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ABSTRACT 

 

 

 

 

The world population is expected to rise by an addition of 2 billion by 2030 

and rice consumers are projected to increase by 1.8% annually.  Hence, rice 

production must be increased between 25-45% to match-up the growing population 

since it is a staple food to more than half of the world’s population.  The 

manipulation of targeted gene in endosperm is a reliable tissue for the production of 

recombinant proteins over other tissues because it is more cost-effective, it is easier 

to scale-up agricultural yield, provides a larger storage ability and safe long-term 

storage.  However only a few endosperm-specific promoters have been identified.  

The present research, successfully constructed the recombinant plasmid, pCAMGpro 

from the expression vector, pCAMBIA1305.2 containing the strong endosperm-

specific α-globulin promoter (AsGpro).  The AsGpro was successfully amplified 

from pmCACA:GFP using the forward primer, AsGproF_HindIII (5ʹ 

CACAAACGTGCAAAAGCTTAATTCG 3ʹ) and the reverse primer, 

AsGproR_BamHI (5' GACGGATCCGAGATTGTAGAAGG 3') at 55
°
C. The size 

of the promoter fragment was approximately 848 bp.  Sequencing and subsequent 

bioinformatics analysis, confirmed 98% homology of nucleotides to A.  sativa (Glo1) 

gene, promoter region (Accession number: AY795082.1).  This fragment was then 

cloned into pMR104a to generate the recombinant plasmid pMRGpro. Subsequent 

cloning of the recombinant cassette into the expression vector, pCAMBIA1305.2 to 

create the new recombinant plasmid, pCAMGpro was achieved.  These finding can 

be used to genetically modify rice to express high levels of endosperm specific 

nutritional proteins of interest that would increase food production and help in 

alleviating the food crisis facing the world.   
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ABSTRAK 

 

 

 

 

Endosperm merupakan 60% pembekal terbesar kepada organ penyimpanan 

untuk protein dan kanji.  Populasi dunia dijangka akan meningkat kepada 2 bilion 

pada kadar 1.8% setahun sehingga 2030.  Oleh itu, penghasilan padi perlu 

ditingkatkan antara 25 sehingga 45% untuk memenuhi keperluan dunia.  Endosperm 

merupakan platfom terbaik dalam penghasilan protein rekombinan kerana 

menjimatkan kos, meningkatkan hasil pertanian, mempunyai kadar penyimpanan 

berskala besar dan selamat daripada pengaruh biotik dan abiotik, contohnya suhu dan 

patogen.  Namun begitu, hanya sesetengah promoter spesifik endosperma dapat 

dikenalpasti.  Penemuan terbaru dalam kajian ini menunjukkan kejayaan di dalam 

penghasilan plasmid rekombinan, pCAMGpro daripada vektor pengklonan 

pCAMBIA1305.2 yang merangkumi promoter spesifik endosperma α-globulin 

(AsGpro).  AsGpro ini telah berjaya diamplikasi daripada pmCACA:GFP dengan 

menggunakan pencetus kehedapan pendahulu, AsGproF_HindIII (5ʹ 

CACAAACGTGCAAAAGCTTAATTCG 3ʹ) dan primer pembalik, 

AsGproR_BamHI  (5' GACGGATCCGAGATTGTAGAAGG 3') pada suhu 55
°
C.  

Saiz promoter dianggarkan barsaiz 848 bp.  Analisis bioinformatik menunjukkan 

homologi nukleotid A. sativa (Glo1) adalah sebanyak 98%.  Fragmen ini seturusnya 

diklonkan ke dalam pMR104a untuk menghasilkan plasmid rekombinan pMRGpro. 

Kemudiannya, plasmid rekombinan ini diekspreskan ke dalam vektor pengklonan, 

pCAMBIA1305.2 untuk meenghasilkan plasmid baru pCAMGpro.  Penemuan di 

dalam kajian ini juga membuktikan pengubahsuaian genetik beras mengginakan 

promoter spesifik enosperma mampu meningkatkan dan seterusnya membantu 

menyelesaikan masalah krisis makanan pada masa akan datang.   

 



vii 

 

 

TABLE OF CONTENTS 

 

 

 

 

CHAPTER                                   TITLE PAGE 

   

 TITLE i 

 DECLARATION ii 

 DEDICATION iii 

 ACKNOWLEDGMENT  iv 

 ABSTRACT v 

 ABSTRAK vi 

 TABLE OF CONTENTS vii 

 LIST OF TABLES xiv 

 LIST OF FIGURES xv 

 LIST OF ABBREVIATIONS/ SYMBOLS xvii 

 LIST OF APPENDICES xix 

1 INTRODUCTION 1 

1.1 Background of study 1 

1.2 Problem statement 3 

1.3 Objectives of study 3 

1.4 Scope of study 4 

1.5 Significance of study 4 

  
 

 



viii 

 

2 LITERATURE REVIEW 5 

2.1  Current food security status 5 

2.2 Plant molecular farming 6 

2.3 Global perspective on Genetically Modified Products (GMP) 6 

2.4 Seed storage proteins 7 

2.5 Emerging interest in seeds as bioreactors 8 

2.6 Rice 9 

2.6.1 Advances in biotechnology: Biofortification of rice 10 

2.6.1.1 Iron deficiency 13 

2.6.1.2 Iodine deficiency 13 

2.6.1.3 Vitamin A deficiency 13 

2.6.1.4 Increased levels of essential amino 

acids 15 

2.6.2 Pharmaceutical recombinant proteins 17 

2.6.3 Edible vaccines 19 

2.7 Endosperms  20 

2.8 Promoters 21 

2.8.1 Non-tissue-specific constitutive promoters 22 

2.8.2 Endosperm-specific promoters 22 

3 METHODOLOGY 

 

27 

3.1 Experimental design 27 

3.2  Materials 31 

 3.2.1 Bacterial strain 31 

 3.2.2 Preparation of growth media 31 

 3.2.3 The plasmids used for cloning 32 

  3.2.3.1 The pmCACA:GFP plasmid construct 32 

  3.2.3.2 The intermediate vector, pMR104a 33 

  
3.2.3.3 The Expression vector, 

pCAMBIA1305.2 

 

33 

 3.2.4 Preparation of Tris-Acetate-EDTA (TAE) Buffer  33 



ix 

 

  3.2.4.1 Preparation of 50X TAE 34 

  3.2.4.2 Preparation of 1X TAE 34 

 3.2.5 Preparation of 20 μM of primers  34 

 3.2.6 Preparation of antibiotics 35 

3.2.7 Preparation of Ethidium bromide 35 

3.2.8 Preparation of the DNA ladders 36 

 3.2.8.1 Preparation of 1 Kb DNA Ladder 36 

 
3.2.8.2 Preparation of Lambda DNA-HindIII 

Digest Ladder 37 

3.2.9 Preparation of 1 % (w/v) agarose gel 37 

3.2.10 Preparation of 3 M Acetic acid and 3 M Sodium 

acetate (pH 5.2) 38 

3.2.11 Preparation of 0.1 M CaCl2 in 15% (v/v) glycerol 

and 1 M MgCl2 38 

3.2.12 Preparation of E.  coli DH5α competent cells 39 

3.2.13 Preparation of reagents used to perform blue-white 

screening 

 

39 

3.3 Methods and cloning procedures 40 

 3.3.1 Preparation of pmCACA:GFP plasmid as a source 

of α-globulin promoter 40 

 
 

3.3.1.1 Transformation of pmCACA:GFP 

construct 40 

 
 

3.3.1.2 Growth of recombinant E.  coli DH5α 

containing pmCACA:GFP 41 

  3.3.1.3 Extraction of pmCACA:GFP plasmid  41 

 
 

3.3.1.4 Determination of pmCACA:GFP 

plasmid concentration  42 

 3.3.2 Amplification of the Avena sativa globulin 

promoter (AsGpro) fragment 42 

 3.3.2.1 Primer design 43 

 3.3.2.2 Amplification of AsGpro 44 

 3.3.2.3 Gel electrophoresis of the PCR product 

(AsGpro fragment) 45 



x 

 

 3.3.2.4 Purification of PCR product (AsGpro) 46 

 3.3.2.5 Double digestion of AsGpro fragment 47 

 3.3.2.6 Purification of AsGpro fragment 47 

 3.3.2.7 Determination of concentration of 

AsGpro fragment 48 

3.3.3 The preparation of the intermediate vector, 

pMR104a 

 

48 

 3.3.3.1 Extraction of pMR104a 48 

 3.3.3.2 Determination of concentration of 

pMR104a plasmid 49 

 3.3.3.3 Double digestion of pMR104a with 

HindIII and BamHI 49 

 3.3.3.4 Gel purification of the 

pMR104a/HindIII/BamHI 49 

 3.3.3.5 Ligation of pMR104a/HindIII/BamHI 

with AsGpro/HindIII/BamHI  50 

 3.3.3.6 Transformation of the new recombinant 

plasmid, pMRGpro 

 

51 

 3.3.3.7 Screening of recombinant plasmid 

(pMRGpro) by colony PCR 

 

51 

 3.3.3.8 Confirmation of pMRGpro by multiple 

restriction digestion 

 

52 

 3.3.3.9 Confirmation of pMRGpro by PCR 53 

3.3.4 Preparation of the expression vector 54 

 3.3.4.1 Extraction of pCAMBIA1305.2 54 

 3.3.4.2 Determination of concentration 54 

 3.3.4.3 Double digestion of pMRGpro with 

HindIII and EcoRI 54 

 3.3.4.4 Gel purification of 

AsGpro:NOS/HindIII/EcoRI cassette 

 

55 

 3.3.4.5 Determination of the concentration of 

AsGpro:NOS/HindIII/EcoRI cassette 

55 

 

 3.3.4.6 Double digestion of pCAMBIA1305.2 56 



xi 

 

with HindIII and EcoRI 

 3.3.4.7 Gel purification of 

pCAMBIA1305.2/HindIII/EcoRI 

fragment 56 

 3.3.4.8 Determination of the concentration of 

pCAMBIA1305.2/HindIII/EcoRI 56 

 3.3.4.9 Ligation of 

pCAMBIA1305.2/HindIII/EcoRI and 

AsGpro:NOS/HindIII/EcoRI cassette 

 

57 

 3.3.4.10 Transformation of recombinant plasmid, 

pCAMGpro 58 

 3.3.4.11 Confirmation of pCAMGpro by blue-

white screening 58 

 3.3.4.12 Screening of pCAMGpro by PCR of 

AsGpro 59 

 3.3.4.13 Confirmation of pCAMGpro through 

multiple restriction digestion 59 

 3.3.4.14 Confirmation of pCAMGpro through 

amplification of the GUSPlus gene 60 

3.4 In-silico characterization of AsGpro 61 

 3.4.1 Sequencing of AsGpro 61 

 3.4.2 Cleaning up the sequencing results and assembly of 

the full length AsGpro  61 

 3.4.3 Bioinformatics analysis 62 

 3.4.4 Construction of Phylogenetic tree 62 

4 RESULTS AND DISCUSSION 63 

4.1  Ligation of the Avena sativa α-globulin promoter (AsGpro) 

into the intermediate vector, pMR104a. 63 

4.2 Replication of pmCACA:GFP construct 64 

4.3 Amplification of the α-globulin promoter (AsGpro) 

fragment 65 

4.4 Digestion of AsGpro fragment 66 



xii 

 

4.5 Digestion of pMR104a with restriction enzymes.   67 

4.6 Transformation of the new recombinant plasmid, 

pMRGpro  69 

4.7 Screening of the recombinant colonies for positive 

transformants 70 

4.7.1 Colony PCR 70 

4.7.2 Screening of the recombinant plasmid, pMRGpro 

by PCR 

 

72 

4.7.3 Confirming of pMRGpro through digestion with 

restriction enzymes 

 

73 

4.8 Recombinant plasmid pMRGpro 75 

4.9 Ligation of the AsGpro:NOS cassette into the expression 

vector pCAMBIA1305.2  

 

76 

4.10 Digestion of pCAMBIA1305.2 with HindIII and EcoRI 78 

4.11 Digestion of pMRGpro with HindIII and EcoRI 79 

4.12 Transformation of recombinant plasmid, pCAMGpro. 80 

4.13 Screening of the transformants for the new recombinant 

plasmid pCAMGpro 81 

4.13.1 Blue-white screening 82 

4.13.2 Amplification of α-globulin promoter from 

pCAMGpro  

 

82 

4.13.3 Confirmation of pCAMGpro with HindIII and 

EcoRI 

 

84 

4.13.4 Confirmation of pCAMGpro by multiple 

restriction digestions 

 

85 

4.14 Amplification of β-glucuronidase gene (GUSPlus) from 

pCAMGpro 88 

4.15 Recombinant plasmid, pCAMGpro 89 

4.16 Bioinformatics analysis 90 

4.17 Sequencing of AsGpro 91 

4.18 Constructing the full-length AsGpro  91 

4.19 Phylogenetic study of the AsGpro 93 

4.19.1 Homology search using BLAST  93 



xiii 

 

4.19.2 Constructing the Phylogenetic tree 94 

 

5 RESULTS AND DISCUSSION 98 

5.1 Conclusion 98 

5.2 Future works 100 

 
 

REFERENCES 101 

 

 APPENDICES A - J 109 



xiv 

 

LIST OF TABLES 

 

 

 

 

TABLE NO. TITLE PAGE 

   

2.1 Current biotechnological advances to improve the 

nutritional value of rice 11 

2.2 Summary of some of the pharmaceutical proteins 

produced in different cereals 18 

3.1 Comparing the quality of forward and reverse primers 

used 
43 

3.2 The PCR reaction components used to amplify AsGpro 44 

3.3 The PCR cycling conditions used to amplify AsGpro 

fragment 
45 

3.4 Double digestion of AsGpro fragment 47 

3.5 Ligation reaction mixture for formation of the 

recombinant plasmid pMRGpro 
51 

3.6 Double digestion of pMRGpro with HindIII and EcoRI 52 

3.7 Digestion of the recombinant plasmid, pMRGpro with 

HindIII 
53 

3.8 Ligation of pCAMBIA1305.2/HindIII/EcoRI and 

AsGpro/HindIII/EcoRI 
58 

3.9 The PCR cycling conditions for GUSPlus gene. 

 
60 

4.1 Top six BLAST results closest to AsGpro obtained from 

NCBI 
94 

   

   

   

   

   

   



xv 

 

 

LIST OF FIGURES 

 

 

 

 

FIGURE NO. TITLE PAGE 

   

2.1 The vision of the nutritionally enhanced‘wonder rice’ 

grains genetically modified to contain high levels of 

several vital micronutrients, amino acids, metabolites and 

without alteration of their agronomic performance and 

eating quality 14 

2.2 Histochemical localization of GUS activity driven by the 

LPAAT-promoter and its deletions in matured seeds of 

transgenic rice. En endosperm, Em embryo 24 

3.1 (A) Flow chart of experimental design for the amplification 

and restriction digestion of Avena sativa globulin 

promoter. 28 

3.1 (B) Flow chart of experimental design used to obtain the 

recombinant plasmid, pMRGpro 29 

3.1 (C) Flow chart of experimental design used to obtain the 

recombinant plasmid, pCAMGpro.   30 

4.1 The ligation of pMR104a/HindIII/BamHI and 

AsGpro/HindIII/BamHI to give the new recombinant 

plasmid, pMRGpro.   64 

4.2 Transformation of E.  coli DH5α competent cells with 

pmCACA:GFP 65 

4.3 Gel electrophoresis (1% w/v) shows the amplification of 

α-globulin fragment from pmCACA:GFP plasmid 66 

4.4 Gel electrophoresis (1% w/v) shows restriction enzyme 

digestion of AsGpro with HindIII and BamHI 67 

4.5 Gel electrophoresis (1% w/v) of pMR104a digested with 

HindIII and BamHI 68 

4.6 Illustration of possible E.  coli DH5α transformants with 

the recombinant plasmid, pMRGpro 69 

4.7 Gel electrophoresis (1% w/v) shows screening of possible 

pMRGpro by colony PCR 71 

4.8 Gel electrophoresis (1% w/v) shows screening of the 

recombinant clone, pMRGpro through PCR 72 



xvi 

 

4.9 Gel electrophoresis (1% w/v) shows the comparative 

restriction analysis of the intermediate vector (pMR104a) 

and the recombinant plasmid (pMRGpro).   74 

4.10 Illustration of the new recombinant plasmid (pMRGpro) 

obtained from ligation of pMR104a/HindIII/BamHI and 

AsGpro/HindIII/BamHI 76 

4.11 Diagrammatic representation of the ligation of 

AsGpro:NOS cassette into the expression vector 

pCAMBIA1305.2 to obtain the new recombinant 

plasmid, pCAMGpro (12,981 bp). 77 

4.12 Gel electrophoresis (1% agarose w/v) showing the 

digestion of pCAMBIA1305.2 with HindIII and EcoRI 78 

4.13 Gel electrophoresis (1% w/v) of the pMRGpro digested 

with HindIII and EcoRI 79 

4.14 Transformation of E.  coli DH5α competent cells with 

recombinant plasmid, pCAMGpro 81 

4.15 Gel electrophoresis (1% w/v) shows  amplification of 

AsGpro fragment from recombinant plasmid 

(pCAMGpro) extracted from colony 2, 3, 5, 6, 9 and 10 83 

4.16 Gel electrophoresis (1% w/v) shows the digestion of 

pCAMGpro  with HindIII and EcoRI 85 

4.17 Gel electrophoresis (1% w/v) of the comparative 

restriction analysis of pCAMBIA1305.2 and the 

recombinant plasmid (pCAMGpro) with HindIII, BamHI 

and EcoRI. 86 

4.18 Gel electrophoresis (1% w/v) shows screening of 

pCAMGpro by amplification of the β-glucuronidase gene 89 

4.19 Schematic illustration of the pCAMGpro recombinant 

plasmid containing the α-globulin promoter (AsGpro) 90 

4.20 The full-length AsGpro sequence obtained after analysis 

and construction by the Bioedit software and the 

chromatograms 92 

4.21 Evolutionary relationship of AsGpro fragment and six 

other taxa 95 

4.22 The Distance pairwise alignment of AsGpro and the six 

relatives 96 



xvii 

 

LIST OF SYMBOLS/ABBREVIATIONS 

 

 

 

 

AsGpro - Avena sativa globulin promoter fragment 

NOS - Nopaline synthase terminator 

AsGpro:NOS 
- 

Avena sativa globulin promoter+Nopaline 

synthase terminator cassette 

pMRGpro 
- 

Recombinant plasmid from  pMR104a 

containing AsGpro 

pMRGpro 
- 

Recombinant plasmid from  pCAMBIA1305.2 

containing AsGpro:NOS cassette 

E. coli DH5α - Escherichia coli strain DH5α 

A. tumefaciens - Agrobacterium tumefaciens  

A. sativa  Avena sativa 

˚C - Degree Celcius 

hrs - Hours 

min - Minutes 

sec - Seconds 

dNTPs - Deoxyribo Nucleotide TriPhosphates 

PCR - Polymerase Chain Reaction 

DNA - Deoxyribonucleic Acid 

g - Gram 

mg - Milligram 

μg - Microgram 

ng - Nanogram 

gmol
-1

  Grams per mole 

gcm
-1

  Grams per cubic centimeter 

bp - Base pair 

Kb  Kilo base 

β - Beta 

α - Alfa 

L - Liter 



xviii 

 

ml - Mililiter 

μl - Microliter 

μm - Micrometer 

M - Molar 

mM - Milimolar 

μM - Micromolar 

OD - Optical density 

dH20 - Deionized water 

CaMV35S pro - Cauli Flower Misaic Virus 35S promoter 

MgCl2 - Magnesium chloride 

CaCl2 - Calcium chloride 

LB - Luria Bertani medium 

% - Percent 

IPTG - Isopropyl Thiogalactosidase 

X-Gal - 5-Bromo-4-Chloro-3-Indolyl-Beta-D-

Galactopyranoside 

EDTA - Ethylene Diamine Tetra-Acetic acid 

NaCl - Sodium chloride 

w/v - Weight per volume 

MCS - Multiple Cloning Site 

AMP - Ampicillin 

~ - Approximately 

5ʹ - 5 prime-end 

3ʹ - 3 prime-end 

g - Gravity 

rpm - Rotations per minute 

V - Volts 

TAE buffer - Tris-acetate -EDTA buffer 

TE buffer  Tris-EDTA buffer 

A - Adenine 

C - Cytosine 

G - Guanine 

T - Thymine 

BLAST - Basic Local Alignment Search Tool 

MEGA - Molecular Evolutionary 

ES - Endosperm 

ESP - Endosperm Specificity Palindrome 

EtBr - Ethidium bromide 



xix 

 

NCBI - National Centre for Biotechnology Information 

M. W. - Molecular weight 

GOI - Gene of Interest 

GMP - Genetically Modified Products 



xx 

 

LIST OF APPENDICES 

 

 

 

 

 

APPENDIX TITLE PAGE 

A The pmCACA:GFP full sequence  109 

B The map of pmCACA:GFP plasmid 111 

C The map of the intermediate vector, pMR104a 112 

D The map of the expression vector, pCAMBIA1305.2 113 

E The Avena sativa full sequence from NCBI (Accession 

number: AY795082.1) 
114 

F Chromatogram results for the forward sequence 115 

G Chromatogram results for the reverse sequence 116 

H Alignment of forward and reverse sequencing results of 

AsGpro obtained from First Base Sdn.  Bhd.  using the 

Bioedit software 
117 

I Figure showing the BLASTresults for AsGpro from 

NCBI database 118 

J Constructing the Phylogenetic tree by using MEGA5 119 

   

   



1 

 

CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1 Background of study 

 

 

 The seeds of cereals such as rice, wheat, barley and maize are the main source of 

food, animal feeds and the raw materials of food and fiber-based industries worldwide.  

The most important part of the seed acting as a food reservoir for both mankind and 

during plant growth and development is the endosperm (Berger, 2003).   

 

 

 According to reports from the Food and Agricultural Organization (2011), the 

world population is expected to rise by an additional 2 billion by 2030.  The statistical 

reports also show that by October 2008, thirty-six countries from Africa, Asia and Latin 

America were in food crisis.  The current world food production cannot support our 

escalating population.   
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 Rice is a staple food to more than half of the world’s population and therefore 

stands out as the best candidate for biofortification and biotechnological improvements.  

This will play a pivotal role in alleviating the world’s nutritional deficiency challenges.  

The demand for rice by rice consumers is projected to increase by 1.8% annually.   

 

 

 The control of powerful endosperm-specific promoters may provide answers to 

how seed-specific proteins can be increased.  A sound understanding of the seed 

initiation and the control of early endosperm development will be important for 

increasing cereal crop yield and improving grain quality (Li, 2011).  Tissue-specific 

promoters have the potential to increase recombinant protein stability and deliver 

targeted gene expression to only specific parts of the plant (Facy, 2009).  Different 

research outcomes have illuminated the importance and role of several endosperm-

specific promoter regions to engineer transgenic crops with improved endosperm-

specific biosynthesis (Furtado et al., 2009, Hwang et al., 2002, Kawakatsu and Takaiwa, 

2010, Furtado et al., 2008, Sunilkumar et al., 2002, Vickers et al., 2006).   

 

 

 Construction of the α-globulin promoter (AsGpro) into the expression vector 

pCAMBIA1305.2 will allow other researchers to further use this plasmid construct to 

understand the promoter activity more deeply.  In their research, Vickers et al. (2006) 

showed that α-globulin promoter maintained its endosperm-specific activity in both 

wheat and barley and its endosperm-specific activity is attributed to the Endosperm 

Specificity Palindrome (ESP) element (ACATGTCATCATGT) at position -91 while 

the expression strength was attributed to the GCN4 element.  Mutation of GCN4 

decreased expression to ~60% while ESP mutation led to loss of endosperm-specific 

expression.  Mutation of both ESP and GCN4 led to total loss of expression.  The 

activity of the α-globulin promoter has not been tested in rice.  This new recombinant 

vector, pCAMGpro bearing the α-globulin promoter and a gene of interest, can be 

transformed into rice and the expression quantified in relation to other endosperm-
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specific promoters and the constitutive promoters.  If α-globulin endosperm-specific 

promoter shows significantly higher endosperm-specific expression activity, it can be 

employed in industrial biosynthesis of food and pharmaceutical proteins.  This will 

alleviate the food crisis facing the globe.   

 

 

 

 

1.2 Problem statement 

 

 

 Rice is a staple food to more than half of the world’s population and over 600 

million human beings suffer from hunger on a daily basis.  The world’s rice production 

cannot support both the world’s growing population which is expected to rise by an 

additional 2 billion by 2030 and the rice demand by rice consumers which is projected to 

increase by 1.8% annually.   

 

 

 

 

1.3 Objectives of study 

 

 

i. To amplify the endosperm-specific α-globulin promoter (AsGpro) from 

pmCACA:GFP plasmid.   

ii. To clone the PCR product (AsGpro fragment) into pMR104a and clone the 

AsGpro:NOS cassette into the expression vector, pCAMBIA1305.2.  

iii. To analyze the α-globulin promoter sequencing results through bioinformatics 

and construction of Phylogenetic tree.  
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1.4 Scope of study 

 

 

 The scope of this research encompassed amplification and subsequent cloning of 

the endosperm-specific α-globulin promoter fragment (~823 bp) into the intermediate 

vector, pMR104a.  The AsGpro:NOS cassette (~1,111 bp) will be ligated into the 

pCAMBIA1305.2 expression vector to produce the recombinant plasmid, pCAMGpro 

(~12,981 bp) followed by Bioinformatics analysis of the AsGpro fragment.   

 

 

 

 

1.5 Significance of study 

 

 

 The endosperm represents approximately 60% of the world’s food supply (Xu et 

al., 2010) yet only a few strong endosperm-specific promoters have been identified.  

This research is significant in availing a strong endosperm-specific promoter (Avena 

sativa α-globulin promoter) that will increase the production of endosperm-specific 

proteins in transgenic rice that would consequently contribute to improving the 

nutritional value and quantity of rice which must be increased between 25 - 45% to 

match-up the growing population of rice consumers (1.8% annually).  This will also 

alleviate the food crisis facing the entire world.   
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