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ABSTRACT 

 

 

 

 

As a result of increasing demand of wireless communication services, the use 

of the same radio communication channel for different services is inevitable. 

Therefore, radio frequency interference is a major cause of telecommunication 

service interruption. Rain attenuation increases the interference by scattering signal 

or attenuating the carrier signals. The affirmative impact of rain attenuation is when 

the rain attenuation gives harmful interference and does the same negative impact, 

but over the interfering links. The aim of this thesis is to analyse the interference in a 

wireless network consists of terrestrial, receiving satellite ground station, and High 

Altitude Platform (HAP), under clear sky and rainy condition at 28 GHz. This study 

is divided into two sections: the first section is the analysis of three interference 

scenarios, based on the link budgets and data obtained from Maxis Communication 

Bhd, one of the mobile operators in Malaysia, in three scenarios. First and second 

scenarios, the interference from terrestrial and HAP to satellite ground station 

separately. The third scenario when the interference from both systems to satellite 

ground station. The contour maps of Carrier to Interference ratio (C/I) at satellite 

ground station are drawn. The results demonstrated that only the third interference 

has a severity and requires great separation distances. The second section is analysis 

of the impact of rain attenuation on the interference. The measurements of rain are 

used from several local measuring sources. Radar database is used to distribute the 

rain rate using the cell exponential profile, Excell model. The C/I contour maps when 

satellite ground station exposed interference from both terrestrial and HAP is used to 

identify the location of the three systems. The impact of the rain attenuation 

computed from excel model when it affects over the interfering path is analysed. It is 

showed that there was a significant improvement in the interference to noise ratio 

when rainfall on the interfering link. The improvement in interference to noise ratio 

reached 11.14 dB. Received Signal Level (RSL) is measured for one year over 

terrestrial sites operated by Maxis, provides 15-minute integration time attenuation 

statistics obtained from a digital microwave. ITU-R models are used to extract 1-

minute rain rate and 1-minute rain attenuation from measured 15-minute rain 

attenuation. Furthermore, coefficients are proposed to convert rain attenuation from 

15-minute to 1-minute integration time directly. The impact of the rain attenuation 

computed from Maxis database and ITU-R model when it affects over the interfering 

path was analysed. The results clarified that improvement in the interference to noise 

ratio was more than 15 dB. Moreover, results showed that the rainfall estimation 

from received signal level measurement over terrestrial links has a great potential. 

Next, the commercial microwave links’ network of an arbitrary geometry could be 

considered as a widely distributed source of rainfall observation network with high 

resolution and minimum supervision. Designers can benefit from the positive impact 

of the rain when designing wireless networks. 
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ABSTRAK 

 

 

 

 
Hasil daripada permintaan yang semakin meningkat perkhidmatan komunikasi 

tanpa wayar, penggunaan saluran komunikasi radio yang sama untuk perkhidmatan yang 

berbeza tidak dapat dielakkan. Justeru gangguan frekuensi radio adalah salah satu punca 

utama gangguan perkhidmatan telekomunikasi. Pelemahan hujan meningkatkan 

gangguan melalui penyerakan isyarat atau melemahkan isyarat pembawa. Kesan 

afirmatif pelemahan hujan apabila ia menyebabkan gangguan dan kesan negatif yang 

sama turut memberi kesan kepada hubungan yang mengganggu. Tujuan tesis ini adalah 

menganalisis gangguan dalam rangkaian tanpa wayar terdiri daripada daratan, stesen 

satelit bumi, dan platform altitud tinggi (HAP), di bawah keadaan cerah dan keadaan 

hujan pada 28 GHz. Kajian ini terbahagi kepada dua bahagian: bahagian pertama 

merupakan analisis tiga senario gangguan, berdasarkan bajet talian dan data yang 

diperolehi dari Maxis Communications Bhd, salah satu pengendali talian mudah alih di 

Malaysia. Senario pertama dan kedua, adalah gangguan dari daratan dan HAP ke atas 

stesen satelit bumi berasingan. Senario ketiga adalah gangguan dari kedua-dua sistem ke 

atas stesen satelit bumi. Peta kontur nisbah pembawa kepada gangguan (C/I) di stesen 

satelit bumi telah dihasilkan. Keputusan menunjukkan bahawa hanya gangguan ketiga 

memberi kesan amat teruk dan memerlukan jarak pemisahan yang besar. Bahagian 

kedua adalah analisis kesan pelemahan hujan pada gangguan. Pengukuran hujan 

digunakan dari beberapa sumber pengukur tempatan. Pangkalan data radar digunakan 

untuk mengagihkan kadar hujan menggunakan profil sel eksponen, model Excel. Peta 

kontur C/I apabila stesen satelit bumi terdedah kepada gangguan dari kedua-dua daratan 

dan HAP digunakan untuk mengenal pasti lokasi ketiga-tiga sistem. Kesan pelemahan 

hujan yang dikira daripada model Excel apabila ia memberi kesan ke atas laluan yang 

mengganggu dianalisa. Ia menunjukkan bahawa terdapat peningkatan yang nyata dalam 

gangguan kepada nisbah bunyi apabila hujan pada pautan yang mengganggu. 

Peningkatan dalam nisbah gangguan kepada bunyi sehingga 11.14 dB. Tahap isyarat 

yang diterima (RSL) diukur selama satu tahun di lokasi daratan yang dikendalikan oleh 

Maxis, menyediakan integrasi masa 15-minit statistik pelemahan yang diperolehi 

daripada gelombang mikro digital. ITU-R model digunakan untuk mengekstrak 1-minit 

kadar hujan dan 1-minit pelemahan hujan dari 15-minit pelemahan hujan yang diukur. 

Tambahan pula, kami mencadangkan pekali untuk menukar secara terus pelemahan 

hujan dari integrasi masa 15-minit kepada 1-minit. Kesan pelemahan hujan dikira dari 

pangkalan data Maxis dan ITU-R model apabila ia memberi kesan atas laluan yang 

mengganggu turut dianalisa. Keputusan menunjukkan bahawa peningkatan dalam nisbah 

gangguan kepada hingar adalah lebih daripada 15 dB. Selain itu, keputusan 

menunjukkan bahawa anggaran hujan dari pengukuran tahap isyarat yang diterima atas 

talian daratan mempunyai potensi yang besar. Seterusnya, rangkaian talian gelombang 

mikro komersil geometri arbitrari boleh dianggap sebagai sumber meluas rangkaian 

pemerhatian hujan dengan resolusi tinggi dan penyeliaan minimum. Pereka boleh 

mendapat manfaat daripada kesan positif hujan apabila mereka bentuk rangkaian tanpa 

wayar. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

During the past two decades, wireless communications has changed the world 

more than any other technical achievement. Terrestrial and satellite systems are well-

established methods for providing mobile communications services. Both 

technologies have many benefits, as well as they have disadvantages. An innovative 

way to overcome the limitations of both the terrestrial tower-based and satellite 

systems is to provide wireless communications via High Altitude Platform Station 

(HAPS) [1, 2].When these three systems operate in one area, the most problematic 

disruption to the services and quality that they provide is interference. As a result of 

the rapid increase in the demand for the telecommunication services that these 

systems provide, it is necessary to make more efficient use of the spectrum, which 

includes frequency sharing between different services. The main determination of an 

appropriate operation of frequency sharing between radio communications systems is 

mutual interference [3]. The interference problem represents a set of interrelated 

regulatory and legal problems. There are two categories of interference problems: 

internal and external. In an effort to help avoid interference, telecommunication 

administration is responsible for the organization and sharing of national frequencies. 

At the international level, the International Telecommunications Union facilitates 

this goal.   
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One of the main factors that affect the interference of terrestrial and satellite 

radio links working at frequencies higher than 10 GHz is rain attenuation. This is 

particularly noticeable in tropical climates. The intention of this thesis is to analysis 

the interference in a designed wireless network that consists of satellite, terrestrial, 

and high altitude platforms. This network will be used to study the interference from 

the terrestrial and high altitude platforms to the satellite ground station in both clear 

sky and rainy conditions and will be based on measured data and link budgets that 

were obtained from radar data and microwave  received signal from Maxis 

communication Bhd one of the mobile operator in Malaysia. 

1.2 Problem Statement 

Today, there are many wireless communication systems, such as satellites 

and terrestrial systems. In the future, high-altitude platform (HAP) will be a part of 

the massive expansion in the communication world. As a result of this expansion, 

systems will be deployed in the same geographical areas and operate in the same 

frequency bands. The biggest challenge that faces these systems is the 

electromagnetic radiation from one system to another. This effect is known as radio 

frequency interference [4]. Compensating for this interference is one of the 

perquisites for the reliable design of a wireless communication system. In order to 

avoid situations of unacceptable interference levels and severe performance 

degradations, there is a strong need to use the appropriate frequency band and study 

the possible atmospheric attenuation [5]. 

The existing frequency band must be used as efficiently as possible. This can 

be accomplished by using a technique known as frequency reuse, which uses the 

same frequency several times within the same telecommunication system. This 

technique is based on the isolation between two links, such as a cellular radio system 

in a terrestrial network. Frequency sharing, which uses the same frequency of two or 

more radio communication systems and exploits higher-frequency bands, is one of 

the techniques that attempt to meet the increasing demand of telecommunications. 
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However, at these wavelengths, there are severe propagation losses in the atmosphere 

[6]. 

It is important to consider the atmospheric attenuation increase when the links 

are designed to work in the Ku, Ka, Q, and V bands. In such bands, rain attenuation 

is the main factor that limits the path's performance, especially in tropical regions. 

Rain attenuation aggravates the interference, due to the potentially existing rain 

attenuation [3]. The carrier-to-interference ratio degraded when the rain effect on the 

carrier link and increased when the rain effect on the interference link. 

The aim of this thesis is to analysis the interference in a designed wireless 

network that consists of a satellite, terrestrial, and a high-altitude platform operating 

at 28 GHz. This system will be used to study the interference from the terrestrial and 

high-altitude platforms on the satellite ground station under clear and rainy 

conditions using Excell model and ITU-R model. This thesis will attempt to show 

how rain reduces the interference when it is affected by the interfered link by 

increasing the interference-to-noise ratio. 

1.3 Objectives 

The objectives of this research are analyzing the interference in a designed a 

wireless network that consists of satellite, terrestrial and high altitude platform in an 

attempt to study the following: 

 To identify the separation distance between the satellite, HAP, and 

terrestrial systems using contour maps that depends on the carrier-to-

interference ratio. 

 To evaluate the impact of rain when it affects the interfering links. 
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 To propose recommendations to improve the performance of satellite, 

HAP, and terrestrial systems when they are coexistence with each 

other. 

1.4.1 Scope of the Work 

The scope of this project is to study the backhaul interference between the 

ground stations of satellite, high altitude platform, and wireless terrestrial systems 

when deployed in the same geographical area. 

 The research begins with collecting information on the system 

specifications of High Altitude Platforms (HAPs), microwaves system 

specifications, frequency sharing between HAPs and terrestrial 

systems data, interference between HAPs terrestrial systems, and rain 

intensity and attenuation data from different sources, particularly 

Maxis Communications Bhd. 

 Evaluation of the interference of satellite, terrestrial, and high altitude 

platform (HAP) with a ground station when the elevation angle at the 

HAPs ground station is 20, which is the worst case elevation angle. 

The evaluation of interference is carried out in both clear-sky and 

rainy conditions. In rainy conditions, the Excel model is used to 

present the rain rate distribution matrix for different peak values and 

rain cell lengths. 

 Development the contour maps to determine the separation distance of 

the satellite ground station, the high altitude platform, and the 

terrestrial systems depend on. 
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 Evaluate the rain attenuation impact on the interfering.  

 Finally, propose a recombination to establish a coexisting network 

consisting of satellite, HAP, and terrestrial systems.  

1.5  Outline of Thesis 

The outline of this thesis as following:  

Chapter 1: This chapter contains the introduction to this study, the problem 

statement, research objectives, and the scope of the study. 

Chapter 2: This chapter discusses the theory and literature reviews that have 

been previously been completed. This chapter also reviews the major radio 

interference problem faced in wireless networks and reviews the practical 

interference problems between satellite, terrestrial, and high-altitude platforms. 

Chapter 3: This chapter reviews the propagation mechanism that is related to 

interference. Furthermore, this chapter presented the survey of the rain attenuation 

prediction models that are required for slant path and terrestrial link's design: ITU-R 

predication model and exponential cell (Excel) rain attenuation model. Moreover, 

some methods that are used to convert various times of rain rate to one-minute rain 

rate are reviewed. 

Chapter 4: In this chapter, the research methodologies of this work are 

discussed. The source of information and program which was used to analyze the 

interference is the major topic of this chapter. Interference from terrestrial and HAPS 

to satellite ground station are evaluated and optimized in this chapter.  
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Chapter 5: This chapter shows the contour maps that determine the threshold 

between the satellite, terrestrial, and high altitude platform when they operate in the 

same area to avoid interference, depending on the carrier-to-interference ratio as 

follows: the contour maps are drawn to determine the threshold location of the 

satellite ground station near the existing terrestrial site. The contour maps are then 

drawn to determine the threshold location of the high altitude platform near the 

existing terrestrial and the satellite ground station. 

Chapter 6: This chapter contains the interference of evaluation and analysis of 

interference from the terrestrial and high altitude platform to satellite ground, as well 

as the charts for different cases that show the impact of rain attenuation on the 

interference using the measured rain when the Excell and ITU-R models are applied. 

Moreover it illustrates the positive impact of rain attenuation when the rain effect on 

the interference links to clarify their contribution to improve the interference-to-noise 

ratio at the satellite ground station. 

Chapter 7: In this chapter, the main ideas and summarized results of this 

research are concluded and future areas of study are discussed. 
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