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ABSTRACT

In Wireless Sensor Network (WSN), nodes can collaborate to monitor, gather 

and select only the required data to transmit to the receivers. However, the nodes are 

working in uncertain hazardous environments that lead to undesirable high battery 

power consumption. Thus, it is desirable to improve radiation beampattern 

performance by introducing intelligent Collaborative Beamforming (CB) concept. It 

manages to increase the antenna gain and performance by aiming at desired 

objectives through intelligent capabilities. In this thesis, the nodes are designed to 

cooperate and collaborate among themselves and act as a collaborative antenna array. 

An optimal CB algorithm for intelligent sensor node array has been developed which 

combines CB and Particle Swarm Optimisation (PSO) in the presence of node 

geometry location uncertainties. The collaborative nodes are modelled in linear and 

circular array configurations. Firstly, a theoretical foundation employing CB inside 

WSN is developed consisting of three main stages: parameter initialisation, 

activation and optimisation setup. Then, newly proposed Intelligent Linear Sensor 

Node Array (ILSA) and Intelligent Circular Sensor Node Array (ICSA) are 

successfully optimised by applying Hybrid Least square improved PSO (HLPSO). 

The HLPSO has been developed using global constraint boundaries variables and, 

reinitialisation of particle’s position and velocity. It incorporates with Least Square 

approximation algorithm. For intereference occurence case at six unintended 

receivers, ILSA manages to significantly suppress Sidelobe Level (SLL) up to 

85.54% in average. For null placement, the peak SLL within the null ranges angles 

have been greatly minimised up to 103%. The ICSA with multi-objective 

optimisation has outstandingly reduced SLL to 213% with 36° First Null Beamwidth 

size increment. Both ILSA and ICSA can effectively improve radiation beampattern 

performance and coverage by intelligently adjusting the shape of the beampatterns 

under different constraints as per desired usage. So, it accomplishes significant 

improvements compared to the referenced CB algorithm.
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A B ST R A K

Dalam Rangkalan Penderla Wayarles (WSN), nod penderia boleh 

bekerjasama untuk memantau, mengumpul dan memilih hanya data yang diperlukan 

untuk dihantar kepada penerima. Walau bagaimanapun, nod ini bekerja dalam 

persekitaran berbahaya yang meningkatkan penggunaan kuasa bateri. Maka, 

pencapaian alur sinaran perlu ditingkatkan dengan memperkenalkan konsep 

Kerjasama Pembentukan alur (CB) pintar. Ia dapat menambah gandaan dan 

pencapaian antena berdasarkan objektif yang diingini melalui keupayaan pintar. 

Dalam tesis ini, nod direka bentuk untuk saling bekerjasama dan bertindak sebagai 

antena tatasusunan. Satu CB optimum algoritma untuk tatasusunan nod penderia 

pintar telah dibangunkan dengan menggabungkan CB dan Teknik Kerumunan Zarah 

(PSO) dalam kehadiran ketidakpastian lokasi geometri nod. Nod kerjasama dimodel 

sebagai konfigurasi tatasusunan lelurus dan bulatan. Pertamanya, teori asas 

melibatkan CB dalam WSN dibangunkan. Ia terdiri daripada tiga peringkat: 

pemulaan parameter, pengaktifan dan pengoptimuman. Kemudian, tatasusunan nod 

penderia lurus pintar (ILSA) dan bulatan pintar (ICSA) berjaya dioptimumkan 

dengan menggunakan PSO kuasa dua terkecil hibrid (HLPSO). HLPSO dibangunkan 

dengan pembolehubah sempadan kekangan global dan, pemulaan semula kedudukan 

dan halaju zarah. Ia juga digabungkan dengan algoritma penghampiran kuasa dua 

terkecil. Bagi kes gangguan enam penerima yang tidak disengajakan, ILSA begitu 

berjaya menindas paras cuping sisi (SLL) sehingga 85.54% secara purata. Bagi 

penempatan nol, puncak SLL dalam julat sudut nol telah dikurangkan dengan 

jayanya sehingga 103%. ICSA dengan pengoptimuman kepelbagaian objektif telah 

mengurangkan SLL sebanyak 213% beserta peningkatan saiz lebaralur nol pertama 

sebesar 36°. ILSA dan ICSA berkesan meningkatkan prestasi pembentukan alur 

sinaran dan liputan dengan menyesuaikan bentuk corak alur mengikut kehendak 

pengguna secara bijak. Dengan ini, kemajuan yang signifikan dicapai berbanding 

algoritma CB yang dirujuk.
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CHAPTER 1

INTRODUCTION

1.1 R esearch Background

This thesis presents a development of new optimal collaborative 

beamforming (CB) concept inside an environment of wireless sensor networks 

(WSNs). Well-established concepts including routing network protocol and random 

array beamforming are challenged by the sensor node limitations in terms of power 

and computational capabilities. New algorithms are proposed with regards in 

conducting two different optimal CB algorithms for intelligent sensor node arrays, 

thus optimizing the multi-objectives radiation beampattern performance. Emphasis is 

placed on the investigating effects of random node deployment on the array 

beampattern schemes. Each of these schemes is justified and compared to the 

conventional process in terms of related system performance.

WSNs are the combination of systems which consist of devices with sensing, 

computation and communication functions (Chen et a l, 2002). WSNs have been 

actively applied in military and civilian applications. The sensor node device in 

WSNs can be deployed quickly and left un-attended by humans. The deployment can 

be structured and unstructured manners (Yick et a l, 2008). In unstructured WSNs, a 

dense collection of nodes may be deployed in an ad-hoc manner while in the 

structured WSNs, fewer nodes are placed in pre-planned manner or at specific 

known locations.
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Sensor node is the most fragile hardware that depends on the reliability and 

life period. It is equipped with one or multiple on-board miniature sensors (such as 

for chemical, optical, motion, and imaging), a power supply, a transceiver for short- 

range communication links and also a memory and processor (Akyildiz et a l, 

2002a). The miniaturization and intelligence of the devices have enabled their 

ubiquitous and invisible deployment either uniformly or randomly in very large 

quantities inside private residences, industrial plants, civilian areas or military 

environments. These sets of sensor nodes are very attractive since they can sense, 

measure, collaborate, and gather information from the monitored phenomenon. 

Based on some local decision processes, they can transmit only the needed 

information to other locations or receivers i.e. base stations (BSs) or access points 

(APs) for processing and interpretation.

WSN applications require a wide area of sensor nodes to communicate with 

far BSs or APs. The limited power and computational capabilities of individual 

sensor nodes can trigger new challenge in communication between nodes-nodes or 

nodes-BSs or APs as the transmission range of individual nodes is in short distance 

(Akyildiz et al., 2002a). Well-established concepts of wireless technology and array 

beamforming have been introduced to overcome the aforementioned limitations. The 

high density deployment of nodes has been exploited to set up alternative 

communication schemes in WSNs (Ahmed and Vorobyov, 2009a). Positively, by 

introducing wireless technology, communication between sensor nodes can 

outperform wired connection in severe environment. However, one of the significant 

issues in wireless communication is the decrement of the received signal-to-noise 

power ratio (SNR) at the receiver. Thus, the technique of CB has been integrated 

inside WSNs environment. It is a concept that nodes can collaborate with other nodes 

in the network in some manner that increase their effective operation, such as the 

transmission range (Mudumbai et al., 2007; Ochiai et al., 2005) and received SNR. 

CB is also a strong means to establish a reliable and energy-efficient communication 

(Zarifi et al., 2010; Feng et al., 2010a) as it avoids the dependence of communication 

quality on individual nodes. Besides, it also distributes power consumption among 

the collaborative nodes and balances their lifetime (Zhu and Poor, 2007). 

Additionally, CB builds direct single-hop communication link, either for 

transmission and reception, from the collaborative nodes to the distant intended BSs



3

or APs that may be located far beyond the transmission range. Thus, it will overcome 

issues in multi-hop technology in WSNs. Therefore, it also introduces less 

communication delay and data overhead.

In WSNs, sensor nodes are normally equipped with single omnidirectional 

antenna (Vincent et a l, 2006). If these nodes transmit their data to the distant 

receivers, it would be more efficient if  they collaborate and share their transmitting 

message and simultaneously transmit the identical message to the intended direction 

of distant receivers. The signals from all the sensor nodes are transmitted and 

combined coherently at the desired receiver, and results in a more robust channel 

with higher signal-to-noise-ratio (SNR) and improved in energy-efficiency (Feng et 

al., 2010b). In CB concept as shown in Figure 1.1, consider the sensor nodes collect 

their own data and form an active cluster. Sensor nodes in the active cluster are in 

active modes. Sensor nodes in the same cluster then transmit the common message 

synchronously to the same receiver. At the receiver, the individual signal from each 

node arrives in phase and constructively added. Therefore, by taking the benefit of 

the number of nodes, an array of sensor nodes can be constructed to increase the 

antenna gain (Litva, 1996), thus the communication range (Feng et al., 2010b). For 

example, by assuming that each transmitter node has the same transmitted power and 

free-space attenuation, N  collaborating nodes perform beamforming that can result 

up to N 2 power gain in the received power at the receivers. It can intensify the 

transmission range by N  times farther. As an option, each transmitter node can 

reduce its power to 1/N2 for the same distance (Feng et al., 2010a). In WSNs, an 

alternative of a single intelligent antenna structure with desired objective may be 

impractical in size, implementation or cost.
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Radiation beam
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O  Sleep mode nodes
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q  Region of Interest 
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Figure 1.1 The Collaborative Beamforming Concept in Region of Interest of 

WSNs

Therefore, there is an immediate need to integrate a CB capability in order to 

produce the directional beam that can increase the main beam power and 

transmission range, and filter out the interference. The tradeoff between the 

intelligent capabilities, position distribution errors and radiation beampattern 

performance of the CB inside WSNs has to be optimized. In addition, CB also 

manages to improve data security by reducing or completely eliminating signals at 

undesired signals (Feng et al., 2009). The research focuses on developing optimal 

CB algorithm of geometrical nodes array in randomly deployed sensor field. The 

main objective is to evaluate different approaches by employing selected array 

configurations such as linear and circular. Firstly, the research shall concentrate on a 

low complexity yet important and widely-applied case, the linear array, named as 

intelligent linear sensor node array (ILSA). Although linear array is appealing for its
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simple form, it has an inherent limitation of angle surveillance. Therefore, a circular 

array, named as intelligent circular sensor node array (ICSA) is also studied and 

proposed, which brings major advantage of maintaining the beampattern almost 

invariant (Hong, 2005) with little change in either beamwidth or the sidelobe level 

(Ioannides and Balanis, 2005) throughout 360° azimuth angles. The research work 

will be based on the development of new algorithms of ILSA and ICSA through the 

application of proposed hybrid least square improved particle swarm optimization 

(HLPSO) algorithm. The developed algorithm will be able to estimate the 

performance of antenna gain in the presence of sensor node geometry location 

uncertainties. The proposed optimum algorithm will take into consideration not only 

the beampattern performance, but also the geometrical location of selected active CB 

nodes which cooperate to form an array antenna. The selective CB active nodes can 

vary significantly with desired objectives and performance evaluation metrics. As of 

date, the literature of beamforming in WSN has no reported work on these linear and 

circular array configurations for intelligent CB capability in WSNs.

1.2 Problem  Statem ent

Two main problem statements that need to be addressed and resolved are 

summarized as below:

i) Position distribution error of sensor nodes - In CB, the carrier phase is 

adjusted by every node in order to cancel out the phase difference due to the 

propagation delay. These signals are then added coherently at the intended 

destination. The placement of participating CB nodes is also a critical matter as it 

contributes to the variations of carrier phase. The random position of nodes is also a 

factor to generate random sidelobes pattern because sidelobes corresponding to 

different sets of CB nodes are different.

ii) Radiation beampattern performance - The randomness placement of sensor 

nodes has high impact on sidelobe level (SLL) performance. SLL of beampattern 

severely depend on the locations of collaborative sensor nodes (Ahmed and
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Vorobyoz, 2009a). The existence of high SLL can contribute an unacceptable 

interference to the unintended BSs or APs. Previous literatures on CB inside WSNs 

did not consider the variation of first null beam width (FNBW) size (Papalexidis et 

al., 2007). Therefore, the size of FNBW cannot be controlled and strictly depended 

on the position of CB nodes. Narrow beampattern mainlobe, i.e. narrow FNBW 

manages to concentrate the transmitted power to the intended direction while 

dissipating only negligible power in other directions. However, such beampattern 

needs two strategies, firstly, a large number of participated nodes and secondly, 

sensor nodes need to be scattered in a large area within the network. This, however, 

will increase the energy efficiency with the high participation of nodes and affect the 

inter-connection between the nodes and consequently, obstructs the implementation 

of CB in practice (Zarifi et al., 2009c).

Satisfying these two constraints inside WSNs can be very challenging issues. 

The research challenge is to design an optimal CB algorithm for intelligent sensor 

node array. The algorithms proposed new configurations, which manage to overcome 

issue in random distribution and intelligently optimize radiation beam performance 

besides increasing the transmission range and capabilities in WSNs environment.

1.3 R esearch O bjective

The goal of this research is to develop a new algorithm that can determine the 

desired radiation beam of sensor nodes array for random WSN nodes deployment 

using collaborative beamforming (CB). Specifically, the objective of the work is to 

develop two optimal CB algorithms for intelligent sensor node array in linear and 

circular, i.e. intelligent linear sensor node array (ILSA) and intelligent circular sensor 

node array (ICSA), respectively. The algorithms are based on the principle of particle 

swarm optimization (PSO) algorithm (Kennedy and Eberhart, 1995) by introducing a 

newly hybrid least square improved PSO (HLPSO) algorithm. The nodes selected 

should be aligned in specified configurations with intelligent capabilities to optimize 

the desired objectives. Four performance metrics are considered; i.e., SLL 

suppression, null placement, controllable FNBW and desired multi-objectives.
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1.4 R esearch M ethodology

The research methodologies are:

(i) Assess available CB technologies, sensor node configurations and 

evolutionary algorithms in a WSN.

(ii) Develop a new algorithm based on PSO algorithm to search for 

optimum distance between elements in linear antenna array (LAA) 

and circular antenna array (CAA). Analyze its performance on the 

radiation beam performance in terms o f SLL suppression, null 

placement, controllable FNBW and multi-objectives on both LAA 

and CAA.

(iii) Comparison of the developed PSO-based model and three previous 

models (Balanis, 2005; Panduro et al., 2005; Panduro et al., 2008b).

(iv) Develop a new algorithm o f linear and circular sensor node array 

configuration by applying the previous developed PSO-based 

algorithm. Analyze its performance in terms o f beam characteristics 

and optimization capability in array form.

(v) Simulate the developed linear and circular array for optimizing 

radiation beams in WSN applications by using MATLAB software 

(Stearns and David, 1996). Analyze the characteristics and 

optimization capabilities.

(vi) Analyze the performance of the proposed algorithms in terms of SLL 

suppression, null placement, controllable FNBW, multi-objectives, 

desired main beam angle, effect of different configurations, multiple 

base stations deployment and occurrence of interferences located 

nearest to the mainlobe.

(vii) Comparison of the developed model with previous models 

(Papalexidis et al., 2007, Balanis, 2005).

A set of performance evaluation metrics to be used for evaluating the performances 

of the proposed algorithms are as follows:

(i) SLL suppression (Suppressing radiation lobe in any direction other 

than the direction-of-interest (DOI) and mainlobe).
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a. For the proposed improved particle swarm optimization (ImPSO), 

the SLL must be comparable or less than SLL of conventional 

ULA or uniform circular array (UCA) (Balanis, 2005) and with 

other LAA from companion genetic algorithm (GA) methods 

(Panduro et al., 2005; Panduro et al., 2008b).

b. For the proposed ILSA and ICSA, the SLL must be comparable or 

less than SLL of line-fitting linear array (LFA) (Papalexidis et al., 

2007) and circular sensor node array (CSA) or conventional UCA 

(Balanis, 2005), respectively.

(ii) Null placement (Placing nulls at any arbitrary directions in the 

interfering signals or direction-not-of-interest (DNOI) nulls).

a. For the proposed ImPSO, the SLL must be zero at the desired 

nulling angles as compared to conventional uniform linear array 

(ULA) (Balanis, 2005).

b. For the proposed ILSA and ICSA, the SLL must be zero at the 

desired nulling angles as compared to the LFA (Papalexidis et al., 

2007) and CSA or conventional UCA (Balanis, 2005), 

respectively.

(iii) Controllable FNBW (FNBW is defined as a measure of the mainlobe, 

normally presented in degrees).

a. For the proposed ImPSO, the size of FNBW must be narrower or 

wider than the size of FNBW of conventional ULA (Balanis, 

2005).

b. For the proposed ILSA and ICSA, the size of FNBW must be 

narrower or wider as compared to the LFA (Papalexidis et al.,

2007) and CSA or conventional UCA (Balanis, 2005), 

respectively.

(iv) Multi-objectives (The term multi-objectives are employed to evaluate 

two or more performance metrics simultaneously in order to obtain 

the radiation beampattern performance that represents the best
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compromise among the objectives, i.e. SLL suppression, null 

placement, controllable FNBW and main beam angle).

a. For the proposed ImPSO, the performance of multi-objectives 

must be better than LAA from companion GA methods (Panduro 

et al., 2005; Panduro et al., 2008b).

b. For the proposed ILSA and ICSA, the performance of multi

objectives must be better than the LFA (Papalexidis et al., 2007) 

and CSA or conventional UCA (Balanis, 2005), respectively.

1.5 R esearch Contributions

The new concept of optimal CB algorithms on linear and circular intelligent 

sensor node array are developed for WSNs. These new algorithms are based on the 

principle of particle swarm optimization (PSO) algorithm (Kennedy and Eberhart, 

1995) by introducing a newly-modified HLPSO algorithm. The following have been 

identified to be the main original contributions to the knowledge in CB inside WSNs 

environment:

(i) Intelligent Linear Sensor Node Array (ILSA) - With the existence of 

restrictions in multi hop transmission, it is valuable if the communication system in 

WSNs would allow the nodes to access the receivers (APs or BSs) directly; which do 

not burden other nodes with relaying tasks (Kalis et al., 2010). The proposed 

HLPSO-based ILSA overcomes the demand of long distance communication by 

forming an assembly of sensor nodes in linear geometrical configuration. The 

selected nodes act collaboratively as a virtual LAA for radiation beam optimization, 

resulting in a more robust channel with increase in transmission range. The proposed 

approach, HLPSO-based ILSA uses selected nodes, i.e. active ILSA CB nodes, 

which are placed in linear configurations in order to perform a CB, instead of 

burdening all the nodes inside the active cluster (AC).

(ii) Intelligent Circular Sensor Node Array (ICSA) - The circular array does not 

have any edge elements. A circular array is a great option when steering through
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360° is required. It manages to maintain its SLL and beamwidth changes. The 

circular arrays have been found advantageous in dealing with mutual coupling effect 

(Rattan et al., 2009). The HLPSO-based ICSA is proposed for CB in WSNs where 

the CB active nodes are selected in circular configurations. The algorithm is able to 

achieve significant improvements in dealing with any objectives, compared to the 

other CB algorithm in the literatures. This HLPSO-based ICSA is also an alternative 

approach of CB method besides HLPSO-based ILSA. Verification results are defined 

to prove that this algorithm can tackle the desired objective or any multi-objectives, 

simultaneously.

(iii) Hybrid least square improved particle swarm optimization algorithm 

(HLPSO) - The original PSO has a high convergence speed. However, it is easy to 

fall into local optima (Chen et al., 2005b) and it also appears to be lacking global 

search ability (Li et al., 2008). Hence, some improvements have been introduced in 

this PSO to overcome the weaknesses. The proposed improved PSO (ImPSO) is 

proposed by introducing two mechanisms, i.e. global constraint boundaries variables, 

and reinitialization of particle’s position and velocity. The effectiveness and 

capabilities of the proposed ImPSO are then assessed by synthesizing the LAA and 

CAA. In order to realize this intelligent algorithm in WSNs constraints, the ImPSO 

algorithm is combined with least square (LS) approximation algorithm, i.e. HLPSO. 

HLPSO manages to amend the radiation beampattern of CB performance. The 

proposed algorithm has been utilized in constructing both linear and circular array 

configurations inside WSNs environment, by considering random nodes 

distributions.

(iv) Sidelobe level (SLL) Suppression - Suppress SLL can focus the main beam 

power towards the DOI and decrease the output power to the DNOI. The existence of 

unacceptable interference to the unintended receivers (BSs or APs) can also be 

discarded by suppressing any high SLL generated from the randomness placement.

(v) Null Placement - In the absence of any unintended receivers (BSs or APs) 

at any particular angles, the null placement may be treated as design parameters that 

can be adjusted, either by imposing nulls or suppressing sidelobe peaks at the design 

angles considerably smaller than those from conventional ULA and previous works
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(Papalexidis et al., 2007; Balanis, 2005). This null-placement technique is to 

suppress interference on any desired particular angles.

(vi) Controllable first null beamwidth (FNBW) - In this proposed method, the 

FNBW of the radiation pattern can be controlled based on the selective active CB 

nodes either in linear or circular configurations. The advantages of the proposed 

method are that it can either increase or decrease the size FNBW to be narrower, or 

wider without any increment in the number of active CB nodes or cluster size.

(vii) Multi-objectives - From the extensive literature review done, this multi

objectives optimization problem for CB in WSNs has not been dealt before. 

Generally, when two or more conflicting design criteria are taken into account, the 

method will be more complex and larger time consuming. The proposed method 

manages to overcome complex design and deal with a few multi-objective 

requirements, simultaneously.

1.6 T hesis O rganization

The remaining chapters of the thesis are organized as follows:

In Chapter 2, the basic principles of beamforming technology in various 

applications are reviewed. The fundamental theory of antenna which focus on the 

existing antenna arrays, i.e. LAA and CAA are also discussed in this chapter. Then, 

the basic principles of WSN architecture, including the detail function of sensor 

nodes are discussed. A review on the beamforming technology and computational 

intelligence (CI) inside WSNs are also described in this chapter. Next, a review on 

the evolutionary algorithm is provided. Detailed description of the PSO and its 

various applications on antenna array are given. Besides that, another evolutionary 

algorithm, i.e. GA is also briefly discussed. Additionally, the strengths of PSO over 

GA are also presented.

Chapter 3 presents the proposed ImPSO algorithm. Two mechanisms, i.e. 

global constraint boundaries variables and reinitialization of particle’s position and



12

velocity are described in detailed. Comprehensive simulations of this proposed 

algorithm by implementing both LAA and CAA are carried out. Furthermore, the 

performance of ImPSO algorithm is compared with other companion algorithms, 

genetic algorithm (GA) and conventional arrays.

The proposed CB design concept of four different concepts of LFA, CSA, 

proposed ILSA and proposed ICSA are first discussed in Chapter 4. This chapter 

describes the three main stages of the algorithm including the assumptions and 

definitions before these concepts are implemented. The least-square line fitting 

method is discussed in detail in order to construct LFA. The design concept of both 

LFA and CSA are discussed in detail. In addition, the proposed ILSA and ICSA are 

also discussed briefly in this chapter. Finally, simulations are carried out to 

investigate the properties of LFA and CSA. The results are discussed in depth.

In Chapter 5, an ILSA is proposed. This algorithm takes into account the 

random node deployment in defining the active CB nodes to take part in CB. The 

ILSA algorithm is discussed in details. In addition, series of simulations are 

conducted using different number of nodes and objectives to evaluate the 

performance of this algorithm, along with other companion algorithm in the literature 

that are designed for WSNs. Comparisons are made between the algorithms in order 

to show the benefit of using ILSA in handling the random node with desired 

objectives.

In Chapter 6, an ICSA is proposed to overcome the weaknesses and as an 

option to ILSA. Instead of using linear configuration, this algorithm utilizes a 

circular configuration that can fulfill the requirements of any stated objectives. The 

procedure of algorithm is provided. An analysis on radiation beampattern 

performance is verified by using simulation. The last chapter concludes the thesis. 

Contributions are presented and possible future works are proposed.
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