA with r^{UCA} and nodes for (a)	102
	blue stars depict A_i and (b) green circles depict R_i .	
5.1	Flow-chart for swarm-based CB organization scheme	110
5.2	Flow Chart for Activation Stage	111

5.3	Locations of the optimum LAA element, E_n lie on Line γ	119
5.4	Locations of E_n , O_{zs} and S_n inside AC	120
5.5	Flow-chart for HLPSO algorithm	123
5.6	Flow Chart for ILSA Optimization Setup Stage	124
5.7	Randomly deployment Z sensor nodes with selected MN and AC	127
5.8	Z_s sensor nodes inside AC with $2C$ diameter	127
5.9	Node coordination with (a) red star depicts E_n (b) black square depicts S_n	128
5.10	Radiation Beampattern of 4-node ILSA and 4-node LFA without LS Approximation Algorithm	130
5.11	Radiation Beampattern of 4-node ILSA and 4-node LFA with LS Approximation Algorithm	131
5.12	Radiation Beampattern of 8-node ILSA and 8-node LFA for Minimum SLL	131
5.13	Radiation Beampattern of 12-node ILSA and 12-node LFA for Minimum SLL	132
5.14	Radiation Beampattern of 16-node ILSA and 16-node LFA for Minimum SLL	133
5.15	The Maximum SLL Performance of Various Cases of ILSA in Comparison with LFA and Conventional ULA	134
5.16	Radiation Beampattern of 8-node ILSA and 8-node LFA with One Null Placement at 80°	135
5.17	Radiation beampattern of 8-node ILSA and 8-node LFA with the six null placements at -110° , -70° , -40° , 40° , 70° and 110°	136
5.18	Radiation beampattern of 8-node ILSA and 8-node LFA with range nulls, $\theta_R \in [55^\circ 155^\circ]$	137
5.19	Relationship Performance Between Gain and FNBW of <i>N</i> -elements ULA	138
5.20	Radiation Beampattern of 4-node ILSA with Controlled Narrow FNBW of 28°	139
5.21	Radiation Beampattern of 4-node ILSA and 4-node LFA	140

with Wide FNBW of 88°

5.22	Radiation Beampattern of 8-node ILSA and 8-node LFA with Narrow FNBW of 28°	141
5.23	Radiation Beampattern of 8-node ILSA and 8-node LFA with Wide FNBW of 68°	141
5.24	Radiation Beampattern of 12-node ILSA and 12-node LFA with FNBW of 136°	142
5.25	Radiation Beampattern of 16-node ILSA and 16-node LFA with FNBW of 46°	142
5.26	The Desired Controllable FNBW Angle of ILSA as compared to LFA and ULA	143
5.27	Radiation Beampattern of 8-node ILSA and 8-node LFA with SLL Minimization and Main Beam Angle Adaptable to -30°	144
5.28	Radiation Beampattern of 12-node ILSA and 12-node LFA with SLL Minimization and Main Beam Angle Adaptable to 30°	144
5.29	Radiation Beampattern of 16-node ILSA and 16-node LFA with SLL Minimization, FNBW Controllable and Main Beam Angle Adaptable to 25°	145
5.30	Radiation Beampattern of 12-node ILSA and 12-node LFA with SLL Minimization, FNBW Controllable, Null Placement and Main Beam Angle Adaptable of 0°	146
5.31	Radiation Beampattern of 12-element ImPSO-based LAA and 12-element Conventional ULA with SLL Minimization, FNBW Controllable, Null Placement and Main Beam Angle Adaptable to 25°	147
5.32	Polar Plot of 12-element ImPSO-based LAA and 12-	147
5.33	Radiation Beampattern of 12-node ILSA and 12-node LFA with SLL Minimization, Controllable FNBW, Null	148
5.34	Placement and Main Beam Angle Adaptable to 25° Radiation Beampattern of 12-node ILSA and 12-node LFA	149

	with SLL Minimization, Controllable FNBW, Null	
	Placement Located in the Range $\theta_{nu} \in [60^{\circ} \ 120^{\circ}]$	
5.35	The SLL Performance of ILSA Throughout the Steering	151
	Angles	
5.36	Radiation Beampattern of 8-element ImPSO-based LAA	151
	and Conventional ULA Steered at 90°	
5.37	Polar Plot of 8-element ImPSO-based LAA and	152
	Conventional ULA	
5.38	Fitness Function	152
5.39	Radiation Beampattern of 8-node ILSA and 8-node LFA	153
	Steered at 90°	
5.40	SLL Performance of Different Line Angles	154
5.41	FNBW Size of Different Line Angles	154
5.42	The Locations of 2 A Cs and 2 MNs	157
5.43	Simultaneous Beampattern from Two Sets 8-node ILSA	157
	adapted at -40° and 20°	
5.44	SLL Minimization for Two Neighboring Unintended BSs	158
	at Nearest Peak to Mainlobe (i.e. -20° and 20°)	
5.45	SLL Minimization for Six Neighboring Unintended BSs at	159
	Nearest Peak to Mainlobe (i.e30°, -25°, -20°, 20°, 25°	
	and 30°)	
5.46	SLL values at Unintended Receivers or BSs	159
6.1	Flow-chart for ICSA	167
6.2	Locations of B_n , O_{zs} and M_n with Radius of r^{ICSA}	171
6.3	Flow-chart for ICSA Optimization Setup Stage	174
6.4	Randomly Deployed Z nodes with Selected MN and AC	177
6.5	Green Virtual Circles with r^{ICSA} and nodes for (a) green	177
	squares depict B_n and (b) square magentas depict M_{n} .	
6.6	Virtual circles for (a) blue depicts UCA and (b) green	178
	depicts ICSA and nodes (c) blue stars depict A_n (d) green	
	squares depict B_n (e) blue circles depict R_n and (f) square	
	magentas depict M_n	
6.7	Radiation Beampattern of 8-node ICSA with SLL	180

Minimization

6.8	Radiation Beampattern of 8-node ICSA with SLL	181
	Minimization	
6.9	8-node ICSA with <i>MN</i> =(11.98,20.63)	181
6.10	Radiation Beampattern of 12-node ICSA with SLL	182
	Minimization	
6.11	Radiation Beampattern of 16-node ICSA with SLL	182
	Minimization	
6.12	Radiation Beampattern of 8-node ICSA with Null	184
	Placements	
6.13	Radiation Beampattern of 8-node ICSA with Multiple Null	184
	Placements	
6.14	Radiation Beampattern of 8-node ICSA with Ranges of	185
	Null	
6.15	Radiation Beampattern of 8-node ICSA with Null	185
	Placement	
6.16	Radiation Beampattern of 16-node ICSA with Ranges of	186
	Nulls	
6.17	Comparison FNBW Between N-elements of ULA and N-	187
	element UCA	
6.18	Radiation Beampattern of 4-node ICSA with wider FNBW	188
6.19	Radiation Beampattern of 8-node ICSA with wider FNBW	189
6.20	Radiation Beampattern of 8-node ICSA with narrow	189
	FNBW	
6.21	Radiation Beampattern of 12-node ICSA with wider	190
	FNBW	
6.22	Radiation Beampattern of 12-node ICSA with wider	190
	FNBW	
6.23	Radiation Beampattern of 16-node ICSA with wider	191
	FNBW	
6.24	4-node ICSA	192
6.25	Radiation Beampattern of 4-node ICSA with SLL	192
	Minimization and Adaptive Main Beam Angle	

6.26	Radiation Beampattern of 8-node ICSA with SLL	193
	Minimization and Adaptive Main Beam Angle	
6.27	Radiation Beampattern of 8-node ICSA with Ranges of	194
	Nulls and Adaptive Main Beam Angle	
6.28	Radiation Beampattern of 8-node ICSA with SLL	194
	Minimization, Adaptive Main Beam Angle and	
	Controllable FNBW	
6.29	Radiation Beampattern of 8-node ICSA with SLL,	195
	Adaptive Main Beam Angle and Null Placement	
6.30	Radiation Beampattern of 12-node ICSA with SLL	196
	Minimization and Controllable FNBW	
6.31	Radiation Beampattern of 12-node ICSA with SLL	196
	Minimization and Null Placement	
6.32	Radiation Beampattern of 16-node ICSA with SLL	197
	Minimization and Adaptive Main Beam Angle	
6.33	Radiation Beampattern of 16-node ICSA with SLL	197
	Minimization, Adaptive Main Beam Angle and	
	Controllable FNBW	
6.34	The SLL Performance of ICSA Throughout the Steering	199
	Angles	
6.35	Radiation Beampattern of 8-node ICSA Steered to 30°	199
6.36	The SLL Performance of ICSA For Different Virtual Circle	201
6.37	The FNBW Performance of ICSA For Different Virtual	201
	Circles	
6.38	Multiple MNs and ACs	204
6.39	Simultaneous Beampatterns from Three Sets 8-node ICSA	204
	adapted to -110° , 0° and 130°	
6.40	SLL Minimization for Two Neighboring Unintended BSs	205
	at Nearest Peak to Mainlobe (i.e. -30° and 30°)	
6.41	SLL Minimization for Two Neighboring Unintended BSs	206
	at Nearest Peak to Mainlobe	
6.42	SLL Minimization for Two Neighboring Unintended BSs	207
	at Nearest Peak to Mainlobe	

LIST OF ABBREVIATIONS AND SYMBOLS

AC	-	Active Cluster
ACO	-	Ant Colony Optimization
ADC	-	Analog to Digital Converters
AP	-	Access Point
BFA	-	Bacterial Foraging Algorithm
BS	-	Base Station
CAA	-	Circular Antenna Array
CB	-	Collaborative Beamforming
CSA	-	Circular Sensor Node Array
СТ	-	Cooperative Transmission
DE	-	Differential Evolution
DNOI	-	Direction-Not-of-Interest
DOI	-	Direction-of-Interest
DSP	-	Digital Signal Processing
FNBW	-	First Null Beamwidth
GA	-	Genetic Algorithm
HLPSO	-	Hybrid Least Square Improved Particle Swarm Optimization
ICSA	-	Intelligent Circular Sensor Node Array
ILSA	-	Intelligent Linear Sensor Node Array
ImPSO	-	Improved Particle Swarm Optimization
LAA	-	Linear Antenna Array
LFA	-	Least Square Line-Fitting Linear Array
LMS	-	Least Mean Square
LS	-	Least Square
MN	-	Manager Node
Pdf	-	Probability Density Function

SLL	-	Sidelobe Level
SNR	-	Signal to Noise Ratio
UAV	-	Unmanned Aerial Vehicle
UCA	-	Uniform Circular Array
ULA	-	Uniform Linear Array
WSN	-	Wireless Sensor Network
τ	-	Current time index
<i>w_{max}</i>	-	Maximum value of the weighting factor
ω_{min}	-	Minimum value of the weighting factor
It	-	Iteration
X_{min}	-	Lower boundary for X
X_{max}	-	Upper boundary for X
U_{max}	-	Maximum upper limit
L_{min}	-	Minimum lower limit
of	-	Objective function
κ	-	Wavenumber
In	-	Excitation amplitude of <i>n</i> th element of LAA
βn	-	Phase of <i>n</i> th element of LAA
θ	-	Elevation direction
ϕ	-	Azimuth direction
d_{H}	-	Location of the <i>n</i> th element of LAA
$ heta_0$	-	Desired elevation angle
D	-	Range of particles
Ι	-	Number of elements for CAA
d_i	-	Location of the <i>i</i> th element of CAA
$ heta_i$	-	Angle of incidence of <i>i</i> th element of CAA
k	-	Number of nodes
Ζ	-	Stationary nodes
S_z	-	Position of stationary nodes
\boldsymbol{x}_k	-	x-coordinate of stationary nodes
${\mathcal Y}_k$	-	y-coordinate of stationary nodes
р	-	Distance between target point and reference point

XXIII	

$ heta_0$	-	Desired elevation angle
ϕ_0	-	Desired azimuth angle
Λ	-	Region of interest
С	-	Communication radius
ho	-	Density of the nodes
x_{MN}	-	<i>x</i> -coordinate of <i>MN</i>
${\cal Y}_{MN}$	-	y-coordinate of MN
X	-	Area of AC
Z_S	-	Total number of nodes within AC
x_i	-	x-coordinate of I observant data
${\mathcal Y}_i$	-	y-coordinate of I observant data
d_i	-	Residuals of <i>I</i> observant data
Ι	-	Number of ULA elements
U_i	-	Location of <i>i</i> -element ULA
R	-	Wavelength
С	-	Velocity of light
f	-	Frequency
n_i	-	Neighbor node of <i>i</i> -element ULA
Q_i	-	Location <i>i</i> -nodes LFA
G	-	Gain
G_{norm}	-	Normalized Gain
r^{UCA}	-	Radius of UCA
A_i	-	Location of <i>i</i> -element UCA
R_i	-	Location <i>i</i> -node CSA
ε	-	Error Euclidean distance
\mathcal{E}_{ave}	-	Average total error Euclidean distance
x_i^U	-	x-coordinate of of <i>i</i> -element ULA
${\boldsymbol{y}_i}^U$	-	y-coordinate of of <i>i</i> -element ULA
x_i^Q	-	<i>x</i> -coordinate of of <i>i</i> -node LFA
y_i^Q	-	y-coordinate of of <i>i</i> -node LFA
x_i^A	-	x-coordinate of of <i>i</i> -element UCA
y_i^A	-	y-coordinate of of <i>i</i> -element UCA
x_i^R	-	x-coordinate of of <i>i</i> -node CSA

y_i^R	4	y-coordinate of of <i>i</i> -node CSA
N	14	Number of elements/active CB nodes
AF	-	Array factor
ξ	4	Current signal phase
α	4	Synchronizing phase weights
x_n	-	x-coordinate of of <i>n</i> -element LAA
${\mathcal Y}_n$		y-coordinate of of <i>n</i> -element LAA
5	-	Number of nulls
$ heta_{nu_{\varsigma}}$	-	Location of nulls
В	-	Number of SLL bands
MinSL		Lower band range of SLL
MaxSL	12	Upper band range of SLL
$ heta_{SLL1}$	-	Angles where the SLL is minimized in the lower band
$ heta_{SLL2}$		Angles where the SLL is minimized in the upper band
$ heta_{bw1}$	-	Lower range of mainlobe
$ heta_{bw2}$	-	Upper range of mainlobe
W _i	-	User-defined constants
mulobj	-	Multi-objective function
$F^{real}{}_m$	-	Actual array response vector
W^{real}_{n}	24 C	Actual weight vector
$D^{real}_{ nm}$		Actual steering vector
nxm	40	Column vector
F^{des}_{m}	14	Desired array response
${W}_n$		Desired weight vector
D^{des}_{mm}	-	Desired steering vector
$F^{T des}{}_{m}$	-	Transpose of F^{des}_{m}
$D^{+real}_{ nm}$	1.5	Pseudo inverse of $D^{T real}_{nm}$
$D^{T real}_{ nm}$		Transpose of D^{real}_{nm}
m_1	35	Virtual line slope 1
C_1		Offset of the origin of virtual line slope 1
m_2	-	Virtual line slope 2
<i>C</i> ₂	-6- C	Offset of the origin of virtual line slope 2
E_n		Location <i>n</i> -node ImPSO-based LAA

x_n^E	-	x-coordinate of of <i>n</i> -node ImPSO-based LAA
y_n^E	-	y-coordinate of of <i>n</i> -node ImPSO-based LAA
λ_0	-	With regards to $\lambda/2$
O_{zs}	-	Location <i>zs</i> -node LAA inside <i>AC</i>
x^{O}_{zs}	-	x-coordinate of of zs-node LAA inside AC
y^{O}_{zs}	-	y-coordinate of of zs-node LAA inside AC
S_n	-	Location <i>n</i> -node ILSA
x^{S}_{n}	-	x-coordinate of of <i>n</i> -node ILSA
\mathcal{Y}^{S}_{n}	-	y-coordinate of of <i>n</i> -node ILSA
B_n	-	Location <i>n</i> -node ImPSO-based CAA
x^{B}_{n}	-	x-coordinate of of <i>n</i> -node ImPSO-based CAA
y^{B}_{n}	-	y-coordinate of of <i>n</i> -node ImPSO-based CAA
(r^d,ϕ_n)	-	Polar coordinates of of <i>n</i> -node ImPSO-based CAA
r ^{ICSA}	-	Radius for ICSA
M_n	-	Location <i>n</i> -node ICSA
$\mathbf{x}^{M}{}_{n}$	-	x-coordinate of of <i>n</i> -node ICSA
\mathcal{Y}^{M} n	-	y-coordinate of of <i>n</i> -node ICSA
W _n	-	Weight coefficient for LS
d_{nm}	-	Steering coefficient for LS
F_{nm}	-	Array response for LS

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A	Derivation of Geometrical Linear Antenna Array Model	223
В	Derivation of Geometrical Circular Antenna Array Model	224
С	Derivation of y-intercept from Two Parallel Lines	225
D	Derivation of x- and y-coordinate Located on the Straight	227
	Line which is Perpendicular to Two Parallel Lines	
E	Derivation of Least Square Approximation in HLPSO	229
	algorithm for ILSA	
F	Derivation of Least Square Approximation in HLPSO	231
	algorithm for ICSA	
G	Results for Linear Antenna Array	233
Н	Results for Least Square Line-Fitting Linear Array	237
Ι	Results for Intelligent Linear Sensor Node Array	239
J	List of Publications and Award	242

CHAPTER 1

INTRODUCTION

1.1 Research Background

This thesis presents a development of new optimal collaborative beamforming (CB) concept inside an environment of wireless sensor networks (WSNs). Well-established concepts including routing network protocol and random array beamforming are challenged by the sensor node limitations in terms of power and computational capabilities. New algorithms are proposed with regards in conducting two different optimal CB algorithms for intelligent sensor node arrays, thus optimizing the multi-objectives radiation beampattern performance. Emphasis is placed on the investigating effects of random node deployment on the array beampattern schemes. Each of these schemes is justified and compared to the conventional process in terms of related system performance.

WSNs are the combination of systems which consist of devices with sensing, computation and communication functions (Chen *et al.*, 2002). WSNs have been actively applied in military and civilian applications. The sensor node device in WSNs can be deployed quickly and left un-attended by humans. The deployment can be structured and unstructured manners (Yick *et al.*, 2008). In unstructured WSNs, a dense collection of nodes may be deployed in an ad-hoc manner while in the structured WSNs, fewer nodes are placed in pre-planned manner or at specific known locations.

Sensor node is the most fragile hardware that depends on the reliability and life period. It is equipped with one or multiple on-board miniature sensors (such as for chemical, optical, motion, and imaging), a power supply, a transceiver for short-range communication links and also a memory and processor (Akyildiz *et al.*, 2002a). The miniaturization and intelligence of the devices have enabled their ubiquitous and invisible deployment either uniformly or randomly in very large quantities inside private residences, industrial plants, civilian areas or military environments. These sets of sensor nodes are very attractive since they can sense, measure, collaborate, and gather information from the monitored phenomenon. Based on some local decision processes, they can transmit only the needed information to other locations or receivers i.e. base stations (BSs) or access points (APs) for processing and interpretation.

WSN applications require a wide area of sensor nodes to communicate with far BSs or APs. The limited power and computational capabilities of individual sensor nodes can trigger new challenge in communication between nodes-nodes or nodes-BSs or APs as the transmission range of individual nodes is in short distance (Akyildiz et al., 2002a). Well-established concepts of wireless technology and array beamforming have been introduced to overcome the aforementioned limitations. The high density deployment of nodes has been exploited to set up alternative communication schemes in WSNs (Ahmed and Vorobyov, 2009a). Positively, by introducing wireless technology, communication between sensor nodes can outperform wired connection in severe environment. However, one of the significant issues in wireless communication is the decrement of the received signal-to-noise power ratio (SNR) at the receiver. Thus, the technique of CB has been integrated inside WSNs environment. It is a concept that nodes can collaborate with other nodes in the network in some manner that increase their effective operation, such as the transmission range (Mudumbai et al., 2007; Ochiai et al., 2005) and received SNR. CB is also a strong means to establish a reliable and energy-efficient communication (Zarifi et al., 2010; Feng et al., 2010a) as it avoids the dependence of communication quality on individual nodes. Besides, it also distributes power consumption among the collaborative nodes and balances their lifetime (Zhu and Poor, 2007). Additionally, CB builds direct single-hop communication link, either for transmission and reception, from the collaborative nodes to the distant intended BSs or APs that may be located far beyond the transmission range. Thus, it will overcome issues in multi-hop technology in WSNs. Therefore, it also introduces less communication delay and data overhead.

In WSNs, sensor nodes are normally equipped with single omnidirectional antenna (Vincent et al., 2006). If these nodes transmit their data to the distant receivers, it would be more efficient if they collaborate and share their transmitting message and simultaneously transmit the identical message to the intended direction of distant receivers. The signals from all the sensor nodes are transmitted and combined coherently at the desired receiver, and results in a more robust channel with higher signal-to-noise-ratio (SNR) and improved in energy-efficiency (Feng et al., 2010b). In CB concept as shown in Figure 1.1, consider the sensor nodes collect their own data and form an active cluster. Sensor nodes in the active cluster are in active modes. Sensor nodes in the same cluster then transmit the common message synchronously to the same receiver. At the receiver, the individual signal from each node arrives in phase and constructively added. Therefore, by taking the benefit of the number of nodes, an array of sensor nodes can be constructed to increase the antenna gain (Litva, 1996), thus the communication range (Feng et al., 2010b). For example, by assuming that each transmitter node has the same transmitted power and free-space attenuation, N collaborating nodes perform beamforming that can result up to N^2 power gain in the received power at the receivers. It can intensify the transmission range by N times farther. As an option, each transmitter node can reduce its power to $1/N^2$ for the same distance (Feng *et al.*, 2010a). In WSNs, an alternative of a single intelligent antenna structure with desired objective may be impractical in size, implementation or cost.

Figure 1.1 The Collaborative Beamforming Concept in Region of Interest of WSNs

Therefore, there is an immediate need to integrate a CB capability in order to produce the directional beam that can increase the main beam power and transmission range, and filter out the interference. The tradeoff between the intelligent capabilities, position distribution errors and radiation beampattern performance of the CB inside WSNs has to be optimized. In addition, CB also manages to improve data security by reducing or completely eliminating signals at undesired signals (Feng *et al.*, 2009). The research focuses on developing optimal CB algorithm of geometrical nodes array in randomly deployed sensor field. The main objective is to evaluate different approaches by employing selected array configurations such as linear and circular. Firstly, the research shall concentrate on a low complexity yet important and widely-applied case, the linear array, named as intelligent linear sensor node array (ILSA). Although linear array is appealing for its

simple form, it has an inherent limitation of angle surveillance. Therefore, a circular array, named as intelligent circular sensor node array (ICSA) is also studied and proposed, which brings major advantage of maintaining the beampattern almost invariant (Hong, 2005) with little change in either beamwidth or the sidelobe level (Ioannides and Balanis, 2005) throughout 360° azimuth angles. The research work will be based on the development of new algorithms of ILSA and ICSA through the application of proposed hybrid least square improved particle swarm optimization (HLPSO) algorithm. The developed algorithm will be able to estimate the performance of antenna gain in the presence of sensor node geometry location uncertainties. The proposed optimum algorithm will take into consideration not only the beampattern performance, but also the geometrical location of selected active CB nodes which cooperate to form an array antenna. The selective CB active nodes can vary significantly with desired objectives and performance evaluation metrics. As of date, the literature of beamforming in WSN has no reported work on these linear and circular array configurations for intelligent CB capability in WSNs.

1.2 Problem Statement

Two main problem statements that need to be addressed and resolved are summarized as below:

i) Position distribution error of sensor nodes - In CB, the carrier phase is adjusted by every node in order to cancel out the phase difference due to the propagation delay. These signals are then added coherently at the intended destination. The placement of participating CB nodes is also a critical matter as it contributes to the variations of carrier phase. The random position of nodes is also a factor to generate random sidelobes pattern because sidelobes corresponding to different sets of CB nodes are different.

ii) Radiation beampattern performance - The randomness placement of sensor nodes has high impact on sidelobe level (SLL) performance. SLL of beampattern severely depend on the locations of collaborative sensor nodes (Ahmed and Vorobyoz, 2009a). The existence of high SLL can contribute an unacceptable interference to the unintended BSs or APs. Previous literatures on CB inside WSNs did not consider the variation of first null beam width (FNBW) size (Papalexidis *et al.*, 2007). Therefore, the size of FNBW cannot be controlled and strictly depended on the position of CB nodes. Narrow beampattern mainlobe, i.e. narrow FNBW manages to concentrate the transmitted power to the intended direction while dissipating only negligible power in other directions. However, such beampattern needs two strategies, firstly, a large number of participated nodes and secondly, sensor nodes need to be scattered in a large area within the network. This, however, will increase the energy efficiency with the high participation of nodes and affect the inter-connection between the nodes and consequently, obstructs the implementation of CB in practice (Zarifi *et al.*, 2009c).

Satisfying these two constraints inside WSNs can be very challenging issues. The research challenge is to design an optimal CB algorithm for intelligent sensor node array. The algorithms proposed new configurations, which manage to overcome issue in random distribution and intelligently optimize radiation beam performance besides increasing the transmission range and capabilities in WSNs environment.

1.3 Research Objective

The goal of this research is to develop a new algorithm that can determine the desired radiation beam of sensor nodes array for random WSN nodes deployment using collaborative beamforming (CB). Specifically, the objective of the work is to develop two optimal CB algorithms for intelligent sensor node array in linear and circular, i.e. intelligent linear sensor node array (ILSA) and intelligent circular sensor node array (ICSA), respectively. The algorithms are based on the principle of particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995) by introducing a newly hybrid least square improved PSO (HLPSO) algorithm. The nodes selected should be aligned in specified configurations with intelligent capabilities to optimize the desired objectives. Four performance metrics are considered; i.e., SLL suppression, null placement, controllable FNBW and desired multi-objectives.

1.4 Research Methodology

The research methodologies are:

- (i) Assess available CB technologies, sensor node configurations and evolutionary algorithms in a WSN.
- (ii) Develop a new algorithm based on PSO algorithm to search for optimum distance between elements in linear antenna array (LAA) and circular antenna array (CAA). Analyze its performance on the radiation beam performance in terms of SLL suppression, null placement, controllable FNBW and multi-objectives on both LAA and CAA.
- (iii) Comparison of the developed PSO-based model and three previous models (Balanis, 2005; Panduro *et al.*, 2005; Panduro *et al.*, 2008b).
- (iv) Develop a new algorithm of linear and circular sensor node array configuration by applying the previous developed PSO-based algorithm. Analyze its performance in terms of beam characteristics and optimization capability in array form.
- (v) Simulate the developed linear and circular array for optimizing radiation beams in WSN applications by using MATLAB software (Stearns and David, 1996). Analyze the characteristics and optimization capabilities.
- (vi) Analyze the performance of the proposed algorithms in terms of SLL suppression, null placement, controllable FNBW, multi-objectives, desired main beam angle, effect of different configurations, multiple base stations deployment and occurrence of interferences located nearest to the mainlobe.
- (vii) Comparison of the developed model with previous models (Papalexidis *et al.*, 2007, Balanis, 2005).

A set of performance evaluation metrics to be used for evaluating the performances of the proposed algorithms are as follows:

(i) SLL suppression (Suppressing radiation lobe in any direction other than the direction-of-interest (DOI) and mainlobe).

- a. For the proposed improved particle swarm optimization (ImPSO), the SLL must be comparable or less than SLL of conventional ULA or uniform circular array (UCA) (Balanis, 2005) and with other LAA from companion genetic algorithm (GA) methods (Panduro *et al.*, 2005; Panduro *et al.*, 2008b).
- b. For the proposed ILSA and ICSA, the SLL must be comparable or less than SLL of line-fitting linear array (LFA) (Papalexidis *et al.*, 2007) and circular sensor node array (CSA) or conventional UCA (Balanis, 2005), respectively.
- (ii) Null placement (Placing nulls at any arbitrary directions in the interfering signals or direction-not-of-interest (DNOI) nulls).
 - a. For the proposed ImPSO, the SLL must be zero at the desired nulling angles as compared to conventional uniform linear array (ULA) (Balanis, 2005).
 - b. For the proposed ILSA and ICSA, the SLL must be zero at the desired nulling angles as compared to the LFA (Papalexidis *et al.*, 2007) and CSA or conventional UCA (Balanis, 2005), respectively.
- (iii) Controllable FNBW (FNBW is defined as a measure of the mainlobe, normally presented in degrees).
 - a. For the proposed ImPSO, the size of FNBW must be narrower or wider than the size of FNBW of conventional ULA (Balanis, 2005).
 - b. For the proposed ILSA and ICSA, the size of FNBW must be narrower or wider as compared to the LFA (Papalexidis *et al.*, 2007) and CSA or conventional UCA (Balanis, 2005), respectively.
- Multi-objectives (The term multi-objectives are employed to evaluate two or more performance metrics simultaneously in order to obtain the radiation beampattern performance that represents the best

compromise among the objectives, i.e. SLL suppression, null placement, controllable FNBW and main beam angle).

- a. For the proposed ImPSO, the performance of multi-objectives must be better than LAA from companion GA methods (Panduro *et al.*, 2005; Panduro *et al.*, 2008b).
- **b.** For the proposed ILSA and ICSA, the performance of multiobjectives must be better than the LFA (Papalexidis *et al.*, 2007) and CSA or conventional UCA (Balanis, 2005), respectively.

1.5 Research Contributions

The new concept of optimal CB algorithms on linear and circular intelligent sensor node array are developed for WSNs. These new algorithms are based on the principle of particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995) by introducing a newly-modified HLPSO algorithm. The following have been identified to be the main original contributions to the knowledge in CB inside WSNs environment:

(i) Intelligent Linear Sensor Node Array (ILSA) - With the existence of restrictions in multi hop transmission, it is valuable if the communication system in WSNs would allow the nodes to access the receivers (APs or BSs) directly; which do not burden other nodes with relaying tasks (Kalis *et al.*, 2010). The proposed HLPSO-based ILSA overcomes the demand of long distance communication by forming an assembly of sensor nodes in linear geometrical configuration. The selected nodes act collaboratively as a virtual LAA for radiation beam optimization, resulting in a more robust channel with increase in transmission range. The proposed approach, HLPSO-based ILSA uses selected nodes, i.e. active ILSA CB nodes, which are placed in linear configurations in order to perform a CB, instead of burdening all the nodes inside the active cluster (AC).

(ii) Intelligent Circular Sensor Node Array (ICSA) - The circular array does not have any edge elements. A circular array is a great option when steering through

360° is required. It manages to maintain its SLL and beamwidth changes. The circular arrays have been found advantageous in dealing with mutual coupling effect (Rattan *et al.*, 2009). The HLPSO-based ICSA is proposed for CB in WSNs where the CB active nodes are selected in circular configurations. The algorithm is able to achieve significant improvements in dealing with any objectives, compared to the other CB algorithm in the literatures. This HLPSO-based ICSA is also an alternative approach of CB method besides HLPSO-based ILSA. Verification results are defined to prove that this algorithm can tackle the desired objective or any multi-objectives, simultaneously.

(iii) Hybrid least square improved particle swarm optimization algorithm (HLPSO) - The original PSO has a high convergence speed. However, it is easy to fall into local optima (Chen et al., 2005b) and it also appears to be lacking global search ability (Li et al., 2008). Hence, some improvements have been introduced in this PSO to overcome the weaknesses. The proposed improved PSO (ImPSO) is proposed by introducing two mechanisms, i.e. global constraint boundaries variables. and reinitialization of particle's position and velocity. The effectiveness and capabilities of the proposed ImPSO are then assessed by synthesizing the LAA and CAA. In order to realize this intelligent algorithm in WSNs constraints, the ImPSO algorithm is combined with least square (LS) approximation algorithm, i.e. HLPSO. HLPSO manages to amend the radiation beampattern of CB performance. The proposed algorithm has been utilized in constructing both linear and circular array inside WSNs environment, by considering random nodes configurations distributions.

(iv) Sidelobe level (SLL) Suppression - Suppress SLL can focus the main beam power towards the DOI and decrease the output power to the DNOI. The existence of unacceptable interference to the unintended receivers (BSs or APs) can also be discarded by suppressing any high SLL generated from the randomness placement.

(v) Null Placement - In the absence of any unintended receivers (BSs or APs) at any particular angles, the null placement may be treated as design parameters that can be adjusted, either by imposing nulls or suppressing sidelobe peaks at the design angles considerably smaller than those from conventional ULA and previous works

(Papalexidis *et al.*, 2007; Balanis, 2005). This null-placement technique is to suppress interference on any desired particular angles.

(vi) Controllable first null beamwidth (FNBW) - In this proposed method, the FNBW of the radiation pattern can be controlled based on the selective active CB nodes either in linear or circular configurations. The advantages of the proposed method are that it can either increase or decrease the size FNBW to be narrower, or wider without any increment in the number of active CB nodes or cluster size.

(vii) Multi-objectives - From the extensive literature review done, this multiobjectives optimization problem for CB in WSNs has not been dealt before. Generally, when two or more conflicting design criteria are taken into account, the method will be more complex and larger time consuming. The proposed method manages to overcome complex design and deal with a few multi-objective requirements, simultaneously.

1.6 Thesis Organization

The remaining chapters of the thesis are organized as follows:

In Chapter 2, the basic principles of beamforming technology in various applications are reviewed. The fundamental theory of antenna which focus on the existing antenna arrays, i.e. LAA and CAA are also discussed in this chapter. Then, the basic principles of WSN architecture, including the detail function of sensor nodes are discussed. A review on the beamforming technology and computational intelligence (CI) inside WSNs are also described in this chapter. Next, a review on the evolutionary algorithm is provided. Detailed description of the PSO and its various applications on antenna array are given. Besides that, another evolutionary algorithm, i.e. GA is also briefly discussed. Additionally, the strengths of PSO over GA are also presented.

Chapter 3 presents the proposed ImPSO algorithm. Two mechanisms, i.e. global constraint boundaries variables and reinitialization of particle's position and

velocity are described in detailed. Comprehensive simulations of this proposed algorithm by implementing both LAA and CAA are carried out. Furthermore, the performance of ImPSO algorithm is compared with other companion algorithms, genetic algorithm (GA) and conventional arrays.

The proposed CB design concept of four different concepts of LFA, CSA, proposed ILSA and proposed ICSA are first discussed in Chapter 4. This chapter describes the three main stages of the algorithm including the assumptions and definitions before these concepts are implemented. The least-square line fitting method is discussed in detail in order to construct LFA. The design concept of both LFA and CSA are discussed in detail. In addition, the proposed ILSA and ICSA are also discussed briefly in this chapter. Finally, simulations are carried out to investigate the properties of LFA and CSA. The results are discussed in depth.

In Chapter 5, an ILSA is proposed. This algorithm takes into account the random node deployment in defining the active CB nodes to take part in CB. The ILSA algorithm is discussed in details. In addition, series of simulations are conducted using different number of nodes and objectives to evaluate the performance of this algorithm, along with other companion algorithm in the literature that are designed for WSNs. Comparisons are made between the algorithms in order to show the benefit of using ILSA in handling the random node with desired objectives.

In Chapter 6, an ICSA is proposed to overcome the weaknesses and as an option to ILSA. Instead of using linear configuration, this algorithm utilizes a circular configuration that can fulfill the requirements of any stated objectives. The procedure of algorithm is provided. An analysis on radiation beampattern performance is verified by using simulation. The last chapter concludes the thesis. Contributions are presented and possible future works are proposed.

REFERENCES

- Ahmed, M. F. A., and Vorobyov, S. A. (2008a). Beampattern random behavior in wireless sensor networks with Gaussian distributed sensor nodes. *Electrical* and Computer Engineering, 2008. CCECE 2008. Canadian Conference on.
- Ahmed, M. F. A., and Vorobyov, S. A. (2008b). Performance characteristics of collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes. Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on.
- Ahmed, M. F. A., and Vorobyov, S. A. (2009a). Node selection for sidelobe control in collaborative beamforming for wireless sensor networks. *Signal Processing Advances in Wireless Communications*, 2009. SPAWC '09. IEEE 10th Workshop on.
- Ahmed, M. F. A., and Vorobyov, S. A. (2009b). Collaborative beamforming for wireless sensor networks with Gaussian distributed sensor nodes. *Wireless Communications, IEEE Transactions on*, 8(2), 638-643.
- Ahmed, M. F. A., and Vorobyov, S. A. (2010). Sidelobe Control in Collaborative Beamforming via Node Selection. *Signal Processing, IEEE Transactions on*, 58(12), 6168-6180.
- Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002a). Wireless sensor networks: a survey. *Computer Networks*, 38(4), 393-422.
- Akyildiz, I. F., Weilian, S., Sankarasubramaniam, Y., and Cayirci, E. (2002b). A survey on sensor networks. *Communications Magazine*, *IEEE*, 40(8), 102-114.
- Amar, A. (2010). The Effect of Local Scattering on the Gain and Beamwidth of a Collaborative Beampattern for Wireless Sensor Networks. *Wireless Communications, IEEE Transactions on*, vol.9, no.9, pp.2730-2736, September 2010

- Balanis, C. A. (2005). *Antenna Theory: Analysis and Design*, USA: John Wiley and Sons.
- Bao, X.-r., Qie, Z.-t., Zhang, X.-f., and Zhang, S. (2009). An efficient Energy Cluster-based Routing Protocol for wireless sensor networks. *Control and Decision Conference*, 2009. CCDC '09. Chinese.
- Barriac, G., Mudumbai, R., and Madhow, U. .(2004). Distributed beamforming for information transfer in sensor networks. *Information Processing in Sensor Networks*, 2004. IPSN 2004. Third International Symposium on.
- Batson, M. S., and McEachen, J. C. (2008) A Method for Fast Radio Frequency Direction Finding Using Wireless Sensor Networks. *Hawaii International Conference on System Sciences, Proceedings of the 41st Annual.*
- Batson, M., McEachen, J., and Tummala, M. (2007a). Enhanced Collection Methodology for Distributed Wireless Antenna Systems. Presented at System of Systems Engineering, 2007. SoSE '07. IEEE International Conference on.
- Batson, M., McEachen, J., and Tummala, M. (2007b). A Comparison of Power Management Techniques in Wireless RF Direction Finding Sensor Networks. *Computer Communications and Networks, 2007. ICCCN 2007. Proceedings* of 16th International Conference on.
- Bevelacqua, P. J., and Balanis, C. A. (2007). Minimum sidelobe levels for linear arrays. *IEEE Transactions on Antennas and Propagation*, 55(12), 3442-3449.
- Boeringer, D. W., and Werner, D. H. (2004). Particle swarm optimization versus genetic algorithms for phased array synthesis. *Antennas and Propagation*, *IEEE Transactions on*, 52(3), 771-779.
- Chen, J. C., Kung, Y., and Hudson, R. E. (2002). Source localization and beamforming. *Signal Processing Magazine, IEEE*, 19(2), 30-39.
- Chen, T. B., Chen, Y. B., Jiao, Y. C., and Zhang, F. S. (2005a). Synthesis of antenna array using particle swarm optimization. *Asia-Pacific Microwave Conference Proceedings, APMC*.
- Chen, T., Jiao, Y. C., and Zhang, F. (2005b). Synthesis of the antenna array using a modified particle swarm optimization algorithm. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*. City, pp. 651-656.
- Chen, W., Wang, D., Wang, W. (2005c). Beamforming for information transfer in wireless sensor networks without perfect positioning. *Microwave Conference*

Proceedings, 2005. *APMC* 2005. *Asia-Pacific Conference Proceedings* Volume 3, 4-7 Dec. 2005

- Culler, D., Estrin, D., and Srivastava, M. (2004). Guest Editors' Introduction: Overview of Sensor Networks. *Computer*, 37(8), 41-49.
- Deosarkar, B. P., Yadav, N. S., and Yadav, R. P. (2009). A particle swarm approach for uniform cluster distribution in data centric wireless sensor networks. *Nature & Biologically Inspired Computing*, 2009. NaBIC 2009. World Congress on.
- Dong, L., Petropulu, A.P.; Poor, H.V. Weighted Cross-Layer Cooperative Beamforming for Wireless Networks. Signal Processing, IEEE Transactions on, vol.57, no.8, pp.3240-3252, Aug. 2009
- Eberhart, and Yuhui, S. (2001). Particle swarm optimization: developments, applications and resources. *Evolutionary Computation, 2001. Proceedings of the 2001 Congress on.*
- Eberhart, R., and Shi, Y. (1998). Comparison between genetic algorithms and particle swarm optimization. *Evolutionary Programming VII*. Springer Berlin / Heidelberg, pp. 611-616.
- El Masri, R.M. Sigg, S. Beigl, M. (2010). An asymptotically optimal approach to the distributed adaptive transmit beamforming in wireless sensor networks. *Wireless Conference (EW), 2010 European*, vol., no., pp.511-518, 12-15
 April 2010
- Elissaios, G., A. M. (2006). Array Formation in arrayed wireless sensor networks. HERMIS-mu-pi International Journal of Computer Mathematics and its Applications, 122-134.
- Elmusrati, M., Hasu, V. Random Switched Beamforming for Uplink Wireless Sensor Networks. Vehicular Technology Conference, 2007. VTC2007-Spring. IEEE 65th
- Fan, X., Guichang, Z., Richard, D. D., III, and Willson, A. N., Jr. (2002). A ringprocessor based blind beamformer design for use in wireless sensor networks. *Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on.*
- Feng, J., Chang, C., S. S., Lu, Y., Jung, B., P. D., H., Y.C. (2010a). Energy-Efficient Transmission for Beamforming in Wireless Sensor Networks. Sensor Mesh and Ad Hoc Communications and Networks (SECON), 2010 7th Annual IEEE Communications Society Conference on. Vol., no., pp.1-9, 21-25 June 2010

- Feng, J., N., Y., Lu, Y., Jung, B., P., D., H. Y.C. (2010b) Analysis of Energy Consumption on Data Sharing in Beamforming for Wireless Sensor Networks. *Computer Communications and Networks (ICCCN)*, 2010 *Proceedings of 19th International Conference on*, vol., no., pp.1-6, 2-5 Aug. 2010
- Feng, J., Lu, Y., Jung, B., P., D. (2009). Energy efficient collaborative beamforming in wireless sensor networks. *Circuits and Systems*, 2009. ISCAS 2009. IEEE International Symposium on , vol., no., pp.2161-2164, 24-27 May 2009
- Gies, D., and Rahmat-Samii, Y. (2003). Particle swarm optimization for reconfigurable phase-differentiated array design. *Microwave and Optical Technology Letters*, 38(3), 168-175.
- Godara, L. C. (1997). Application of antenna arrays to mobile communications, part
 II: Beam-forming and direction-of-arrival considerations. *Proceedings of the IEEE*, 85(8), 1195-1245.
- Gopakumar, A., and Jacob, L. (2008). Localization in wireless sensor networks using particle swarm optimization. Wireless, Mobile and Multimedia Networks, 2008. IET International Conference on.
- Guru, S. M., Halgamuge, S. K., and Fernando, S. (2005). Particle Swarm Optimisers for Cluster formation in Wireless Sensor Networks. *Intelligent Sensors, Sensor Networks and Information Processing Conference, 2005. Proceedings* of the 2005 International Conference on.
- Han, Z., and Poor, H. V. (2007). Lifetime improvement in wireless sensor networks via collaborative beamforming and cooperative transmission. *Microwaves, Antennas & Propagation, IET*, 1(6), 1103-1110.
- Hardwick, K. (2008). Antenna Beam Pattern Model for Cooperative Ad-Hoc Networks. The Second Annual Conference of the International Technology Alliance, ACITA 2008
- Haynes, T. A (1998). Primer on Digital Beamforming. Spectrum Signal Processing March 26, 1998.
- Hong, Y. (2005). Broadband Beamforming And Direction Finding Using Concentric Ring Array, A Dissertation Presented To The Faculty Of The Graduate School University Of Missouri-Columbia, July 2005.

- Hult, T., Mohammed, A. (2007). Cooperative Beamforming for Wireless Sensor Networks. Antennas and Propagation, 2007. EuCAP 2007. The Second European Conference on , vol., no., pp.1-4, 11-16 Nov. 2007
- Ioannides, P., Balanis, C.A. (2005). Uniform circular and rectangular arrays for adaptive beamforming applications. *Antennas and Wireless Propagation Letters*, *IEEE*, vol.4, no., pp. 351-354, 2005
- Jiabin, H., Xinggang, F., Wanliang, W., Jing, J., and Yi, W. (2010). Clustering strategy of Wireless Sensor Networks based on improved Discrete Particle Swarm Optimization. *Natural Computation (ICNC)*, 2010 Sixth International Conference on.
- Jianming, H., Jingyan, S., Xiaojing, K., and Mingchen, Z. (2006). A study of Particle Swarm Optimization in Urban Traffic Surveillance System. Computational Engineering in Systems Applications, IMACS Multiconference on.
- John Thelen, D. G., Koen Langendoen. (2005). Radio wave propagation in potato fields. *Presented at 1st workshop in Wireless Networks Measurements*.
- Jones, M. T. (2005). *AI Application Programming*, Boston, Massachusets: Charles River Media.
- Kalis, A., Kanatas, A.G., Efthymoglou, G.P. (2010). A co-operative beamforming solution for eliminating multi-hop communications in wireless sensor networks. *Selected Areas in Communications, IEEE Journal on*, vol.28, no.7, pp.1055-1062, September 2010
- Kennedy, J., and Eberhart, R. (1995). Particle swarm optimization. *Neural Networks,* 1995. Proceedings., IEEE International Conference on.
- Khodier, M. M., and Christodoulou, C. G. (2005). Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization. *IEEE Transactions on Antennas and Propagation*, 53(8 II), 2674-2679.
- Khodier, M., and Al-Aqeel, M. (2009). Linear and circular array optimization: A study using particle swarm intelligence. *Progress In Electromagnetics Research B*(15), 347-373.
- Konstantinos, K., Apostolos, X., Panagiotis, K., and George, S. Topology Optimization in Wireless Sensor Networks for Precision Agriculture Applications. Sensor Technologies and Applications, 2007. SensorComm 2007. International Conference on.

- Kulkarni, R. V., and Venayagamoorthy, G. K. (2010a). Particle Swarm Optimization in Wireless-Sensor Networks: A Brief Survey. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, PP(99), 1-7.
- Kulkarni, V., Forster, A., and Venayagamoorthy, G. (2010b). Computational Intelligence in Wireless Sensor Networks: A Survey. Communications Surveys & Tutorials, IEEE, PP(99), 1-29.
- Kulkarni, R. V., Venayagamoorthy, G. K., and Cheng, M. X. (2009). Bio-inspired node localization in wireless sensor networks. *Systems, Man and Cybernetics*, 2009. SMC 2009. IEEE International Conference on.
- Kung, Y., Hudson, R. E., Reed, C. W., Daching, C., and Lorenzelli, F. (1998). Blind beamforming on a randomly distributed sensor array system. *Selected Areas in Communications, IEEE Journal on*, 16(8), 1555-1567.
- Li, W. T., Shi, X. W., and Hei, Y. Q. (2008). An improved particle swarm optimization algorithm for pattern synthesis of phased arrays. *Progress in Electromagnetics Research*, 82, 319-332.
- Lintz, W. A., and McEachen, J. C. (2009a). A Method for Emphasizing Signal Detection in Wireless Sensor Network Radio Frequency Array Operation. System Sciences, 2009. HICSS '09. 42nd Hawaii International Conference on.
- Lintz, W. A., McEachen, J. C., and Tummala, M. (2009b). Sensor beamforming with distributed mobile elements in a wireless sensor network. *Electrical and Computer Engineering*, 2009. CCECE '09. Canadian Conference on.
- Lintz, W., McEachen, J., and Tummala, M. (2008). Optimizing probability of detection in a wireless sensor network radio frequency array." *Presented at Signal Processing and Communication Systems, 2008. ICSPCS 2008. 2nd International Conference on.*
- Litva, J., T. K.-Y. L. (1996). *Digital Beamforming in Wireless Communication*, Boston,London: Artech House INC.
- Liu, J., Li, l., and Huazhi, W. (2008). Investigation of different types of array structures for smart antennas. *Microwave and Millimeter Wave Technology*, 2008. ICMMT 2008. International Conference on.
- Low, K. S., Nguyen, H. A., and Guo, H. (2008). A particle swarm optimization approach for the localization of a wireless sensor network. *Industrial Electronics*, 2008. *ISIE 2008. IEEE International Symposium on*.

- Mahmoud, K. R. A. E., Mohamed I. and Bansal, Rajeev and Zainud-Deen, Saber H. and Ibrahem, Sabry M. M. (2008). Analysis of uniform circular arrays for adaptive beamforming applications using particle swarm optimization algorithm. *Int. J. RF Microw. Comput.-Aided Eng.*, 18(1).
- Mao, J., Wu, Z., and Wu, X. (2007). A TDMA scheduling scheme for many-to-one communications in wireless sensor networks. *Computer Communications*, 30(4), 863-872.
- McCord, J.E. (1998). A Survey of Digital Beamforming Techniques and Current Technology. MS Thesis, Mississippi State University, Mississippi State, Dec 1988
- Mendis, C., Guru, S. M., Halgamuge, S., and Fernando, S. (2006). Optimized sink node path using particle swarm optimization. Advanced Information Networking and Applications, 2006. AINA 2006. 20th International Conference on.
- Mingyue, F., Xianqing, Y., Guohui, L., Zhanshuai, D., and Xiangneng, W. (2008).
 Sensor Scheduling for Target Tracking in a Wireless Sensor Network Using Modified Particle Swarm Optimization. *Computer Science and Computational Technology, 2008. ISCSCT '08. International Symposium on.*
- Mudumbai, R., Barriac, G., and Madhow, U. (2007). On the Feasibility of Distributed Beamforming in Wireless Networks. *Wireless Communications*, *IEEE Transactions on*, 6(5), 1754-1763.
- Mudumbai, R., Brown, D.R., Madhow, U., Poor, H.V. (2009). Distributed transmit beamforming: challenges and recent progress. *Communications Magazine*, *IEEE*. Volume: 4, Issue: 2 . Publication Year: 2009 , Page(s): 102 - 110
- Nakajima, A., Minseok, K. I. M., and Arai, H. (2005). FPGA implementation of MMSE adaptive array antenna using RLS algorithm." *Presented at IEEE Antennas and Propagation Society, AP-S International Symposium (Digest)*.
- Naqvi, H., Sulayman, M., and Riaz, M. (2009). Adaptive Beamforming in Wireless Sensor Network in the Presence of Interference Sources. *Communications in Computer and Information Science*, 2009, Volume 56. 105-113.
- Ngatchou, P. N., Fox, W. L. J., and El-Sharkawi, M. A. (2005). Distributed sensor placement with sequential particle swarm optimization. *Swarm Intelligence Symposium*, 2005. SIS 2005. Proceedings 2005 IEEE.

- Ochiai, H., Imai, H. (2009). Collaborative beamforming, in V. Tarokh, (ed.), New Directions in Wireless Communications Research. Springer.
- Ochiai, H., Mitran, P., Poor, H. V., and Tarokh, V. (2005). Collaborative beamforming for distributed wireless ad hoc sensor networks. *Signal Processing, IEEE Transactions on*, 53(11), 4110-4124.
- Panduro, M.A., C. A. B. (2008a). Evolutionary multi-objective design of nonuniform circular phased array. COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering,, 27 (2), 551-566.
- Panduro, M. A., Brizuela, C. A., and Covarrubias, D. H. (2008b). Design of electronically steerable linear arrays with evolutionary algorithms. *Applied Soft Computing Journal*, 8(1), 46-54.
- Panduro, M. A., Covarrubias, D. H., Brizuela, C. A., and Marante, F. R. (2005). A multi-objective approach in the linear antenna array design. AEU -International Journal of Electronics and Communications, 59(4), 205-212.
- Panduro, M. A., Mendez, A. L., Dominguez, R., and Romero, G. (2006a). Design of non-uniform circular antenna arrays for side lobe reduction using the method of genetic algorithms. Int. J. Electron. Communi. (AEU) 60(10), 713-717.
- Panduro, M. A., Mendez, A. L., Romero, G., and Dominguez, R. F. (2006b). Design of Non-uniform Circular Phased Arrays using Genetic Algorithms to Reduce the Maximum Side Lobe During Scanning." *Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd.*
- Panduro, M.A., C. A. B., Banderas., L.I., Acosta, D.A. (2009). A comparison of genetic algorithms, particle swarm optimization and the differential evolution method for the design of scannable circular antenna arrays. *Progress in Electromagnetics Research B*, 13, 171-186.
- Papalexidis, N., Walker, T. O., Gkionis, C., Tummala, M., and McEachen, J. (2007).
 A Distributed Approach to Beamforming in a Wireless Sensor Network. Signals, Systems and Computers, 2007. ACSSC 2007. Conference Record of the Forty-First Asilomar Conference on.
- Pradhan, P. M., Baghel, V., Panda, G., and Bernard, M. (2009). Energy Efficient Layout for a Wireless Sensor Network using Multi-Objective Particle Swarm Optimization. Advance Computing Conference, 2009. IACC 2009. IEEE International.

- Quanquan, L., Dongfeng, Y., Yong, W., and Ruihua, Z. (2006). A New Sensor Antenna-array Selecting Method in Wireless Sensor Networks. Communications, Circuits and Systems Proceedings, 2006 International Conference on.
- Radenkovic, M., B. W. (2006). Wireless Mobile Ad-hoc Sensor Networks for Very Large Scale Cattle Monitoring. *Proceedings of in 6th International Workshop* on Applications and Services in Wireless Networks (AWSN06), Berlin, Germany.
- Rahmat-Samii, Y., and Christodoulou, C. G. (2007). Guest Editorial for the Special Issue on Synthesis and Optimization Techniques in Electromagnetics and Antenna System Design. *Antennas and Propagation, IEEE Transactions on*, 55(3), 518-522.
- Rahmat-Samii, Y., D. G., Robinson, J. (2003). Particle Swarm Optimization (PSO):A Novel Paradigm for Antenna Designs. *The Radio Science Bulletin*, 305, 14.
- Rattan, M., S. P., Sohi, B. S. (2008). Design of A Linear Array of Half Wave Parallel Dipoles Using Particle Swarm Optimization. *Progress In Electromagnetics Research M*, 2, 131-139.
- Rattan, M., S. P., Sohi, B. S. (2009). Optimization of circular antenna arrays of isotropic radiators using simulated annealing. *International Journal of Microwave and Wireless Technologies*, 1, 441-446.
- S.Kazemi, H. R. H., G.R.Dadashzadeh, F.Geran. (2008). Performance Improvement in Amplitude Synthesis of Unequally Spaced Array Using Least Mean Square Method. *Progress In Electromagnetics Research B*, 1, 135-145.
- Shihab, M., Y. N., Dib, N., Khodier, M. (2008). Design of Non-Uniform Circular Antenna Arrays using Particle Swarm Optimization. *Journal of Electrical Engineering*, 59-No.4, 216-220.
- Sigg, S., Beigl, M. (2009). Algorithmic approaches to distributed adaptive transmit beamforming. Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), 2009 5th International Conference on, vol., no., pp.433-438, 7-10 Dec. 2009.
- Stearns, S.D., David, R.A., (1996). Signal Processing Algorithms in MATLAB, Prentice Hall P T R, Upper Saddle River, New Jersey 07458

- Tuan,L.M., J. P., Yoo G., Kim, J. (2002). A Semi-blind LMS Adaptive Beamforming Algorithm for Smart Antennas in an OFDM System. *Antennas and Propagation Society International Symposium*. City: IEEE, pp. 618-621.
- Tummala, M., Chan Chee, W., and Vincent, P. (2005). Distributed Beamforming in Wireless Sensor Networks. Signals, Systems and Computers, 2005. Conference Record of the Thirty-Ninth Asilomar Conference on.
- Van Veen, B. D., and Buckley, K. M. (1988). Beamforming: A versatile approach to spatial filtering. *IEEE ASSP magazine*, 5(2), 4-24.
- Vincent, P. J., Tummala, M., and McEachen, J. (2006). An energy-efficient approach for information transfer from distributed wireless sensor systems. System of Systems Engineering, 2006 IEEE/SMC International Conference on.
- Vincent, P. J., Tummala, M., and McEachen, J. (2007). A Beamforming Approach for Distributed Wireless Sensor Networks. System of Systems Engineering, 2007. SoSE '07. IEEE International Conference on.
- Vincent, P., Tummala, M., and McEachen, J. (2008). A new method for distributing power usage across a sensor network. *Ad Hoc Networks*, 6(8), 1258-1280.
- Weisstein, Eric, W., Least Squares Fitting. From *MathWorld--*A Wolfram Web Resource. http://mathworld.wolfram.com/LeastSquaresFitting.html
- Wenzhong, G., Qiaoyun, H., Guolong, C., and Lun, Y. (2009). Solving Task Scheduling Problem for Distributed Sensor Network with Discrete Particle Swarm Optimization. *Natural Computation*, 2009. ICNC '09. Fifth International Conference on.
- Wysota, M., Jagodzinska, K., Walkowiak, M. (2008). Sidelob suppression in unequally spaced antenna arrays. *Information Technology*, 2008. IT 2008. 1st International Conference on, vol., no., pp.1-4, 18-21 May 2008
- Xue, W., Junjie, M., Sheng, W., and Daowei, B. (2010). Distributed Energy Optimization for Target Tracking in Wireless Sensor Networks. *Mobile Computing, IEEE Transactions on*, 9(1), 73-86.
- Yick, J., Mukherjee, B., and Ghosal, D. (2008). Wireless sensor network survey. *Computer Networks*, 52(12), 2292-2330.
- Zaharis, Z., D. K., Papastergiou, A., Hatzigaidas, A., Lazaridis, P., Spasos, M. (2006). Optimal design of a linear antenna array using particle swarm optimization *Proc. of the 5th WSEAS Int. Conf on Data Networks, Communications and Computers*. City: Bucharest (Romania), pp. 69-74.

- Zarifi, K., Affes, S., and Ghrayeb, A. (2009a). Distributed beamforming for wireless sensor networks with random node location. *Acoustics, Speech and Signal Processing, 2009. ICASSP 2009. IEEE International Conference on.*
- Zarifi, K., Affes, S., and Ghrayeb, A. (2009b). Distributed Null-Steering Beamforming for Wireless Sensor Networks. *Global Telecommunications Conference*, 2009. GLOBECOM 2009. IEEE.
- Zarifi, K., Affes, S., and Ghrayeb, A. (2009c). Distributed processing techniques for beamforming in wireless sensor networks. *Signals, Circuits and Systems* (SCS), 2009 3rd International Conference on.
- Zarifi, K., Affes, S., and Ghrayeb, A. (2010). Collaborative Null-Steering Beamforming for Uniformly Distributed Wireless Sensor Networks. *Signal Processing, IEEE Transactions on*, 58(3), 1889-1903.
- Zhiming, L., and Lin, L. (2009). Sensor node deployment in wireless sensor networks based on improved particle swarm optimization. *Applied Superconductivity and Electromagnetic Devices*, 2009. ASEMD 2009. *International Conference on*.
- Zhu, H., and Poor, H. V. (2007). Lifetime Improvement of Wireless Sensor Networks by Collaborative Beamforming and Cooperative Transmission. *Communications, 2007. ICC '07. IEEE International Conference on.*
- Ziari, M., Yaghmaee, M.-H., Davarzani, Z., and Akbarzadeh-T, M.-R. (2010). TDMA scheduling in wireless sensor networks using hybrid of genetic algorithm and particle swarm optimization. *Networked Computing (INC)*, 2010 6th International Conference on.