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ABSTRACT 

A Short-term Hydro-thermal Scheduling (HTS) model based on Mixed Integer 

Linear Programming (MILP) is developed and presented in this thesis. For countries 

such as Malaysia that are close to the equator, high precipitation throughout the year 

replenishes existing water resources. The efficient scheduling of hydro and thermal 

units considering a large amount of water resources and river systems can 

significantly affect the total operation costs of the system. The HTS is a highly 

complex problem involving a large number of continuous and integer variables with 

nonlinearity and nonconvexity/nonconcavity characteristics in its objective function 

and constraints. A comprehensive MILP hydraulic model for unit-wise, and cascaded 

multi-chain reservoir system considering head variation effects has been developed. 

Incorporation of the detailed reservoir and river modelling with variable head makes 

the HTS problem even more complex with an additional number of integer/continuous 

variables as well as the constraints. A piecewise linear approximation is used to 

transform all nonlinearities into an equivalent linear model. Multi-thread computing is 

utilised to expedite the solution process of MILP Branch and Bound and Cut (BB & 

C) method using a certain number of concurrent threads. Obtained results show the 

successful implementation of the multi-chain river system modelling on several test 

cases including 69-unit, 132-unit and 287-unit. The proposed MILP-HTS algorithm is 

compared with a Lagrangian Relaxation (LR) algorithm that is currently employed by 

a real-world utility. Based on the similar input data, the MILP-HTS algorithm offers 

more optimal hydro-thermal generation strategy, taking into account a detailed 

hydraulic modelling. Based on the simulation results, the proposed MILP algorithm 

outperforms several other deterministic and heuristic techniques in terms of objective 

cost and execution time. Comparison with other equivalent MILP models over the 

same test conditions demonstrated that the proposed MILP model with the 

formulation presented in this thesis creates tighter relaxation (better cuts) in the BB & 

C solution process. This results in a cheaper objective value with a lesser computation 

time. Implementation of multi-thread computing improves the execution time 

performance for all case studies as compared with the serial computation time. 

Simulation results also suggest that the multi-threading can allow taking tighter 

optimality gap resulting in a more accurate solution (near-optimal) for large-scale 

problems in a moderate time, even with more detailed hydraulic modelling.  
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ABSTRAK 

           Satu model penjadualan jangka pendek Hidro-Termal (HTS) berasaskan 

pengaturcaraan  campuran Integer Linear (MILP) telah  dibangunkan dan dibentangkan di 

dalam tesis ini. Negara seperti Malaysia yang terletak berhampiran dengan khatulistiwa, 

kadar penurunan hujan yang tinggi sepanjang tahun telah meningkatkan sumber air yang ada. 

Penjadualan unit hidro dan termal yang cekap perlu mengambil kira jumlah sumber air yang 

besar dan juga sistem pengaliran sungai, jumlah keseluruhan kos operasi bagi sistem 

tersebut.  HTS boleh menjejaskan dengan ketara yang melibatkan bilangan integer 

berterusan dan pelbagai yang banyak dengan ciri-ciri ketidaklelurus dan tidak boleh dikira 

dalam fungsi objektif dan kekangannya. Sebuah model hidraulik yang dilengkapi MILP 

untuk unit-cerdik dan sistem takungan berbilang-rangkaian lata dengan mengambil kira 

pelbagai turus perubahan telah dihasilkan. Penubuhan takungan secara terperinci dan 

pembentukan sungai dengan  kesan perubahan turus menyebabkan masalah HTS bertambah 

rumit dengan bertambahnya bilangan integer/pembolehubah berterusan sekaligus 

kekangannya. Satu kaedah penghampiran titik-titik linear digunakan untuk mengubah 

ketidaklelurus kepada sebuah model lelurus yang seragam. Pengkomputeran Berbilang-

Uliran digunakan untuk mempercepatkan proses penyelesaian kaedah MILP Cabang dan 

Had dan Potong (BB & C) dengan menggunakan jumlah serempak uliran yang tertentu. 

Keputusan yang diperolehi menunjukkan kejayaan dalam pelaksanaan model multi-

rangkaian sistem sungai terhadap beberapa kes-kes ujian termasuk 69-unit, 132-unit dan 

287-unit. Cadangan algoritma MILP-HTS dibandingkan dengan algoritma Santaian 

Lagrangean (LR), dimana merupakan kaedah yang digunakan oleh utiliti dunia sebenar. 

Berdasarkan data input yang sama, algoritma MILP-HTS menawarkan strategi untuk 

janakuasa hidro-termal yang lebih optimum, dengan mengambil kira model hidraulik yang 

terperinci. Berdasarkan keputusan simulasi, algoritma MILP yang dicadangkan melebihi 

prestasi beberapa kaedah berketentuan dan heuristik dari segi kos objektif dan masa 

pelaksanaan. Perbandingan dengan model MILP lain yang setaraf ke atas ujian yang sama 

menunjukkan bahawa model MILP yang dicadangkan berserta rumus yang dihuraikan di 

dalam tesis ini menghasilkan santaian yang lebih ketat (potongan yang lebih baik) bagi BB 

& C proses penyelesaian. Keputusan menunjukkan nilai objektif yang lebih murah dengan 

masa pengiraan yang lebih singkat. Pelaksanaan berbilang -uliran meningkatkan prestasi 

pelaksanaan masa untuk semua kajian kes berbanding dengan masa pengiraan bersiri. 

Keputusan simulasi juga mencadangkan bahawa berbilang-uliran boleh membenarkan 

pengambilan sela optimaliti yang lebih rapat, yang menyebabkan penyelesaian yang lebih 

tepat (menghampiri optimum) untuk masalah berskala besar dalam masa yang sederhana, 

walaupun dengan model hidraulik yang lebih terperinci. 
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1 CHAPTER 1 

       INTRODUCTION 

1.1 Overview 

Economic growth in many countries increased the demand for electricity. 

Electrical energy is the main component to drive economic growth and enhanced 

social welfare in today’s modernized world. Providing an adequate generation to 

feed the varying load has long been an obligation for utilities [1]. In this sense, 

sufficient generation for future demand needs to be planned together with strategies 

that one takes in order to manage current generating plants to supply the demand. 

The basic requirement for utilities, however, is to match the demand with enough 

generation in an economic, reliable and secure manner.   

 

 Optimal operation of the electric power system provides an efficient use of 

generation resources while all system constraints are honored. In this sense, reducing 

the production cost is the ultimate goal for the utilities. To the consumer, a 

reasonable electricity bill will be the consequence of such economic operation by the 

utility. 
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1.2 Optimal Power System Operation 

Economical operation means the optimization of total production cost, 

incurred as a result of the depreciation of installed plants, maintenance costs, fuel 

costs and labor costs. Thus, the task of optimizing these costs involves long-term and 

short-term studies.  

 

A long-term planning study considers, among many other facts, future power 

demand and location, load forecasting, maintenance scheduling, availability of fuel 

supplies, and replacement of ageing power stations. Short-term scheduling, on the 

other hand, deals with the commitment of enough units to meet a short-term load 

demand of a day or a week. The solution of long-term studies is normally 

coordinated with the short-term scheduling. For example, the long-term plan can 

provide the long-term fuel consumption of the system, or the component’s 

maintenance schedule, which are accommodated into the short-term studies. Using 

results of the long-term planning, one can effectively manipulate the upper bound of 

the fuel limitation, or the unit’s initial states, whether it is on maintenance or in 

service. 

 

Unit commitment and scheduling, sometimes called pre-dispatch, is the 

operation that bridges the gap between load forecasting, maintenance scheduling, 

fuel planning and real time load dispatch. In scheduling process, the most 

economical combination of generating units, from those available for one week/day 

in advance, is selected to meet the forecasted demand [2]. 

 

The duration of the period of scheduling problems means that costs due to 

capital investment, interest charges, salaries, and maintenance cost can be considered 

to be fixed. The operational cost that is to be minimized in the generation scheduling 

is mainly due to fuel cost, losses in the transmission system and weekly or daily 

maintenance costs [3]. It is because these costs are changeable; therefore, they can be 

minimized through the optimization process (finding the best solution).  

 

Hydro-plants are known for their minimal production costs and thus may 

become candidates for base generation operation. However, if the amount of water in 
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the upstream reservoir of a hydro plant is insufficient for full operation throughout 

the unit commitment period, it must be used as a “cycling unit” or load-following 

unit, which has a fast ramp rate. On the other hand, these units will be scheduled to 

startup/shutdown whenever appropriate, which is mostly occurred during the peak 

load where the operation cost of the system may be high [4].  

 

For fossil fuel, older thermal plant units are characterized by low maximum 

output and high running cost due to mechanical ageing over the years [5]. In contrast, 

modern units can be characterized by high maximum output and high start-up cost. 

The variations in load demands mean that it will not be possible to operate all units at 

maximum output throughout the commitment schedule. This has a significant effect 

on the unit commitment problem since fossil fuel thermal plants, once shut down, 

can only be re-synchronized after a specified minimum period of shut down or up 

time have elapsed. 

1.3 Generation Scheduling Problem 

Compared to other real-time operation problems such as  Optimal Power 

Flow (OPF) or Economic Dispatch (ED), which are  designed to adjust the output of 

the on-line (available) units during the operation, the UC problem is a more complex 

optimization problem [6]. It is because it involved two distinct set of variables; 

Integer and continuous variables [7].  Integer (binary) variables are used to address 

the status of a unit in certain time-instance, whereas the continuous variables point 

the output level of the unit if it is committed (the status is ON). However, this can 

introduce a huge number of variables, which is difficult to be solved by conventional 

techniques used to solve ED, or OPF problems.  

 

Introduction of binary (0/1) variables into the UC model creates a nonconvex 

optimization problem [8]. Besides, the UC is inherently a nonlinear problem because 

the objective cost model is built based on nonlinear input-output functions of a unit. 

More, it is a high dimensional problem because it deals with a large number of units 

over an optimization period of daily (24-interval) or weekly (168-interval) 
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considering all the unit-wise constraints (ramping up/down, minimum ON/OFF) and 

system-wise constraints (coupling operational correlation between units) constraints.  

 

Generation scheduling can be a very difficult problem to solve [1] due to the 

huge number of variable and constraints in the model. It involves M load patterns (24 

for daily or 168 for weekly) to be modeled. For a practical system, it deals with a 

large number of units (N) with all their operational limits. In this sense, a 

combination of the units has to match the load at each time-instance.  The maximum 

number of combinations for each time instance is (    ). Therefore, the total 

number of possible combination over a planning horizon of M, will be        . 

For a system with 69 units over a 24-hour interval, this number can be as formidable 

as           = 31.6       . 

 

UC initially determines the start-up and shutdown schedules of all units in 

order to supply forecasted loads at the minimum costs, subject to satisfying all 

prevailing system constraints (unit-wise and system-wise) plus spinning reserve 

requirements. However, it is a critical process in power system operation as it is the 

first step towards meeting the forecasted demand with sufficient reserves [9]. In this 

sense, the variation in demand as well as system credible contingencies can be taken 

into account. Afterwards, all plant’s operators need to know the schedule in advance 

in order to prepare the generators and manage their operation. 

 

The generation schedules are calculated in a way to find the minimum 

possible operational cost in the system in order to meet hourly load demand while 

preserving all the system constraints. It is vital to all stakeholders, including the Grid 

System Operator (GSO), and consumers who end up paying the total cost. However, 

generation scheduling is a substantial scheduling process with tremendous money 

savings, if appropriately conducted.  

Likewise, secure least-cost operation can be provided by adding line security 

constraints into the optimization problem.  Important factors, such as production 

limits, ramping limits, and minimum up and down times, spinning reserve 

requirements, transmission losses that affect generation scheduling need to be 

considered in the UC. 
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Obtaining the minimum cost UC that meets all constraints within a minimum 

computational time has always been, and remains, an engineering challenge to date. 

Traditional methods were initially based on old-fashioned priority lists, which were 

computed from average marginal cost data. In the industry, the most widely used 

techniques are the Lagrangian Relaxation (LR) [10], Dynamic Programming (DP) 

[11] and Mixed-Integer Programming (MIP) [12, 13] methods, which have recently 

come into the practical use after significant algorithmic and executional 

improvements were introduced to MIP solvers [14]. 

 

The Unit Commitment problem is essentially a mixed integer problem 

because it involves shutdown (turn a unit OFF) and start-up (turn a unit ON) modes 

which are, in practice, represented by binary (0/1) variables. This, however, poses a 

challenge to solve the problem using conventional linear and nonlinear optimization 

techniques [15].The first effort to solve this problem is naturally using the BB 

technique [12, 16] which is a mathematically accurate method. However, it still 

suffered from large computation time as the number of generating unit increases. 

 

As an alternative to the BB technique, Dynamic programming (DP) was 

introduced to solve the UC problem. DP method decomposes problems into stages 

(time intervals) and traces the optimum solution by finding combination of the stages 

that solve the UC [17]. It also suffers from the curse of dimensionality, which leads 

the solution time to infinity if large scale system with a number of generating units 

was applied. Nonetheless, strategies have been devised to minimize the number of 

combinations at each stage so that DP can provide an accurate, solution of the 

problem that is faster than the BB technique. 

 

Lagrangian relaxation (LR) is investigated in the quest to find a fast method 

that provides an accurate answer. In other words, LR is introduced as an alternative 

to BB and Dynamic programming technique. The LR is optimized by varying 

Lagrange multipliers of the objective function. There will be a gap between the 

primal and dual solution which cannot be closed because of the integer variables. 

While the LR does not suffer from dimensionality problem, unnecessary 

commitment of generating units may happen that is due to the enforcement of a 

number of heuristic manipulations required to meet duality gap (stopping parameter 
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in LR technique). In other words, Such approximations cause the unnecessary unit 

commitment and thus resulting in higher production costs for the system [18]. 

Furthermore, due to a number of approximations made in the LR, the method is fast 

but less accurate or suboptimal [19]. 

 

The MIP, LR and DP approaches essentially try to determine various 

commitment decisions, which are binary in nature, meaning that, whether a unit is to 

be on (status equals to 1) or is to be off (status equals to 0). The determination of the 

integer variable is subject to constraints such as minimum shutdown time or 

minimum uptime. For each of the combinations, the minimum cost of the 

combination needs to be determined so that the total generation satisfies the load and 

losses as well as unit and system constraints. The cost optimization of every integer 

variable combination is a continuous problem and in reality, is actually an economic 

dispatch problem, which can use conventional linear and nonlinear technique to 

solve the resultant problem.  

 

Among the earliest mathematical method attempts to solve the UC is the 

Mixed Integer Programming (MIP) method, using Branch and Bound (BB) 

technique. Mathematically, it is proven that BB can find the global minimum cost. 

This is because it searches for all possible solutions. It is efficient because of the 

bounding procedure that truncates the search path, exceeding the bound [15, 20]. It 

means that the search space is minimized by rigorous mathematical reasons, unlike 

the truncated DP which truncates the search using heuristic reasoning [21].  

 

The practical problems of using BB for unit commitment are primarily due to 

the curse of dimensionality, spending excessive time and memory to search over all 

the possible nodes in the branches of BB technique. Therefore, the programming 

strategy in BB is very challenging. DP also suffered from dimensionality problem 

but that is due to the large number of states as well the time-dependent and inter-

temporal unit constraints. With arrival of complicating constraints, the DP may fail 

converging to the solution.  In the BB method the solution can be eventually found 

but in a more time-consuming manner. One vital development in BB is the cutting 

plane technique, which reduces the search space (via rigorous mathematics) and 

hence increases the BB execution efficiency.  
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Another development is that the complexity in programming has been tackled 

commercially by a company (now owned by IBM) that developed a BB solver under 

the CPLEX
®
 software framework. CPLEX

®
 also has a solver for economic dispatch 

using Barrier method. A generalized solver developed by experts in the field relieves 

the burden of a power system analyst that solves a unit commitment problem, 

allowing them to concentrate and focus mainly on practical requirements and the 

correct modeling of the UC. 

 

Research and development on BB using CPLEX
®
 as a solver for the UC 

started in middle of 2000. Interestingly enough, another company called GUROBI
®

 

has produced a rival multi-thread BB code. CPLEX
® 

has now evolved to be a multi-

thread solver with dynamic search, which has made it computationally competitive 

and in fact comparable to LR. In fact, many large-scale UC problems, which cannot 

be solved by serial computation with a reasonable accuracy, can now be solved by 

using multi-thread computing.  

 

The concept of the multi-thread computing implies that, one can achieve a 

computationally better (faster) execution if more computational resources can be 

involved with the algorithm. In this sense, based on the number of the computing 

cores existed in a computer, the algorithm can be concurrently run in a parallel 

fashion. As a result, the algorithm is handled using the maximum computational 

capacity of the machine. Nevertheless, each computing core has two physical 

threads, which indeed can further enhance the previous concurrent run-time, 

considering the waiting time between the parallel threads.   

1.4 Hydro-thermal Generation Scheduling 

The operation planning of hydro-thermal systems, usually called hydro-thermal 

scheduling (HTS). This problem is a more complex optimization model compared to the 

UC.  In this sense, the HTS problem requires solving for thermal unit commitments and 

generation dispatch as well as the hydro schedules [22]. This coordination is necessary, 
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not only because of system constraints such as satisfaction of demand and reserve, but 

also because of plant operation characteristics, such as cascaded hydro plants. The 

operational interdependency of the reservoirs in the downstream to the released water 

from upstream reservoirs over a catchment (river scheme) introduces a big challenge in 

the HTS problem.  

 

HTS differs from what is referred to as hydrothermal coordination (HTC). At 

HTC problem, the hydro generation, at the peak hours, is coordinated with thermal 

power to minimize the cost. In other words, adequate thermal units were committed 

and then hydro-generations are added to satisfy the upward load increase during the 

peak hours. Therefore, the HTC is the process of coordinating maximum hydro-

power as a fixed amount of generation subtracted from the load for a certain time 

duration (peak hours).  In contrast, the HTS problem is a complete unit commitment 

process for both hydro and thermal units, following the load demand at each interval. 

However, results for both models may become the same but the HTS problem is 

more efficient (the most profitable use of water resources) and better sounds the 

practical scheduling issues in this context. 

 

In short, the specific features of cascaded hydro plants include i) spatial-

temporal coupling among reservoirs and ii) for every plant, the nonlinear dependence 

between power output, water discharged, and head of the associated reservoir are 

precisely accounted for through a (0/1) mixed-integer linear formulation. 

Additionally, in order to solve the short-term HTS problem, the most accurate 

models can be implemented. The model will feature the hydro generation 

characteristic by well-described relationship between head of associated reservoir, 

water discharged, and the power generated. This is a nonlinear and nonconcave 

three-dimensional (3-D) relationship. To explain this, one can find that a concave 

function has a curve in which the slope of the curve decreases as the horizontal 

elements grow up. With this definition, if slopes of the curve are not steadily 

decreasing the curve is said to be nonconcave.   

 

One of the major problems in solving MILP based HTS is the nonconcavity 

of each unit performance curve that made it difficult to be solved in Branch and 

Bound and Cutting plane technique (BB & C), resulting in a numerically unstable 
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solution. The proposed model represents the nonconcavities of each curve through 

additional binary variables.  In this sense, the model ought to maintain the accuracy 

within an acceptable range while keeping the computational burden low. Finally, the 

(0/1) mixed-integer linear programming problem can be solved efficiently by the 

available BB & C solvers.  

1.5 Security Constrained Generation Scheduling 

The inclusion of transmission security in the UC problem can affect the 

solution process [23, 24]. The N-1 contingency analysis needs to be performed in 

order to add the transmission constraints to the UC problem. Transmission system 

constraints, however, pose a big challenge to the UC. In other words, the 

dimensionality of the constraint matrix can be highly increased, and the 

computational effort to solve the resultant problem becomes a challenging process. 

Nevertheless, most of the UC algorithms unable to address N-1 security constraints 

[25]. 

 

Bender's decomposition algorithm [26-28] is widely used to solve the security 

constraint UC (SCUC). It solves the original UC by relaxing the model into a master 

and the sub-problems. Afterwards, using Benders cuts [28], the security violation can 

be detected, added and eventually removed from the solution.  

 

Using Bender’s decomposition allows one to achieve the objective value in 

less execution time. At this point, no security violation is persisted in the solution by 

adding the required number of Bender’s cuts whenever a violation is detected. In this 

sense, the imposition of security constraints can make the optimal solution even 

impossible to reach, as the constraint’s matrix dimension is now larger. 

 

To provide the transmission security margin through the generation 

scheduling process, one may alternatively outsource it from external software such as 

PowerWorld
®
.  In this sense, the contingency analysis in PowerWorld

®
 can be 
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integrated to the developed source files via relevant interface. Such interaction 

between PowerWorld
®
 and the source files enables one to add the contingency based 

transmission security constraints to the model.  

1.6 Thesis Objectives 

The main aim of the thesis is to develop an efficient MILP based algorithm for 

HTS problem. Detailed objectives of the thesis can be stated as: 

1. To develop a detailed hydraulic river (hydraulically coupled units) and 

reservoir systems modeling considering fixed (two-dimensional) and variable 

head variation (three-dimensional), minimum discharge, riparian constraint, 

and hydro unit-wise scheduling, non-concave performance curve linearization, 

head variation effects. 

2. To model the actual utility data such as practical input-output curves, river 

system data modeling to be used in realistic hydrothermal scheduling. 

3. To analyse the MILP solution in order to find an optimal point for BB & C 

method, which can results in cheaper solution while computational efforts 

maintained in a reasonable range. Improvements in computing time are studied 

using multi-threading technology.  

4. To validate the algorithm performance based on the practical utility data as 

well as the large-scale test systems. 

1.7 Scope of the work  

1. The proposed algorithms have been coded using  C/C++ programming with 

the INTEL
®

 C++ compiler in Microsoft
®
 Visual Studio IDE. 

2. To solve large-scale linear programming problems, ILOG CPLEX
®
 Barrier 

Optimizer, which is available as a callable C/C++ library is used. 
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3. To perform the security constraints, contingency analysis package available 

in PowerWorld
®
 commercial software is integrated to the developed C/C++ 

source files. 

4. BB & C technique is employed to perform the optimization process 

efficiently in the proposed MILP based HTS problem. 

5. A realistic power system is chosen to validate the model in practice. 

1.8 Thesis Contribution  

The contributions of this thesis are listed as follows: 

 Detailed modeling of river and reservoir systems considering head 

effects, minimum discharge limit, hydro unit-wise rather than plant-

wise. 

 Validation using practical hydrothermal system with comprehensive 

hydro model in every aspect such as reservoir, river network, 

nonlinear hydro unit performance curve, head variation effect, flow 

characteristics , riparian  constraint, and  limited water volume.  

 Direct modeling of coupling constraints using the actual utility data. It 

is done without using any reasoning or heuristic technique which is an 

issue in the LR and DP methods. 

 Data modeling of the practical utility for an actual hydrothermal test. 

 Multi-thread parallel computing to enhance the computational 

performance of the MIP algorithm. Using multi-threading 

computations allows BB & C technique obtaining the solution in less 

computational efforts.  

 Determining the optimal point for the BB & C method through the 

intersection point between two graphs of time-gap and cost-gap. 
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1.9 Thesis Outline  

This thesis is organized into six chapters. The outline of the chapters is as 

follows. 

 

Chapter 2 investigates the existing widely discussed algorithms in the field of 

UC, HTS. In this chapter, a compare-contrast study will run among the works done 

to date. The important findings from the previous works will be used as a guideline 

in this research. 

 

Chapter 3 deals with the mathematical formulation of the developed MILP-

HTS algorithm. The linearization and discretization strategies that were taken to 

facilitate the MILP based cascaded HTS solutions are highlighted in this chapter.  

 

Chapter 4 discusses the proposed MILP-HTS methodology and 

implementation process to overcome the lacks of previous algorithms faced by 

utilities using a more sophisticated model. Moreover, it also covers the detailed 

explanation of the river system modeling in the HTS problem under the MILP 

algorithm.  

 

Chapter 5 presents the results for the proposed MILP-HTS problem. A variety 

of test cases is used to verify the algorithm in different circumstances and 

constraints.  

 

In Chapter 6, conclusions of the proposed MILP-HTS and recommendation 

for future works are pointed out.  
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