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ABSTRACT 

Ozone gas (O3) is increasingly used as a bleaching agent due to its strong 

oxidising properties and less harmful to the environment.  The most feasible method 

to generate O3 is to connect high-voltage of several kV, high-frequency of about tens 

of kHz power supply across a Dielectric Barrier Discharge (DBD) chamber. 

Commonly, a resonant power supply with the ferrite transformer is used. However, 

the presence of the transformer increases the cost and footprint, while reduces the 

efficiency of the ozone generator. To overcome these deficiencies, this work 

proposes a design and implementation of an ozone power supply based on 

transformerless resonant converter. A standard full-bridge inverter is coupled to a 

resonant tank circuit, i.e. LC and LCL to achieve the required high voltage. The LCL 

exhibits a double resonance phenomenon resulting in very high voltage gain (above 

150). Consequently, the power supply is capable of delivering sufficient potential to 

the chamber, even if the source voltage is below 20 V. Experimental measurements 

show that the efficiency of the proposed generator is 92%, while the maximum ozone 

concentration achieved 8.0 g/m
3 

at a flow rate of 1.0 L/min. This performance is 

much higher than the existing transformer based resonant converters. This thesis also 

introduces the concept of ozone generation using multiple chambers. The objective is 

to maintain a high O3 concentration at high flow rates. To realise the idea, the same 

LCL transformerless ozone generator is used to drive three ozone chambers in 

parallel. The results indicate that the achieved ozone concentration is three times 

higher than the output of a single chamber. Furthermore, a closed loop regulation to 

maintain a stable and constant chamber’s output voltage is designed. Another 

contribution of this work is the introduction of a simple and effective method to 

characterise the DBD chamber parameters. Traditionally, Lissajous figures are 

employed to estimate the values of the chamber’s resistor and capacitor. However, 

this method proves unsatisfactory at high frequencies. Using the proposed method, 

the chamber parameters can be determined accurately at various frequencies. 
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ABSTRAK 

Gas Ozon (O3) semakin digunakan sebagai agen peluntur disebabkan ciri-ciri 

pengoksidaannya yang kuat dan kurang memberi kesan merbahaya kepada 

persekitaran.  Kaedah yang paling sesuai bagi menghasilkan O3 ialah dengan 

menghubungkan beberapa kV voltan tinggi, frekuensi tinggi dengan berpuluh-puluh 

kuasa kHz melalui ruang yang tertutup Dielectric Barrier Discharge (DBD). 

Kebiasaannya, satu perbekalan kuasa resonan dengan transformer ferit digunakan. 

Tetapi, penggunaan transformer ini meningkatkan kos dan kesan tapak kaki serta 

mengurangkan keberkesanan janakuasa ozon. Untuk mengatasi kelemahan-

kelemahan tersebut, kajian ini mencadangkan satu reka bentuk dan pelaksanaan 

perbekalan kuasa ozon berdasarkan penukar resonan tanpa transformer. 

Penyongsangan full-bridge standard dipasangkan kepada satu litar tangki resonan, 

i.e. LC dan LCL bagi mendapatkan voltan tinggi yang diperlukan. LCL menunjukkan 

fenomena resonan berpasangan yang menghasilkan voltan tinggi (melebihi 150). 

Maka, bekalan kuasa mampu memberi potensi yang cukup kepada ruang yang 

tertutup walaupun punca voltan kurang daripada 20 V. Pengukuran eksperimen 

menunjukkan keberkesanan janakuasa yang dicadangkan sebanyak  92%, sementara 

penumpuan ozon maksima mencapai 8.0 g/m
3 

pada kadar pengaliran 1.0 L/min. 

Prestasi ini lebih tinggi berbanding penukar-penukar transformer berasaskan resonan 

sedia ada. Tesis juga memperkenalkan konsep penjanaan ozon menggunakan ruang-

ruang tertutup pelbagai. Tujuannya ialah mengekalkan penumpuan O3 yang tinggi 

pada kadar pengaliran yang tinggi. Bagi merialisasikan idea ini, penjanakuasa ozon 

LCL tanpa transformer diguna untuk menjadikan tiga ruang tertutup ozon selari. 

Keputusan telah membuktikan penumpuan ozon adalah tiga kali lebih tinggi 

berbanding keluaran satu ruang tertutup. Disamping itu satu peraturan gegelung 

direka bentuk bagi mengekalkan kestabilan pengeluaran voltan daripada ruang 

tertutup. Kajian turut memperkenalkan satu cara yang mudah dan efektif untuk 

menyifatkan had ruang tertutup DBD. Secara tradisinya, rajah Lissajous digunakan 

bagi menganggar nilai-nilai penahan dan pemuatan ruang tertutup. Namun, kaedah 

ini ternyata kurang berkesan pada frekuensi tinggi. Had-had ruang tertutup boleh 

ditentukan dengan tepat pada frekuensi berlainan dengan kaedah yang disyorkan. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The use of ozone gas (O3) has increased due to its excellent oxidizing 

properties. It exhibits strong anti-germicidal properties, a characteristic that is useful 

for air and water purification [1, 2]. Unlike other oxidizing chemicals such as 

chlorine, ozone leaves no harmful residue because its primary by-product is oxygen. 

It is used in many diverse fields such as the agricultural, pharmaceutical and solid 

waste treatment industries. In the semiconductor industry, dissolved ozone in water is 

used for the surface cleaning of device fabrication, as an alternative to sulphuric acid 

and ammonia-based mixtures [3]. It has been used in the food processing industry as 

a sanitizer. In hospitals, ozone is mainly used as a disinfectant for surgical 

equipment, clothes and linen. In agriculture, ozone is used for postharvest treatment 

to increase the shelf-life and freshness of fruits, flowers and vegetables [4, 5]. 

Moreover, ozone-enriched water is used for hydroponic applications and for the 

removal of pesticide residues from fruits. In waste treatment plants, solid waste is 

oxidized and the water is recycled for cooling tower requirements [6]. Although the 

application of ozone is widely recognised, its production is somewhat hindered due 

to the insufficient efficiency and high cost of equipment for ozone generation 

systems. 

 
 

The best and most common economic method to generate ozone in normal 

atmospheric environments is by using the concept of electrical discharge. 



2 
 
Electrically, different types of discharge, such as corona, pulsed streamer and 

dielectric barrier discharge (DBD), have been applied for ozone generation [3, 7, 8]. 

The most viable method to generate ozone under atmospheric conditions and at 

ambient temperature is DBD [9, 10]. An important property of DBD is the creation 

of cold non-equilibrium plasma at atmospheric pressure. The DBD chamber typically 

consists of two electrodes; one is connected to a high voltage AC power supply, 

while the ground electrode is usually covered with dielectric [11]. Due to the 

presence of dielectric inside the chamber, this method is known as DBD or silent 

discharge. Air or oxygen is forced to flow between the electrodes, in a space known 

as the discharge gap. If the voltage applied to the electrodes creates a sufficiently 

high electric field, the oxygen molecules will be broken into oxygen atoms. The 

latter combines with other oxygen molecules to form ozone. 

 
 

Commonly, glass or alumina ceramic are used as dielectrics for the DBD 

chambers. These materials are by nature fragile, and hence the chamber is 

constructed with a typical thickness between one to four millimetres. For one 

millimetre of thickness, the initiation voltage (the voltage required to initiate ozone 

formation) is approximately 10−20 kV [12, 13]. Consequently, with these materials a 

high voltage power supply is required. Recently, the use of mica as the dielectric has 

been demonstrated. Mica is flexible and non-fragile; by using this material a chamber 

can be readily constructed with a thickness of less than 0.5 mm. It has been shown 

that for the same discharge gap, mica exhibits a much lower initiation voltage − 

about one order of magnitude lower than glass or ceramic [14]. The lower voltage 

offers several advantages, namely lower power consumption and reduced stress on 

the dielectric. Subsequently the ozone power supply can be built at lower cost, of 

smaller volume and with none of the special safety precautions generally associated 

with high voltage equipment. 

 
 

Traditionally, a low-frequency (50–60Hz) AC source, coupled with a high 

transformer turns ratio, is used as the power supply for the ozone generator [15-17]. 

This approach requires a high voltage to be present across the chamber, since it must 

operate close to the discharge potential. The high voltage limits ozone production in 

several ways. First it restricts the use of different dielectric materials due to the 
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inability of these materials to withstand high voltage stresses. Secondly, the high 

voltage limits the discharge gap size, which in turn limits the amount of ozone gas 

that can be produced in the ozone chamber. Thirdly, a low-frequency system is also 

associated with lower power conversion efficiency and larger power converter size 

[18]. 

 
 

To increase the ozone quantity, the chamber is fed by a high-frequency power 

supply. The high-frequency operation increases the power density applied to the 

electrode surface. This increases the ozone production for a given surface area, while 

decreasing the necessary peak voltage. Furthermore, at lower voltages it is possible 

to experiment with various types of dielectric materials with much lower voltage 

stress levels. Subsequently, the power supply can be built at lower cost, with smaller 

volume, low power consumption and no special safety precautions that are generally 

associated with high voltage equipment [19]. 

 
 

Although high-frequency resonant power converters are widely utilised for 

generating ozone, it has always been a challenge to increase ozone production. 

Typically, high-frequency resonant converters of various topologies are employed 

for ozone power supply.  A step-up transformer is required to achieve high voltage 

across the chamber [20, 21]. Since these power supplies utilise high transformer turn 

ratios, the associated leakage inductance results in high voltage spikes across the 

switch during commutation. Hence, the switch utilisation factor is low and a 

protection circuit is necessary to avoid the destruction of the switch, which will 

increase the cost and complexity of the circuit. Another disadvantage of the 

transformer is electromagnetic interference and core saturation, particularly at high 

frequency operation. Moreover, the power supplies are fed by single or three-phase 

utility supplies. While a piezoelectric transformer (PT) is introduced to alleviate 

some of these problems, its bandwidth at resonance is extremely narrow; and as a 

result a closed loop control is mandatory [22]. Furthermore, a high step-up ratio PT 

with a reasonably high power rating is not readily available on the market. 

 
 
In view of these drawbacks of resonant converters utilising transformers, this 

work introduces the transformerless power converter to improve the efficiency of 
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conventional ozone generation systems. The main idea is to remove the transformer 

from the converter and utilise a resonant circuit to achieve high voltage. The 

proposed approach offers several advantages: (1) with the absence of a transformer 

there will be no high voltage spikes in the power switches, resulting in increased 

efficiency, (2) the use of a protection circuit for switches is not necessary, (3) due to 

high-voltage gain, the power converter can be fed with a low-voltage source, and (4) 

the power converter cost and footprint are reduced and its efficiency is increased. 

1.2 Objective, Scope and Importance of Research 

1.2.1 Objective of Research 

The objective of this research is to analyse, design and implement a power 

supply to drive multiple ozone chambers for high flow rates. The work focuses on 

the resonant converter design procedures, the effects of resonant circuit parameters 

variation and the control circuit to regulate the output voltage of the chambers. The 

expected outcome of this work is an efficient transformerless converter that is 

capable of driving multiple chambers, which can be fed by low voltage sources such 

as photovoltaic modules or batteries. 

1.2.2 Scope of Research 

Based on the objectives, the research of this thesis works towards the 

following: 

 

(i) A strategic and critical and literature review of power supplies for 
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ozone generation is carried out. In this review, the basics principles of 

chambers and previous work on power supplies used for ozone 

generation are discussed. Their strengths and limitations are 

highlighted. Besides giving a comprehensive overview of existing 

power supplies, the objective of the review is to look for a gap in the 

literature, particularly on the issue of power supplies for ozone 

generation. 

 

(ii) In order to design an efficient high-voltage high-frequency power 

supply it is necessary to accurately comprehend the parameters of the 

chamber. Thus a simple and effective method to calculate the model 

parameters of a chamber is proposed. The correctness of the 

calculated chamber parameters are validated by designing resonant 

converters for ozone generation. 

 

(iii) The study on the selection of practicable resonant circuit topology to 

achieve a high voltage across the ozone chamber is conducted. 

Prototypes of two power converters with LC and LCL resonant 

circuits based on a full-bridge inverter are constructed.  The efficiency 

analysis of both power converters is carried out by theoretical 

calculation, simulation and direct measurement. The ozone production 

is presented in terms of ozone concentration and ozone yield as a 

function of chamber voltage. An efficiency comparison of the 

transformerless power converter is made with previous transformer-

based resonant power converters. 

 

(iv) An ozone generation system to maintain ozone concentrations at high 

flow rates is developed. This is achieved by connecting three 

chambers in parallel and is driven by single LCL resonant power 

converter. The chambers are fed at optimum flow rate to achieve high 

ozone concentration at higher flow rates. Moreover, a closed loop 

feedback controller is proposed to regulate the output voltage of the 

ozone chamber. This control system is able to accommodate changes 

in LCL component values and the adding/removal of ozone chambers. 
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1.2.3 Importance of Research 

Due to the steadily increasing demand for ozone in various applications, its 

production at high flow rates is a challenging task. Since ozone is an unstable gas, it 

must be generated and consumed on site. In places where a utility supply is 

inaccessible, there is a demand for ozone generators powered by photovoltaic 

modules or batteries. Although, high frequency resonant power converters are widely 

employed in ozone generation systems. The drawback with the conventional power 

converters is its low efficiency due to the use of a step-up transformer. 

 
 

The problem can be overcome by employing a transformerless resonant 

power converter for ozone generation. With the introduction of a resonant circuit to 

achieve high voltage-gain, the power converter can be fed by a low-voltage source 

such as a photovoltaic module or battery. Hence it can be used in places that lack 

electricity. Moreover, ozone production can be increased by driving multiple parallel 

ozone chambers. 

1.3 Organisation of Thesis 

This thesis is composed of seven chapters. Their contents are outlined as 

follows: 

(i) Chapter 2 briefly reviews ozone generation techniques and their 

corresponding power supplies. The fundamentals of ozone formation 

are introduced. The power supplies are categorised into various 

groups, namely DC, pulse, line frequency and high frequency 

resonant circuit. The merits and drawbacks of each power supply are 

highlighted. The benefits of transformerless resonant power supplies 

over transformer-based power supplies are stressed. 
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(ii) Chapter 3 introduces a method to determine the ozone chamber 

parameters in considerable detail. The limitations of linear and non-

linear models of chambers using the conventional Lissajous plot 

method are outlined. The proposed parameter determination approach 

is simple and accurate. 

 

(iii) Chapter 4 describes the operation of the LC resonant circuit power 

converter based on a full-bridge inverter. The overall operating modes 

are explained. The design procedure for LC circuit parameter values is 

outlined. A comparison of simulation and experimental results is 

carried out to validate the accuracy of the chamber model parameters. 

 

(iv) Chapter 5 covers the analysis, design and implementation of a 

transformerless LCL resonant circuit power converter. The benefits of 

the proposed LCL resonant circuit over normal LC circuits are 

elaborated. The experimental results of ozone production and 

efficiency of the power converter are provided. 

 

(v) Chapter 6 provides the analysis, design and implementation of 

multiple parallel ozone chambers for high flow rates. The closed loop 

feedback control circuit used to regulate the chamber’s voltage is 

described. The laboratory prototype based on the LCL resonant circuit 

is capable of simultaneously driving three ozone chambers.  

 

(vi) Chapter 7 concludes the work and highlights the contribution of this 

research. Several ideas for future work are also proposed. 
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