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ABSTRACT

Spectral efficient hybrid Wireless Optical Broadband Access Network
(WOBAN) is a favourable architecture for next generation access network. It is an
optimal combination of an optical backhaul and a wireless front-end for an efficient
access network. This thesis proposes the WOBAN in two architecture designs:
the WOBAN based on transmission of wireless signal as a BaseBand signal Over
Fiber (BBOF), and the spectral efficient hybrid WOBAN based on transmission
of wireless Multi-Input Multi-Output Orthogonal Frequency Division Multiplexing
(MIMO OFDM) signals over Wavelength Division Multiplexing Passive Optical
Network (WDM PON) as a Radio Over Fiber (ROF). Wireless MIMO signals which
have the same carrier frequency cannot propagate over a single optical fiber on the
same wavelength, so a novel Optical Single-SideBand Frequency-Translation (OSSB-
FT) technique is proposed to solve this problem in the second WOBAN architecture.
The OSSB-FT technique is an efficient method since it excludes the crosstalk between
different broadband wireless MIMO signals with the same carrier Radio Frequency
(RF). Besides, it is a cost-effective technique as one optical source is enough to
generate the optical carrier which is reused at the Access Point (AP), and multiple
wavelengths for carrying several wireless MIMO signals over the same fiber. The
physical layer performance is reported in both architecture designs of the WOBAN. In
the first design, the WOBAN provides data rate of 2 Gb/s bidirectional optical backhaul
for each wavelength channel along 20 km optical fiber link. In the wireless front-end,
each Optical Network Unit/Access Point (ONU/AP) propagates data rate of 54 Mb/s
along 50 m wireless link. The spectral efficient hybrid WOBAN achieved a data rate
of 7.80 Gb/s along the optical backhaul of 20 km. The wireless front-end AP could
support data rate up to 240 Mb/s along 100 m outdoor wireless link.
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ABSTRAK

Spektrum cekap hibrid Rangkaian Capaian Jalur Lebar Optik Tanpa Wayar
(WOBAN) adalah seni bina yang baik untuk akses rangkaian generasi akan datang.
Ia adalah gabungan angkut balik optik yang optimum dan bahagian depan tanpa
wayar untuk rangkaian akses yang cekap. Tesis ini mencadangkan WOBAN dalam
dua reka bentuk seni bina: WOBAN berasaskan penghantaran isyarat tanpa wayar
sebagai isyarat jalur asas melalui gentian (BBOF), dan spektrum cekap hibrid
WOBAN berasaskan penghantaran isyarat tanpa wayar multi-input multi-output
ortogon frekuensi bahagian pemultipleksan (MIMO-OFDM) ke atas pembahagian
gelombang multiplexing rangkaian optik pasif (WDM-PON) sebagai radio melalui
gentian (ROF). Isyarat MIMO tanpa wayar yang mempunyai frekuensi pembawa yang
sama tidak boleh merambat melalui gentian tunggal optik pada panjang gelombang
yang sama, jadi teknik terjemahan frekuensi jalur sisi tunggal optik (OSSB-FT) yang
novel dicadangkan untuk menyelesaikan masalah ini dalam seni bina WOBAN yang
kedua. Teknik OSSB-FT adalah satu kaedah yang cekap kerana ia mengelakkan
cakap silang antara isyarat MIMO tanpa wayar yang berbeza jalur dengan frekuensi
radio pembawa (RF) yang sama. Ia juga adalah satu teknik yang sangat jimat
memandangkan hanya satu sumber optik sudah cukup untuk menjana pembawa optik
yang digunakan semula di titik capaian (AP), dan banyak panjang gelombang untuk
membawa pelbagai isyarat MIMO tanpa wayar melalui gentian. Prestasi lapisan
fizikal dilaporkan dalam kedua-dua reka bentuk seni bina WOBAN. Dalam reka bentuk
pertama, WOBAN menyediakan angkut balik optik dua arah pada kadar data sebanyak
2 Gb/s untuk setiap saluran gelombang sepanjang 20 km pautan gentian optik. Di
bahagian hadapan tanpa wayar, setiap unit/pusat akses rangkaian optik (ONU/AP)
merambat pada kadar data 54 Mb/s sepanjang 50 m pautan tanpa wayar. Reka bentuk
kedua dicadangkan bagi mencapai kadar data sehingga 7.80 Gb/s oleh angkut balik
optik pada gentian optik di sepanjang 20 km. Bahagian depan AP tanpa wayar
menyokong kadar data sehingga 240 Mb/s di sepanjang 100 m pautan luaran tanpa
wayar.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In the last decade, the bandwidth demand of end users has increased for
broadband services such as quad-play (voice, video, Internet, and wireless) and
multimedia applications. For broadband access services, there is strong competition
among several technologies, such as optical access technologies and wireless access
technologies. Next generation (NG) access networks are proposed to provide high data
rate, broadband multiple services, scalable bandwidth, and flexible communication for
manifold wireless end-users (WEUs). The optical fiber access networks provide high-
bandwidth digital services and long-distance communication, but less ubiquitous. The
wireless access networks provide flexible and ubiquitous communication with a low
deployment cost. However, its deployment scalability is limited by the spectrum and
range limitations [1–3]. The wireless optical broadband access network (WOBAN) is
a powerful combination of optical backhaul and wireless front-end. This integrated
architecture contributes a good scalability, cost effective, and flexible communication
system. Figure 1.1 shows the general architecture of the wireless optical access
network. The optical backhaul is a tree network connecting the central office (CO) and
wireless front-end. The optical backhaul comprises of an optical line terminal (OLT)
at the CO, a standard single mode fiber (SMF), a remote node (RN), and multiple
access points (APs). The wireless front-end consists of widespread APs to penetrate
numerous WEUs.

In the optical access technologies, the dominant broadband access network
is a point-to-multipoint (P2MP) optical network, which is called a passive optical
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Figure 1.1: The architecture of wireless optical access network.

network (PON). In the PON, an OLT at the CO is connected to multiple optical
network units (ONUs) by using one downlink wavelength in the downstream direction
and another uplink wavelength in the upstream direction [4]. The time division
multiplexing PONs (TDM PONs) have the simplest architecture. The existing
TDM PON architectures are economically feasible, but limited-bandwidth [5]. The
wavelength division multiplexed PON (WDM PON) is used to solve the bandwidth
problem in TDM PON. A WDM PON solution supports multiple wavelengths over
the same fiber infrastructure, and creates a point-to-point (P2P) optical network. A
separate wavelength channel is assigned for each link between the OLT and each ONU
in both upstream and downstream directions [6, 7]. A code-division multiple-access
PON (CDMA PON) is proposed as an optical access network to satisfy the subscribers
increasing data traffic and considered as a low cost solution [8]. In CDMA PON, many
subscribers can access to the optical channel asynchronously and securely [9]. To
avoid the dispersion effects on the optical signal in the TDM PON and WDM PON, the
bandwidth-efficient optical orthogonal frequency division multiplexing PON (OFDM
PON) is proposed [10, 11].
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Among the various emerging optical and wireless access technologies, the
OFDM-based technologies are the most promising technologies because they provide
the highest transmission capacity, the highest spectral efficiency, the most flexible
dynamic bandwidth allocation, and has a robust dispersion tolerance in both the optical
and wireless links [10, 12–15]. In the optical access network, it is possible to use
hybrid approaches. The combination of TDM and WDM in a hybrid PON network
could be the most cost effective way of introducing scalable cost-effective WDM/TDM
PON into the access network [16]. A novel lightwave centralized hybrid bidirectional
access network for integration of WDM/OFDM PON with radio–over–fiber (ROF)
systems is proposed in [20] by employing multi-wavelength generation and the carrier-
reuse technique. The proposed PON reduces Rayleigh backscattering (RB) in the
bidirectional transmission. In this system, both 11.29 Gb/s OFDM-16 Quadrature
amplitude modulation (QAM) downlink and 5.65 Gb/s OFDM quadrature phase-shift
keying (QPSK) uplink are investigated along 25 km SMF.

There are three major techniques that have been employed for wireless
broadband access networks: worldwide wireless fidelity (WiFi), worldwide
interoperability for microwave access (WiMAX), and long-term evolution (LTE). Most
wireless broadband access technolgies are implemented by using OFDM technique.
WiMAX (IEEE 802.16) is a recently adopted IEEE standard that was designed for
fixed and mobile access networks [14]. It has a useful range of about 5 km at a data
rate of 75 Mb/s. WiFi (IEEE 802.11) is more mature than WiMAX, but it has a limited
range of 100 – 200 m and a data rate of 11–54 Mb/s (IEEE 802.11 a/b/g). The new
standard IEEE 802.11n supports data rate up to 600 Mb/s. High data rates are achieved
by using the multiple-input multiple-output (MIMO) concept and by increasing the
channel bandwidth [17]. The LTE represents the fourth generation (4G) mobile
communications systems and cellular radio access networks. LTE-Advanced offers a
data rate up to 1 Gb/s with larger bandwidth [2]. In this thesis, the WiFi technology is
used at the wireless front-end of the proposed WOBAN. The WiFi technique provides
broadband multiple services with high data rate especially the standard IEEE 802.11n.
The WiFi technology provides high spectral efficiency up to 15 b/s/Hz. In spite of the
range limitation, the WiFi technique is more extensively used than WiMAX technique
for recent wireless access network because of its maturity [18]. In addtion, the WiFi
technique is more suitable for dense urban area [19].

The optical backhaul of the WOBAN is a tree network connecting the CO
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and wireless front-end. The wireless front-end consists of gateway routers which is
known as APs and wireless mesh routers are widespread to penetrate an end-user’s
neighbourhood. To transmit the wireless signal over the optical fiber, two main
schemes are proposed [20–22]: (1) baseband-over-fiber (BBOF) transmission scheme,
(2) ROF transmission scheme. In the BBOF transmission scheme, the received bit
stream at the ONU/AP is modulated by radio frequency (RF) transmitter and then
sent to the WEU. In the ROF transmission scheme, the wireless signal is upconverted
over fiber using optical carrier with specified wavelength. The AP downconverts the
received optical signal to the suitable wireless signal. The AP amplifies and then
propagates this wireless signal directly to the WEU through the wireless channel .

The NG wireless broadband access technologies are using the MIMO technique
with high spectral efficiency, so the hybrid WOBAN must provide this requirement.
This study will contribute this types of WOBANs. The transmission of wireless MIMO
signals in the hybrid WOBAN can accomplish using one of the two transmission
schemes BBOF and ROF to transport the wireless signal over fiber. In the BBOF
transmission scheme , the received bit stream from the optical backhaul is processed
by a MIMO transmitter at the wireless AP. In the ROF transmission scheme , the
wireless MIMO signals, with the same carrier RF, can’t be transmitted directly over
fiber. When the wireless MIMO signals are transmitted directly over a single fiber,
the MIMO signals overlap together and the AP then can’t arrange them to multiple
transmit antennas. In this study, a novel optical single-sideband frequency translation
(OSSB-FT) technique will be used to solve the challenge of transmission of MIMO
OFDM signals over one SMF.

1.2 Motivation

Bandwidth demand in access networks will continue to grow rapidly due to the
increasing number of technology-smart users. There are many emerging optical and
wireless access technologies proposed for this requirement [13, 23, 24]. A WOBAN is
an optimal combination of an optical backhaul and a wireless front-end for an efficient
access network. The hybrid WOBAN supports high data rates and throughput with
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minimal time delay [1, 4, 21, 25, 26]. The WOBAN sometimes is called hybrid optical
wireless access network (HOWAN) [2, 25, 27–29] or fiber wireless (FiWi) access
network [1, 30, 31]. Most of the existing works, based on performance evaluation
of the WOBAN are concerned on network layer aspects [4, 25, 32, 33]. In this
project, the WOBAN is designed based on the two main schemes for transmission of
wireless signal over fiber: BBOF and ROF transmission schemes. The physical layer
performance of the WOBAN is analyzed and characterized. For the first transmission
scheme BBOF, the WOBAN architecture is implemented by a WDM/TDM PON at the
optical backhaul and a WiFi technology at the wireless front-end [3, 28]. The physical
layer performance of the WOBAN is evaluated in terms of the bit error rate (BER),
eye diagram, and signal-to-noise ratio (SNR). The scalability of the optical backhaul
of the WOBAN in terms of the number of supported AP and link reach range are also
analyzed [3].

For wireless broadband transmission, the MIMO radio system has been
developed [15] and implemented using multiple transmit/receive antennas. MIMO
system is distinguished by improved transmission range/reliability, and delivering
higher data transmission rates over the single–input single–output (SISO) system.
One of the main problems of wireless links is channel fading, especially in the
multipath channels. The throughput improvement and path diversity proposed by
MIMO technique [34] with the OFDM immunity to dispersive fading of channel is
considered as a favourable combination for the broadband wireless access network
[35–38].

Most of the proposed WOBANs have been analayzed, designed, and
implemented based on transmission of wireless SISO signal over fiber by using either
of the aforementioned transmission schemes BBOF or ROF [1, 4, 25, 28, 32, 33, 39].
To carry out a spectral efficient WOBAN, the wireless MIMO OFDM technique will
be implemented in this project. By using ROF technique, a spectral efficient hybrid
WOBAN is proposed and designed based on transmission of wireless MIMO OFDM
signals over WDM PON [40–42]. The spectral efficient WOBAN based on MIMO
OFDM transmission by using the OSSB-FT technique. This novel technique can
generate multiple wavelengths from one optical source which are used to upconvert
the MIMO wireless signal at the optical modulators. whereas MIMO technique support
high data rate and reliable system, OFDM technique provides an effective solution to
eliminate intersymbol interference (ISI) caused by dispersive channels [43]. The new
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model for transporting MIMO OFDM signals based WiFi (IEEE 802.11n) over fiber is
designed and analysed. A 7.80 Gb/s data rate will be achieved by the optical backhaul
along optical fiber length of 20 km. The wireless front-end AP supports data rate up
to 240 Mb/s along an outdoor wireless link. Each AP is implemented by using two
spatial streams at a channel bandwidth of 40 MHz. The physical layer performance
of the proposed WOBAN is analyzed in terms of the BER, error vector magnitude
(EVM), SNR, and optical signal-to-noise ratio (OSNR).

1.3 Problem Statement

By using ROF technique, the optical fiber is widely accommodated to carry
multiple wireless signals having different carrier frequencies. It is a known fact that
multiple wireless signals having the same carrier frequency, such as MIMO signals
specified in the IEEE 802.11n standard, cannot propagate over a single optical fiber
on the same wavelength. This problem starts once multiple MIMO signals are merged
and then upconverted by a single optical carrier. Individual MIMO signals could not
be separated and recovered thereafter with regular electrical filtering. A traditional
solution for this problem was proposed using WDM or sub-carriers multiplexing
(SCM) techniques. These techniques are not cost-effective, since multiple optical
sources and photodetectors are required. In this study, a novel OSSB-FT technique
is designed and simulated to solve this problem. One optical source is enough to
transport several MIMO signals over the optical fiber by using the OSSB-FT technique.
A spectral efficient hybrid WOBAN is proposed based on transmission of wireless
MIMO OFDM signals over optical fiber using the novel approach.

1.4 Objectives

The objectives of this research are:
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1. to characterize and propose the WOBAN based on transmission of wireless
signals over fiber in both BBOF and ROF transmission schemes.

2. to design and model the hybrid WOBAN with high spectral efficiency.

3. to verify and evaluate the physical layer performance of the proposed WOBAN.

1.5 Research Scope

In order to achieve the objective of this research, the following scope of work
will be done which comprises of:

• A literature review on related topics such as enabling optical and wireless
broadband access technologies, wireless signals transport schemes in hybrid
FiWi systems, and key enabling technologies for hybrid optical–wireless
access networks. These will include optical millimeter-wave (mm-wave)
generation, upconversion, and transmission in a downlink direction, and full-
duplex operation based on wavelength reuse.

• Deciding on the specification of elements and subsystems for the design of the
WOBAN system.

• Modelling and simulation of the hybrid WOBAN will be done. The wavelengths
assignment for the downlink/uplink channels will be implemented at the CO
using the optical wavelengths in the C-Band. The wireless access network will
be implemented by using WiFi standards operating at 2.4 GHz and 5 GHz.

• The performance analysis of the physical layer will be carried out to get BER
less than 10−9 at optical backhaul and 10−5 at the wireless front-end.

• Comparison will be done with similar work done elsewhere.
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Figure 1.2: Simulation and measurement set-up of the proposed network.

1.6 Simulation Tools

OptiSystem 11.0 software is an innovative optical communication system
simulation package that designs, tests, and optimizes virtually any type of optical
link in the physical layer of a broad spectrum of optical networks [44]. In addition,
Advanced Design System (ADS) 2008 software is a powerful electronic design
automation software system. It offers complete design integration to designers of
products such as wireless networks [45]. There are many tools already supported
to integrate the two simulation software. In the OptiSystem 11.0 software, the
components Save ADS File, and Load ADS File are used to save and load files
in the ’.tim’ format respectively. The .tim files are signal data files in Agilent
ADS 2008 software. In the ADS 2008 software, the component TimedDataWrite
enables the generation of .tim output files, and the component TimedDataRead is
considered as a time domain signal generator with file-based data such as .tim file.
A simplified diagram to depict one example for the simulation and measurement set-
up of the proposed network is shown in Figure 1.2. The electrical digital signal
processing and wireless communication systems is simulated by the ADS 2008, while
OptiSystem 11.0 simulates the electrical/optical (E/O) processes, the optical/electrical
(O/E) processes, and the optical communication systems.

Simulation is performed in discrete time steps. At each time step, the signals
generated by all the sources are propagated through the system, and the outputs are
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evaluated. Thus, the effects of non-linearities and noises in the system can be simulated
accurately. This is a useful feature that permits to build an accurate physical model of
an actual system. When setting up a BER measurement, three important points were
considered: synchronizing test and reference signals, choosing the optimal sampling
instant, and scaling test and reference signals appropriately. The simulations in this
thesis totally will be implement by integration of the OptiSystem 11.0 software and
the ADS 2008 software. MATLAB programming software also will be used for some
calculations for example the EVM values and the compatible BERs.

1.7 Research Contributions

This thesis produces two significant contributions to the study and analysis of
the hybrid WOBAN. The research contribution are briefly presented in the following
subsections.

1.7.1 WOBAN Based on BBOF transmission scheme

Chapter 3 first will introduce an architecture of WOBAN. In this architecture,
the BBOF transmission scheme is used to transport RF wireless signals as a baseband
signal over fiber. The system modulates the detected baseband signal from optical
backhaul to the required radio frequency only at the gateway ONU–AP as shown in
Figure 1.3. The WOBAN consists of an optical backhaul supports a wireless mesh
network (WMN) in the wireless front-end. In this project, the optical backhaul is
carried out by using a cost-effective WDM/TDM PON, and the wireless front-end is
executed by WiFi IEEE 802.11a-based WMN. The physical layer performance will be
evaluated in terms of the BER, eye diagram, and SNR of the communication system. In
addition, the scalability of the optical back-haul in terms of the number of supported
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Figure 1.3: WOBAN architecture based on BBOF transmission scheme.

APs and link reach range are analyzed. This contribution has been published and
presented in many journals [3, 28, 29, 46] and conferences [23, 27, 47–49].

1.7.2 WOBAN based on ROF transmission scheme

A simple WOBAN architecture based on ROF transmission scheme for
wireless signals is shown in Figure 1.4. The wireless signal is upconverted directly as
optical signal at the OLT and then transmitted as ROF signal over fiber. In this scheme,
the AP detects directly the received ROF signal, amplifies it and then broadcasts it to
the WEU along a wireless channel. Chapters 4 and 5 will propose, demonstrate and
investigate a novel OSSB-FT technique for transmission of wireless MIMO signals
over fiber, and spectral efficient hybrid WOBAN based on transmission of wireless
MIMO OFDM signals over WDM PON respectively. Chapter 5 will introduce a
spectral efficient hybrid WOBAN which uses a novel method to solve the challenge
of transmission MIMO OFDM signals over one SMF by using OSSB-FT technique.
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Figure 1.4: WOBAN architecture based on ROF transmission scheme.

The crosstalk between the different MIMO channels with the same frequency is
eliminated, since each channel is upconverted on specified wavelength with enough
channel spacing between them. The physical layer performance of this architecture
will be also analyzed in terms of BER, EVM, SNR, and OSNR. This contribution has
been published and presented in many journals [41, 42] and conferences [40, 50].

1.8 Thesis Organization

This thesis is organized into six chapters. Each of the following paragraphs
explains the contents of each chapter.

Chapter 1: A general overview of the access networks is demonstrated and the
hybrid WOBAN motivation is presented in this chapter. This chapter also introduces
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the problem formulation of this research, objectives, and research scope. Then the
simulation and measurement set-up of the proposed access network is illustrated.
Finally, the research contributions and thesis organization are outlined.

Chapter 2: This chapter is a literature review which will define the important
concepts of this research. Key enabling technologies for optical and wireless access

networks are presented and compared in this chapter. Then the advantages and
architecture of the WOBAN are proposed. Finally, this chapter also covers the
structures and the important findings of previous studies which are most related
to this work. This chapter has been published and presented in 31st Progress
in Electromagnetics Research Symposium (PIERS), March 2012 [23], and 3rd

International Conference on Photonics 2012 (ICP 2012), October 2012 [49].

Chapter 3: In this chapter, the architecture of the WOBAN based on

transmission of wireless signal as BBOF is proposed and designed as a suitable
technique for future access network. In this work, the WOBAN architecture is designed
based on a WDM/TDM PON at the optical backhaul and a WiFi technology at the
wireless front-end. The WOBAN has been proposed that can provide blanket coverage
of broadband and flexible connection for wireless end-users. The proposed WOBAN
will achieve data rate of 2 Gb/s for downstream/upstream over 20 km SMF followed by
50 m outdoor wireless link with a data rate of 54 Mb/s. The physical layer performance
in terms of the BER, eye diagram, and SNR is reported. Finally, the scalability of
the optical backhaul in terms of the number of supported APs and link reach range
is analyzed in theory and the simulation. This chapter has been published in many
journals: Optoelectronics and Advanced Materials – Rapid Communications (OAM-
RC), April 2011 [3], Optics Communications, September 2011 [28], Jurnal Teknologi,
May 2011 [29], and Journal of Computer Research : Arabic Language, August
2011 [46], and many conferences: 1st International Conference on Photonics 2010
(ICP 2010), July 2010 [27], 29th Progress in Electromagnetics Research Symposium
(PIERS), March 2011 [47], and 7th International Computing Conference In Arabic,
June 2011 [48].

Chapter 4: This chapter describes the novel OSSB-FT technique for

transmission of MIMO wireless signals over fiber. The novel OSSB-FT technique
is proposed to solve problem of multiple wireless signals which have the same
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carrier frequency and cannot propagate over a single optical fiber, such as MIMO
signals feeding multiple ONUs or APs in the FiWi system. This chapter will
investigate how this technique works and when it is suitable to transmit MIMO
wireless signals over fiber. Next, the performance of the new technique is evaluated to
transmitted three MIMO signals which have the same RF carrier frequency over fiber.
Finally, the performance comparison of OSSB-FT technique with other techniques for
transmission of wireless MIMO signals over fiber is discussed. This work has been
published in Optics & Laser Technology (JOLT), April 2013 [42] and presented at 3rd

International Conference on Photonics 2012 (ICP 2012), October 2012 [50].

Chapter 5: This chapter is dedicated to implement the novel efficient method
from Chapter 4 into the WOBAN. The spectral efficient WOBAN based on transmission

of wireless signal as ROF is proposed using the OSSB-FT technique, where it is
designed based on transmission of wireless MIMO OFDM signals over WDM PON
as a promising technique for future access network. The WDM PON is design to
transport many wireless MIMO OFDM signals over fiber at the optical back–end. The
front–end is a WMN with several wireless mesh routers and a few APs. The WMN
is established using WiFi technology based on the IEEE 802.11n. The physical layer
performance of the proposed access network is analysed and discussed. This work has
been published in Optics Communications, September 2012 [41],and presented at 30th

Progress in Electromagnetics Research Symposium (PIERS), September 2011 [40].

Chapter 6: This chapter gives the conclusions and future work for this thesis.
In addtion, the publications list will be viewed in this chapter.
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