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Abstract This study investigates the use of a double seasonal ARIMA model for fore-
casting load demand. For the purpose of this study, a one-year half hourly Malaysia
load demand from 1 September 2005 to 31 August 2006 measured in Megawatt (MW)
is used. The mean absolute percentage error (MAPE) is used as the measure of
forecasting accuracy. We use Statistical Analysis System, SAS package to analyze
the data. Using the least squares method to estimate the coefficients in a double
SARIMA model, followed by model validation and model selection criteria, we pro-
pose ARIMA(0, 1, 1)(0, 1, 1)48(0, 1, 1)336 with in-sample MAPE of 0.9906% as the best
model for this study. Comparing the forecasting performances by using k-step ahead
forecasts and one-step ahead forecasts, we found that the MAPE for the one-step
ahead out-sample forecasts from any horizon ranging from one week lead time to one
month lead time are all less than 1%. We thus propose that a double seasonal ARIMA
model with one-step ahead forecast as the most appropriate model for forecasting the
two-seasonal cycles Malaysia load demand time series.

Keywords Load forecasting; double seasonal ARIMA model; k-step ahead forecast;
one-step ahead forecasts.

1 Introduction

Load demand forecasting is important for electric power planning and must be assessed
with the greatest precision of any model. The utility power company needs forecasts for
different time horizons in order to ensure an uninterrupted energy supply for customers
(Tsekouras et al. [1]). Load forecasting can be broadly classified into four main categories
which are long, intermediate, short and very short term forecasts but the time scale involved
will vary according to the different types of decisions and planning (operational, tactical
and strategic) the forecasts are associated with.

Several forecasting methods with varying degrees of success have been implemented
for load forecasting including multiple linear regression (Al-Hamadi & Soliman [2]) and
nonlinear multiple regression models (Al-Rashidi & El-Naggar [3]). Artificial neural network
with variety of approaches such as multilayer feedforward and recurrent neural network
(Norizan et al. [4], back propagation neural network (Al-Saba & El-Amin [5]), particle
swarm optimization (El-Telbany & El-Karmi [6]), dynamic artificial neural network (Ghiassi
et al. [7]), Elman artificial neural network (Beccali et al. [8]) and Jordan recurrent neural
network (Kermanshahi & Iwamiya [9]) have been applied. Box-Jenkins models such as
SARIMA (Zuhaimy & Khairil [10]) and hybrid models (Norizan et. al [11]) have also been
developed.

The current study investigates methods that are appropriate for forecasting Malaysia
load demand. Due to the presence of a double seasonal pattern in the time series data,
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which are daily and weekly seasonality, a double seasonal multiplicative ARIMA model
is proposed. The multiplicative double seasonal ARIMA model has often been used for
univariate forecasting intraday load time series (Cancelo et. al [12], Darbellay & Slama [13],
Taylor et al. [14]). Cancelo at al. [12] and Darbelly & Slama [13] studied the double seasonal
ARIMA with polynomial of order one, Taylor et al. [14] and Taylor [15] utilized the double
seasonal ARIMA with polynomials of order two and order three. Taylor [15] has also utilized
the double seasonal ARIMA with polynomial of order three and increased the order to five.
However for the reason of parsimony he deferred the consideration of higher order models.

Basically when we consider the order of polynomial, say k, we are including all lags
from lag one to lag k. However by looking at the sample autocorrelations and the partial
autocorrelations, there may exist insignificance lags in between lags. At the same time,
ACF and PACF might indicate the existence of significance lags after lag k where those
lags were not considered in the model earlier. Therefore in this current research we focus
on the subset double seasonal ARIMA model in order to include all the significance lags in
our tentative model.

This paper will be organized as follows: Section two describes the Box-Jenkins seasonal
ARIMA model and the forecast evaluation measures. Section three presents the results
when the model is applied to Malaysia load time series data and the results are discussed
in section four. In section five we produce forecasts based on the chosen model and we
conclude in section six the findings of our study.

2 Methodology

A variety of different forecasting approaches are available to forecast time series data and it
is important to realize that no single model is universally applicable. An approach presented
here is the Box-Jenkins autoregressive integrated moving average (ARIMA) model.
Box-Jenkins ARIMA Model: For more than half a century, the Box-Jenkins ARIMA
linear models have dominated many areas of time series forecasting. One of the attractive
features of the Box-Jenkins approach for forecasting is that ARIMA processes are a very
rich class of possible models and it is usually possible to find a process which provides an
adequate description to the data. Generally, a nonseasonal time series can be modeled as
a combination of past values and past error, denoted as ARIMA(p, d, q) can be written as
follows (Wei [16]):

φp(B)(1 − B)dŻt = θq(B)at (1)

with

φp(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p,

θq(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q ,

where Żt is appropriately transformed load demand in period t; (1 − B)d is the nonsea-
sonal differencing operator; B is the backward shift operator; and at is the purely random
process. As an example let d = 0, p = 0 and q = 1 hence the model can be expressed as
ARIMA(0, 0, 1). Consider θ1 = 0.27 the model can be written as follows:

Zt = (1 − 0.27B) at (2)

= at − 0.27at−1
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The theoretical ACF and PCF of Equation 2 are presented in Figure 1.

Figure 1: The theoretical ACF and PCF of Equation 2.

In practice, many time series data contain a seasonal periodic component, which repeats
every s observation. To deal with seasonality, the ARIMA model is extended to a general
multiplicative seasonal ARIMA (SARIMA) model which is defined as follows (Box et al.
[17]):

φp(B)ΦP (Bs)(1 − B)d(1 − Bs)DŻt = θq(B)ΘQ(Bs)at (3)

with

φp(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p,

ΦP (Bs) = 1 − Φ1B
s − Φ2B

2s − · · · − ΦP BPs,

θq(B) = 1 − θ1B − θ2B
2 − · · · − θqB

q ,

ΘQ(Bs) = 1 − Θ1B
s − Θ2B

2s − · · · − ΘQBQs,

where Żt is appropriately transformed load demand in period t; (1 − B)d and (1 − Bs)D

are the nonseasonal and seasonal differencing operators respectively; B is the backward
shift operator; and at is the purely random process. If the integer D is not zero, then
seasonal differencing is involved. The above model is called a SARIMA model of order
(p, d, q) × (P, D, Q)s. If d is non-zero, then there is a simple differencing to remove trend,
while seasonal differencing, (1 − Bs)D may be used to remove seasonality. As an example
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let d = 0, D = 0, p = 0, q = 1, P = 0 , Q = 1 and s = 48 hence the model can be expressed
as ARIMA(0, 0, 1)(0, 0, 1)48. Consider θ1 = 0.27 and Θ1 = 0.77 , the model can be written
as follows:

Zt = (1 − 0.27B)(1− 0.77B48)at (4)

= at − 0.27at−1 − 0.77at−48 + 0.2079at−49

The theoretical ACF and PCF of Equation 4 are presented in Figure 2.

Figure 2: The theoretical ACF and PCF of Equation 4.

For the current study, due to the presence of a double seasonal pattern in short-term
Malaysia load demand data, which are daily seasonal and weekly seasonal, we developed a
double seasonal multiplicative ARIMA model. The general multiplicative double seasonal
ARIMA model is as follows (Box et al. [17]):

φp(B)ΦP1
(Bs1)ΠP2

(Bs2 )(1 − B)d(1 − Bs1 )D1(1 − Bs2)D2 Żt

= θq(B)ΘQ1
(Bs1)ΨQ2

(Bs2 )at (5)

where Żt is appropriately transformed load demand in period t; B is the backward shift
operator; φp(B) and θq(B) are regular autoregressive and moving average polynomials of
orders p and q; ΦP1

(Bs1 ), ΠP2
(Bs2 ), ΘQ1

(Bs1) and ΨQ2
(Bs2 ) are autoregressive and moving

average polynomials of orders P1, P2, Q1 and Q2; s1 and s2 are the seasonal periods;
d, D1 and D2 are the orders of integration; at is a white noise process with zero mean
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and constant variance. The seasonal cycles, daily seasonality and weekly seasonality are
associated to the type of load data series. The daily and weekly seasonality are denoted
as s1 and s2 respectively. For hourly load, s1 = 24 and s2 = 168 [14], for half-hourly
load, s1 = 48 and s2 = 336 [13, 14], while for minute by minute load series s1 = 1440 and
s2 = 10080 [15]. The multiplicative double seasonal ARIMA model can be expressed as
ARIMA(p, d, q) × (P1, D1, Q1)

s1(P2, D2, Q2)
s2 . As an example let d = 0, D1 = 0, D2 = 0,

p = 0, q = 1, P1 = 0, P2 = 0, Q1 = 1, Q2 = 1, s1 = 48 and s2 = 336, hence the model can
be expressed as ARIMA(0, 0, 1)× (0, 0, 1)48(0, 0, 1)336. Consider θ1 = 0.27, Θ1 = 0.77 and
Ψ1 = 0.85 the model can be written as follows:

Zt = (1 − 0.27B)(1 − 0.77B48)(1 − 0.85B336)at

= at − 0.27at−1 − 0.77at−48 + 0.2079at−49 − 0.85at−336 + 0.2295at−337

+ 0.6545at−384 − 0.1725at−385 (6)

The theoretical ACF and PCF of Equation (6) are presented in Figure 3.

Figure 3: The theoretical ACF and PCF of Equation 6.

Box-Jenkins ARIMA Modeling Procedure: The modeling procedure of Box-Jenkins
ARIMA Model involves an iterative five-stage process as follows:

i) Preparation of data including transformations and differencing

ii) Identification of the potential models by looking at the sample autocorrelations and
the partial autocorrelations
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iii) Estimation of the unknown parameters by some optimization methods

iv) Checking the adequacy of fitted model by performing normal probability plot, ACF
and PACF on model residuals

v) Forecast future outcomes based on the known data.

Measuring Forecast Accuracy: For the purpose of evaluating out-of-sample forecasting
capability, different evaluation statistics such as root mean square error (RMSE), mean
absolute error (MAE), mean square error (MSE), mean percentage error (MPE), mean
absolute percentage error (MAPE) are often considered (Norizan et al. [18]). In the current
study, MAPE is used. MAPE is the most widely used error measure in the forecasting
literature. MAPE is an overall measure of forecast accuracy, computed from the absolute
differences between a series of forecast and actual data points observed. This measure is
commonly used in the forecasting literatures. The formula is as follows:

MAPE =
1

n

n∑

i

|
Zi − Ẑi

Zi

| × 100 (7)

where Zi is the actual values, Ẑi is the predicted values and n is the number of the predicted
values.

3 Data Set and Results

The data used in this study were obtained from the Malaysian electricity utility company,
Tenaga Nasional Berhad (TNB), Malaysia. TNB is one of the biggest and most well-
managed power companies in Asia, where this utility company has powered for decades
through the generation, transmission and distribution of electricity. A one-year half hourly
Malaysia load demand time series data (measured in Megawatt (MW)) from 1 September
2005 to 31 August 2006 were used in this study. The data were divided into two sets: ini-
tialization set and test set. The initialization set consists of load demand from 1 September
2005 to 31 July 2006 while the load demand from 1 August 2006 to 31 August 2006 made
up the test set. Figure 4 plots the initialization set data. It is clear from Figure 4 that
Malaysia load demand data is non-stationary.

Plotting the ACF and PACF of Malaysia load data in Figure 5 shows clearly the presence
of seasonal pattern which is daily seasonality with length 48. Therefore pre-processing data
is applied by using regular differencing (d = 1) and seasonal differencing (D1 = 1, s1 = 48)
to convert non-stationary load series to stationary load series. Plotting the ACF and PACF
after non-seasonal differencing (d = 1) and daily seasonal differencing (D1 = 1, s1 = 48)
in Figure 6 indicates the presence of another seasonal pattern which is weekly seasonality
with length 336. Plotting the load demand series after three time differencing which are
non-seasonal differencing (d = 1), daily seasonal differencing (D1 = 1, s1 = 48) and weekly
seasonal differencing (D2 = 1, s2 = 336) in Figure 7 indicates that load series is stationary
series. In order words, this identification step shows that the load data have two seasonal
periods, which are daily and weekly seasonality with length 48 and 336 respectively. We
then present the the ACF and the PACF of stationary load demand series after three time
differencing in Figure 8.
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Figure 4: A half hourly load from September 1, 2005 to July 31, 2006.

Figure 5: The ACF and PACF of Zt.

For the purpose of this study we have to develop a program to analyze double SARIMA
models since these models are not available in any statistical packages. In this study, we
developed a program in Statistical Analysis System, SAS. The parameter coefficients of the
model were estimated using least squares method. Three models were identified. They are
as follows:

Model 1

ARIMA([1, 2, 3, 5, 7, 11, 16, 17, 18, 19, 20, 23, 28, 29, 34, 38, 46, 47], 1, 1)(0, 1, 1)48

(0, 1, 1)336 All the parameters of this model are significant at alpha 0.05 significance level
with white noise residuals based on Ljung-Box statistic Q∗ until lags 48. This model
gives 10 extreme residual values. In terms of magnitude of the residuals, these are at
11633th, 11632th, 6305th, 7265th, 3041th, 2415th, 10721th, 12659th, 11680th and 11681th
observations. The model’s residuals however do not satisfy the Normal Distribution because
of the presence of outliers in the data. The AIC and the SBC of this model are 194170.1
and 194330.9 respectively.
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Figure 6: The ACF and PACF of Zt after d = 1, D1 = 1 and s1 = 48.

Figure 7: Load demand series after after d = 1, D1 = 1, s1 = 48, D2 = 1 and s2 = 336.

Model 2

ARIMA(0, 1, [1, 2, 3, 5, 11, 16, 17, 18, 19, 20, 21, 22, 24, 28, 29, 31, 33, 34, 36, 41, 47])
(0, 1, 1)48(0, 1, 1)336

In this model we also found that, all the parameters are significant at alpha 0.05 significance
level with white noise residuals based on Ljung-Box statistic Q∗ until lags 48. This model
gives also 10 extreme residual values. In terms of magnitude of the residuals, these are at
11633th, 11632th, 6305th, 7265th, 3041th, 7456th, 11651th, 2415th, 11681th and 12659th
observations. Similar to the first model, the model’s residuals do not satisfy the Normal
Distribution. The AIC and the SBC of this model are 194259.2 and 194435.3 respectively.

Model 3

ARIMA(0, 1, 1)(0, 1, 1)48(0, 1, 1)336

For this model, all the parameters are significant at alpha 0.05 significance level, however
based on Ljung-Box statistic Q∗ the residuals are not white noise. This model gives also
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Figure 8: The ACF and PACF of Zt after d = 1, D1 = 1, s1 = 48, D2 = 1 and s2 = 336.

10 extreme residual values. In terms of magnitude of the residuals, these are at 11633th,
11632th, 6305th, 7265th, 2945th, 2963th, 2415th, 11652th, 11654th and 11651th observa-
tions. Similar to the first and second models, the model’s residuals do not satisfy the Normal
Distribution. The AIC and the SBC of the this model are 195054 and 195077 respectively.

Using the three models, forecasts were made for the following horizons: in-sample, out-
sample one week, two weeks, three weeks and four weeks. The in-sample MAPE and the
out-sample MAPEs of the four time horizons are summarized in Table 1. The graphical
presentation of the in-sample MAPE and the out-sample MAPEs of the four time horizons
are presented in Figure9.

Table 1: The MAPE of in-sample and out-sample forecasts of three models.

Model 1 Model 2 Model 3
In-sample forecast 0.9680 0.9711 0.9906

Out-sample one-week forecast 10.1892 9.5818 8.8841
Out-sample two-week forecasts 15.8199 14.9531 13.9414
Out-sample three-week forecasts 21.6847 20.5402 19.1838

Out-sample one-month forecast 29.4448 27.8249 25.8641

4 Discussion of Results

One of the conclusions of the M3 Competition conducted by Makridakis and Hibon [19] was
that the accuracies of various methods depend upon the length of the forecasting horizons
involved. Meade [20] discovered that forecasting accuracy was less accurate for longer
horizons. The results from the current study as tabulated in Table 1 supported Makridakis
and Hibon [19] and Meade’s [20] findings.

Model 3 is the simplest among the three models. It however outperformed model 1
and 2. The first conclusion of the M3 Competition was that statistically sophisticated or
complex methods do not necessarily provide more accurate forecast than simpler ones. The
results from this current study again supported that conclusion of the M3 Competition.
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Figure 9: The MAPE of in-sample and out-sample forecasts of three models.

Model 3 is thus chosen as the best model for the current study. The SAS output of model
3 is presented in Table 2

5 Forecasting Using Model 3

The third model can be expressed as follows:

(1 − B)(1 − B48)(1 − B336)Zt = (1 − 0.27184B)(1− 0.76592B48)(1 − 0.85019B336)at

Zt = Zt−1 + Zt−48 − Zt−49 + Zt−336 − Zt−337 − Zt−384 + Zt−385 + at − 0.27184at−1

− 0.76592at−48 + 0.20821at−49 − 0.85019at−336 + 0.23112at−337 + 0.65118at−384

− 0.17702at−385

Zt = f( Zt−1, Zt−48, Zt−49, Zt−336, Zt−337, Zt−384, Zt−385, at, at−1, at−48, at−49,

at−336, at−337, at−384, at−385)

Most statistical packages such as MINITAB, MATLAB, S-plus, SPSS and SAS pro-
vide out-sample forecasts based on k-step ahead. To calculate one-step ahead out-sample
forecasts we used Microsoft Office Excel. The MAPEs of one-step and k-step ahead out-
sample forecasts using model 3, ARIMA(0, 1, 1)(0, 1, 1)48(0, 1, 1)336 are presented in Table
3. From the table, it is clear that the one-step ahead out-sample forecasts are not as greatly
influenced by lead times as the k-step ahead out-sample forecasts.

The out-sample forecasts based on k-step ahead are highly influenced by lead times
as shown in Table 3. This is because the k-step ahead forecasts accumulate the error
terms resulting in low accuracy in forecasting performances. We then illustrate the MAPE
of k-step and one-step ahead out-sample forecasts of the third model in Figure 10; the
out-samples of actual data and k-step ahead out-sample forecasts in Figure 11 and the
out-samples of actual data and one-step ahead out-sample forecasts in Figure 12.

When one-step ahead out-sample forecasts are calculated and compared to k-step ahead
out-sample forecasts, the MAPE are reduced with the reduction percentages of 89.3436%,
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Table 2: An output SAS of model 3.

93.3132%, 95.2845% and 96.2195% at one-week forecast, two-week forecasts, three-week
forecasts and one-month forecast respectively. These reduction percentages are tabulated
in Table 3. Since k-step ahead out-sample forecasts are influenced by forecasting hori-
zons, these reduction percentages are also influenced by forecast lead times. We illustrate
out-samples of actual load data, k-step ahead and one-step ahead out-sample forecasts in
Figure 13. It is evidenced from the figure that one-step ahead out-sample forecasts follow
the actual load data more closely than k-step ahead for out-sample forecasts.

Table 3: The MAPE of k-step and one-step ahead out-sample forecasts of the third model.

k-step ahead One-step ahead Reducing

Out-sample one week forecast 8.8841 0.9467 89.3436%
Out-sample two-week forecasts 13.9414 0.9322 93.3132%

Out-sample three-week forecasts 19.1838 0.9046 95.2845%
Out-sample one-month forecast 25.8641 0.9778 96.2195%
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Figure 10: The MAPE of k-step and one-step ahead out-sample forecasts of the third model.

6 Conclusions

We investigated the double seasonal ARIMA model for forecasting the double seasonal (daily
and weekly) Malaysia load demand time series. Comparing the forecasting performances
by using k-step ahead forecasts and one-step ahead forecasts, we found that the MAPE for
the one-step ahead out-sample forecasts for any horizon ranging from one week lead time
to one month lead time as tabulated in Table 3 are all less than 1%. The MAPE of the
k-step ahead forecasts on the other hand, increases as the time scale increases. It can be
concluded that the one-step ahead forecasts are not greatly influenced by the lead times
and are more accurate than k-step ahead forecasts in forecasting Malaysia load demand.
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