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ABSTRACT

Electric power system network is highly sensitive to the supply and demand
of power at generation as well as at user level. Erratic power demand under
prevailing generation conditions may cause decay in power system frequency that
can lead power system network towards cascading, islanding or blackouts. To avoid
this undesirable situation and further streamline the system, load shedding is one of
the safe alternative to restore the frequency from further decay. Numerous
researches have been conducted on this aspect of the problem; however, there is a
potential for another provision through optimization of the load shedding. Therefore,
the main purpose of this project is to devise and present an optimal dynamic
underfrequency load shedding scheme. The parameters studied in this study include:
the implementation of developed dynamic underfrequency load shedding relay, the
modified and simplified primary controllers (turbine governor and automatic voltage
regulator) and the application of dynamic loads (especially frequency dependent
loads) to enhance the load shedding optimization using power system simulation
tool. The developed algorithm for underfrequency load shedding relay has
considered load priority whereby the load with least priority will be shed first. The
algorithm has been tested on some IEEE standard systems and one utility system.
These test systems include the IEEE 9, 39 bus systems and one 27 bus utility system.
The results of these test cases confirm the achievement of the objectives of this thesis
such as; saving of load shedding amount of 1 MW, 2 MW and 0.01 MW in IEEE 9,
39 bus systems and 27 bus utility system respectively. Other achievement includes
reduction in load shedding steps i.e. for each test case, the complete load shedding
was achieved in 3 steps compared to 4 or more steps in other researches and the
frequency converged to its nominal value in less time i.e. 3 sec, 5 sec and 10 sec in
each test case respectively, compared to greater than or equal to 20 seconds in other
researches.
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ABSTRAK

Sistem rangkaian tenaga elektrik sangat sensitif terhadap penghantaran dan
permintaan kuasa samada pada tahap penjanaan serta penggunaan. Permintaan kuasa
yang tidak menentu pada sistem penjanakuasa boleh menyebabkan pengurangan atau
kejatuhan nilai frekuensi pada sistem rangkaian sehingga boleh berlakunya
berturutan, masalah kepulauan atau bekalan elektrik terputus. Bagi mengelakkan
daripada situasi yang tidak diingini dan untuk lebih mengefektifkan sistem,
penyahbebanan adalah salah satu penyelesaian yang boleh digunakan untuk
memulihkan sistem daripada kejatuhan nilai frekuensi yang lebih teruk. Banyak
kajian telah dilakukan pada aspek permasalahan ini, namun terdapat kaedah lain iaitu
melalui pengoptimalisasian penyahbebanan pada sistem boleh dilakukan. Tujuan
utama projek ini adalah untuk memperkenalkan skim yang optimum mengenai
penyahbebanan sekiranya sistem berada di bawah paras frekuensi. Parameter yang
digunakan dalam kajian ini termasuklah penggunaan geganti bagi penyahbebanan
dibawah paras frekuensi, pengubahsuaian dan permudahan kawalan utama
(pengawalimbang turbin dan pengatur voltan automatik) serta penggunaan beban
secara dinamik (terutamanya bagi beban yang bergantung pada frekuensi) untuk
meningkatkan pengoptimuman penyahbebanan dengan menggunakan kaedah
simulasi sistem kuasa. Algoritma yang dibangunkan untuk geganti penyahbebanan di
bawah paras frekuensi ini telah mengambil kira faktor keutamaan beban di mana
beban yang mempunyai keutamaan paling rendah terlebih dahulu dinyahbebankan.
Algoritma ini telah diuji pada beberapa sistem IEEE yang piawai dan satu sistem
utiliti. Sistem yang diuji ini meliputi sistem IEEE 9, 39-bas dan satu utiliti sistem 27-
bas. Keputusan dari ujikaji menunjukkan pencapaian objektif tesis ini seperti
penjimatan penyahbebanan sebanyak 1 MW, 2 MW dan 0.01 MW pada sistem IEEE
9, 39-bas dan sistem utiliti 27-bas. Pencapaian lain termasuklah pengurangan
langkah pada penyahbebanan dimana untuk setiap kes ujikaji, penyahbebanan yang
lengkap dapat dicapai dengan hanya 3 langkah berbanding 4 langkah atau lebih yang
dilakukan oleh pengkaji yang lain dan tempoh bagi frekuensi untuk kembali pada
paras nominal adalah kurang iaitu 3 saat, 5 saat dan 10 saat untuk setiap kes tersebut
berbanding dengan 20 saat atau lebih untuk tempoh yang dilakukan sebelum ini oleh
pengkaji yang lain.
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CHAPTER 1

INTRODUCTION

1.1 Background

In a stable and balanced power system (PS) network, all generating power

stations are tied together and interconnected at constant power frequency or nominal

frequency ( rnomf ) but at different transmission voltage (U ) levels. This is to feed the

loads at different destinations in a radial or ring main way. The load demand, and

need of more comfortable and luxurious life has given PS a new shape in day to day

topology and stability limits. One of the examples at transmission end is wider PS

network starting from medium transmission U to extra even ultra high U levels and

increase of power electronics devices at the utilization end.

The geographical infrastructure of PS is directly related to climate and

topographical structure of the area since it varies from very hot to cold even icy,

humid to dry weather, open areas to congested areas, hilly areas to planes, and

tropical to sub-tropical seasons. In this wider structure of PS, expected or

unexpected natural calamities, some human errors are unavoidable to affect PS

transmission network and in turn causing unbalance between supply and demand

affecting its rnomf . The use of power electronic appliances at consumer end also adds
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rnomf an oscillating nature, while improving load shedding scheme (LSS) at optimal

value needs more concentration in the area of PS stability and control.

The complex nature of modern PS (i.e. consisting of few hundreds of buses to

thousands of buses with tens of generators to hundreds of generators respectively)

leads to breakdowns, islanding, or blackouts either due to normal switching of bulk

loads, natural cause, malfunction of protecting devices, human error or difference

between generation and supply demand, i.e. due to increase in load demand.

At the planning level to overcome these untoward incidents (which on one

hand suffers an enormous economical loss and on the other hand loss of trust of the

consumer), design of some optimal LSSs including primary controllers like Turbine

Governor (TG) or Governor (GOV), Exciter or Automatic Voltage Regulator (AVR),

and Stabilizers or Power System Stabilizer (PSS) design or modifications are needed

to bring back the rnomf to its near possible value and/or to meet the objectives in the

transient period like generator outage, sudden bulk load change or switching of the

load, line fault and its tripping etc.

Complexity of PS stability has been a challenging issue for PS engineers

since its recognition in 1920, when it was firstly observed as an important problem.

Results of the first laboratory tests on miniature systems were reported in 1924; the

first field tests on the stability on a practical PSs were conducted in 1925 (Proteus,

1920; AIEE Subcommittee Report, 1937; Prabha et al., 1994; Prabha et al., 2004).

Gregory (1991) has reported that until mid-1960s there was no major issue of

reliability (i.e. the probability of satisfactory operation of PS for long and planned

time, or the ability of PS to supply continuously satisfactorily, with few interruptions

during the period) of bulk electric supply, either within electric utility industry or

within its various publics. But this was realized by about 30 million people as their
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dependency on electricity when, on Tuesday November 9, 1965 at 5:16p.m., the

nation experienced a biggest power failure in history across the Northeastern US and

Ontario, Canada (Bishop, 1999), which lasted for 13 hours, while major power

outages happened before and after this unique occasion but not severe of same

situation.

Robustness of a system is defined by its ability to maintain stable operation

under normal and perturbed conditions (PowerFactory, 2010). The PS can go under

various conditions i.e. Normal, Stable-Alert, Preventive-Emergency, Immediate-In-

extremis, Heroic and Restorative or Corrective (Lester and Kjell, 1978; Prabha,

1994) as shown in Figure 1.1.

No overloading/
Secure

Some
disturbance
occurred/
Insecure

Severe
disturbance/

A-secure

Cascading
outages

Shut-down
of plants

Reconnect
all

facilities

Normal/
Stable

Restorative/
Corrective or

resynchronization

Alert/
Preventive

control

In extremis/
Heroic

Emergency/
Immediate

Figure 1.1 Power System Operating States

The question of level of security (i.e. limits applied against any disturbance

caused at PS such as short circuits) as a control (online or offline) and robustness of a

PS was discussed when in US a blackout (as of the first category) due to frequency

( ef ) sag which remained for 7 hours in January 1977 and again on July 13, 1977
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when thunderstorm and lightning was struck on two 345 kV transmission lines

causing their tripping (Lester and Kjell, 1978).

Two blackouts due to fault at China Steel Corporation (CSC) and a ground

fault at neighboring industrial customer (in December 1992) served by the same

substation affected a serious blackout in CSC (Yenn et al., 1996). Similar problem

was also reported in western and northern India grid stations in 1995 to 1997

(Chandekar and Tarnekar, 2002). Likewise, on July 29, 1999 Tai power system in

(Taiwan) had also received significant loss of energy for a long period due to failure

of the 345 kV transmission line (Yi et al., 2005).

The reports also show that similar problems (supply interruptions resulting in

cascaded tripping), over the world, of power failure also occurred during 2003. Such

type of interruptions, which are known as the worst PS failures in last few decades

especially just in two months i.e. August and September 2003 are as under:

i) US-Canada blackout of August 14, 2003: Many states of North America

were affected and went in dark due to power interruption/failure of North American

Eastern Interconnection of 63 GW load (Amin, 2004; Andersson et al., 2004a;

2005b; Yuri et al., 2005).

ii) August 28, 2003 Central UK blackout: August 28, 2003 at 1826 hours,

Central UK (Amin, 2004; Yuri et al., 2005; Andersson et al., 2005) faced a

catastrophic failure caused by a fault in the 275 kV national grid system affecting a

ring around London affecting at least 250,000 people.

iii) Grand Northern Malaysia blackout in 2003: September 01, 2003 at 0958

hours, Northern Malaysia (TNB, 2003).
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iv) September 23, 2003 blackout in Southern Sweden and Eastern Denmark:

September 23, 2003 at 1235 hours, nearly four million (1.6 million people in Sweden

and 2.4 million people in Denmark) customers lost total load power of 4700 MW in

Southern Sweden and 1850 MW of load in Eastern Denmark following a cascading

outage that struck Scandinavia in 2003 (Amin, 2004; Andersson et al., 2004a; 2005b;

Yuri et al., 2005).

v) Italian blackout of September 28, 2003: On September 28, 2003 at 0328

hours many parts of Italy and Southern Switzerland remained in dark due tripping of

major tie-line supplying to Switzerland and other countries of Western Europe in last

quarter of the 2003, and Southern Switzerland (Sandro and Carlo, 2004; Andersson

et al., 2004). Such disaster was also experienced in Karachi Pakistan, on July 29,

2006, where almost half of the Karachi city (industrial and biggest city) including

one of the largest Steel Mill of Asia experienced a major breakdown due to supply

suspension from National Grid affecting 21 out of 52 Grid stations. The power was

restored after 12 minutes (http://dawn.com.pk/2006/07/30/local4.htm, 2006). In

addition, other countries such as; Singapore, Brazil, UK, USA, Indonesia, Italy,

China, Denmark, Sweden, Switzerland, Canada, Iran, Australia, Thailand, Malaysia,

Taiwan, also had major blackouts at different timings of the year under report (Majid

and Mohammad, 2004; Andersson et al., 2004; CIGRE Working Group B5.21,

2005).

Due to blackouts, these countries have suffered a big economic loss (millions

of dollars) and losing of trust of the consumer. One of the causes of blackout is due

to underfrequency (UF) constraint. Some of the causes of UF are: severe demand

and generation gap or imbalance, protection system failures, incorrect or slow actions

of system operator. Generally, UF causing power interruptions are due to stresses

produced on the generators exceeding its limits causing them to trip. The difficulty

in seeking solutions is to prevent cascaded tripping from a single outage that

eventually leads to violations of n-1 contingencies. An important fact is that, such

electrical problems will continue to happen and cannot be completely prevented.

Causes of these outages can be due to lightning strikes, storms, broken conductors,
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random equipment damages, terrorist firings on towers or lines and/or transformers,

fire, tree encroachments or human errors.

One of the factors that often delay the restoration process is either loss of

generation or tie line tripping or overloading ( loading ) when load exceeds the

generation, it could disturb the balance between generation and demand causing ef

decline. This ef decline due to mismatch of generation to meet the demand will

acquire power from the stored energy from prime mover and will slow down the

rotation or speed (in turn reduction in rnomf ).

However, if the disturbance is not severe, the reservoir will have tendency to

compensate it, otherwise if this loss is not corrected in the predetermined time the ef

will decline rapidly and will affect the main components of steam plant i.e. station

auxiliaries, the turbine and thus reducing cooling and efficiency of the system

leading it to trip or shut down the plant through protection devices. Other PS

accessories affected by abnormal ef include generator and the step-up transformer

(Rockefeller et al., 1988; PS Relaying Committee, R2009).

After contingency, the system is in dynamic phase leading to long or short

term rnomf instability which is determined by; inertia ( h or hpn , rated to MVA or

MW respectively), and loading capacity of the generators. Through these

parameters, the in-equilibrium condition of the generation and load can be predicted

directly after the disturbance occurred. In this case, some immediate and pre-

selected LSS can provide a path for the PS to restore the rnomf back to its set value.

The UF needs to control the governor runback or count operator action to correct the

turbine speed.
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The convergence problem, has been found in the form of overshoot and/or

undershoot of the ef due to over shedding (OS) and/or under shedding (US) of the

load respectively (Mahmoud et al., 1995; Abdullah et al., 2004). This may be either

due to lack of coordination between load shedding (LS) steps and the

corresponding ef , delay between the steps, or effect of some system equipments (i.e.

ef dependent loads). Hence to acquire optimal underfrequency load shedding

scheme (UFLSS), beside other parameters affecting rnomf , capacitor banks; ef

dependent loads; etc. are some of the variables which are needed to be studied.

The invention of underfrequency relay (UFR) from its time taking

electromechanical to very fast acting numerical ones nowadays it is possible to detect

the incident and take fast action against cause through underfrequency load shedding

relay (UFLSR). Various LSSs from its traditional to automatic even dynamic

UFLSSs have been reported by different researchers. In different countries the

stages used for UFLSSs are found to be from 5 to as many as 15. The fast action of

these numerical relays can be utilized in order to enhance their work and hence with

the proper programming of numerical UFLSRs optimal results are possible.

However, in order to overcome such type of incidences; PS experts around

the world were/are called and discussions were/are made also. PS Stability as well as

PS Stability Controls Subcommittees of the Institute of Electrical and Electronics

Engineers (IEEE) Power & Energy Society (PES), Western Electric Coordinating

Council (WECC), PS Dynamic Performance Committee meetings were/are invited,

and at various International forums such as: International Council on Large Electric

Systems (CIGRE), IEEE, North American Electric Reliability Corporation (NERC),

International Association of Science and Technology for Development (IASTED),

North American Electric Reliability Organization (NAERO) etc. were/are held to

sort out the problem and recommend ways and means to get rid of these incidences

or to reduce the risk of major blackouts by using emerging technologies in future.
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1.2 Power System Stability, Control and Blackouts

Reflecting the current industry needs, definition of PS Stability is required to

be redefined with reference to the experiences, and understanding, which is

physically motivated similar to any dynamic system (confirming to precise

mathematical definitions) providing systematic basis for its classification, reliability

and security. One of the definitions of PS Stability as given by Prabha et al. (2004)

depicts that an electric PS should be able to regain the state of operating equilibrium

duly coupled with whole system after exposed to a physical disturbance at initial

operating condition.

The classification of PS stability (Prabha et al., 1994; Prabha et al., 2004) is

shown in Figure 1.2. Due to dynamic behavior of PS broadly, it can be divided into

different dynamic phenomena (Jan et al., 1997) as shown in Figure 1.3. Further,

dynamic phenomena can be separated into different transient areas of study i.e. short-

term transients (or electromagnetic transients), mid-term transients

(electromechanical transients), long-term transients according to their time scale

characteristics and ef bands (Prabha et al., 1994; PowerFactory, 2010) as shown in

Figure 1.4.

Since rotor angle ( phi ) and ef stability falls in the scope of this research

hence it is discussed here. On the basis of general definition of PS stability, two

categories of stability are derived; small-signal and large-signal stability with

nonlinear dynamics. Under small-signal stability the system will return back to the

normal operation with a small disturbance; and this may be worked out through

linearized state space equation to delineate the PS dynamics. Whereas, the large or

transient stability of the system brings system back to its normal state, but with a

high disturbance to the extent of loss of the circuits (single/multi phase) and even to

generation unit. Under these circumstances linearized PS model will not apply, thus
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the use of nonlinear equations for analysis would be useful for direct analysis of the

PS dynamics.

Figure 1.2 Classification of Power System Stability

Bikash and Chaudhuri (2005) explained the appearance of electromechanical

oscillations and their reduction in stability as: it started with the operation of

synchronous generators in parallel. Oscillations caused by mechanical inertia and

power angle characteristics of 1-3 Hz are described as hunting. Low ef

electromechanical oscillations with frequencies ranging from 0.1 Hz to 2 Hz are

inherent to electric PS. Problems due to inadequate damping of such oscillations

have been encountered throughout the history of PS. As discussed above, the earliest

problems, which were experienced in the 1920s, were in the form of spontaneous

oscillations or hunting.

The application of continuously acting AVR contributed to the improvement

in small-signal (or steady-state) stability. In the 1950s and 1960s, utilities were

primarily concerned with transient stability. However, this situation has gradually

changed since late 1960s. Significant improvements in transient stability

performance have been achieved through the use of high response exciters and

special stability aids.
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Figure 1.3 Time frame of the basic PS dynamic phenomena

Figure 1.4 Characterization of Transients in PS according to Time Scales or ef

bands



11

Bikash and Chaudhuri (2005) also have reported the role of inter-area

oscillations in many system separation and few wide-scale blackouts by highlighting

the incidents occurred at: Detriot Edison (DE), Ontario Hydro (OH), Hydro Quebec

(HQ) (1960s, 1985), Finland-Sweden-Norway-Denmark (1960s), Saskatchewan-

Manitoba Hydro-Western Ontario (1966), Italy-Yugoslavia-Austria (1971-1974),

WECC (1964 and 1996), Mid-continent area power pool (MAPP) (1971, 1972),

South East Australia (1975), Scotland-England (1978), Western Australia (1982,

1983), Taiwan (1985), Ghana-Ivory Coast (1985). Besides also the Malaysian

system disturbance was reported in August 1996.

It is observed that the weak and poorly damped low ef electromechanical

oscillations occur due to insufficient damping torque in some generators, causing

both local-mode oscillations (1 Hz to 2 Hz) and inter-area oscillations (0.1 Hz to 1

Hz) (Bikash and Chaudhuri, 2005).

1.3 Research Problem

Underfrequency Load Shedding (UFLS) is a common practice for electric

utilities around the world (Vladimir et al., 1996). It is imperative to save generator

from damage at supply end and blackouts from trust as well as economic loss at

consumer end or PS network from cascading and islanding. In certain conditions

such as; tie line tripping, generator outage, bulk load switching, local mode or inter-

area oscillations, various types of LSSs are in practice. For such LSSs, the UFRs

found are of modern types like; microprocessor based UFLSR or numerical UFLSR,

however traditional or old type of electromechanical as well as solid state LSR

(especially in the old power plants) are still being used.
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The convergence problem in an emergency condition has been reported by

various researchers (Mahmoud et al., 1995; Abdullah et al., 2004). They have

proposed its improvement by considering effect of; ef dependent loads, capacitor

banks, and synchronous machine or induction motors (in simulation). However

besides mitigating such convergence problem, if some other additional factors are

taken into consideration, they can help to obtain optimal load shed and to retrieve ef

at its nearest possible nominal value which is the main objective of this research.

Such factors can be about software selection, development of LSS, and application of

primary controllers. At first instant selection of proper software and insertion of

accurate dynamic component parameters especially of ef dependent loads (this is

also due to some software limitations while designing LSS) can help in getting

accurate ef decay response. While developing LSS, selecting total number of LS

stages, considering time between two stages (this helps to make discrimination

between two steps), selecting amount of LS in first stage can minimize the LS

amount. Primary controllers’ proper selection and simplification/tuning (because of

the probability that same controller could function properly in one or two or three

conditions but not for all contingency conditions as used in this research) can help to

retrieve ef at its nearest possible nominal value.

Based on the above problems faced by the PS network in the form of

blackouts or islanding or system separation and their solution through LS, the

following problem statement is devised for this research:

� OS and/or US are the main attractive parameters for this research to design an

optimal dynamic UFLSS. These parameters are found being the cause of

convergence problem.
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1.4 Significance of Research/Motivation

PS reliability and security practically is not 100% possible, therefore, PS

stability has remained challenging task in Reliability, Security and Quality for the PS

planners, working committees, and researchers due to; day to day rising demand of

power, network congestions, development in technology from source end (generator)

to user end (load), increasing transmission U levels, use of different components or

devices or appliances from different makes in the same network, and unavoidable

natural calamities like; storms, lightning, atmospheric temperature changes etc.

It is very difficult to keep PS stable in catastrophic and unavoidable

circumstances. However, through proper planning, PS stability can be achieved

through: saving the PS from further big loss i.e. loading causing network

disconnections, generator trips, islanding, and blackouts and making system easy to

be restored. The first could be done by the LS so that some amount of load is cut off

to save the further network disconnections, generator trips or turbine-generators

(mechanically coupled) from any mechanical damage (leading to permanent loss),

which will not only give financial loss but will also be time taking to replace the

system. Moreover in such prevailing conditions to find out the alternative source of

supply is also challenging task when there is lack of reserve capacity. Thus,

optimization of LS (i.e. to minimize the LS amount) is possible to overcome the OS

and/or US; as a result the convergence problem could be minimized by incorporating

ef dependent loads, counting primary controllers.
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1.5 Research Objectives

This research is mainly focused to overcome problems by optimizing the LS

in UF decay condition. However other objectives include:

i) To develop an UFLSR for trapping the cause at its first time and its

rectification.

ii) To observe the effect of ef dependent loads on LS.

iii) To develop an algorithm performing quick action in minimum stages and/or

time for complete LS.

iv) To reduce over shedding.

1.6 Scope of the Research

Flow chart in Figure 1.5 shows the scope of this research work. It consists of

four parts. First is to sort out the problem, second is to find out the solution through

software or tool and method of formulation of the problem and solution, third is to

test the solution on some standard systems to obtain optimal results and finally to

validate the results by comparing with other methods and testing on other test and

utility systems.

The problem is identified through review of literature in order to have the

loop holes left by other researchers which needs for its improvement in their work

regarding UFLSSs or to develop some new work. For its solution a suitable software

or program will be helpful. Convergence problem was found for this research and

Commercial DIgSILENT PowerFactory 14 (DSPF) software was selected in this

regard because of its attractive features.
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An algorithm will help to detect and identify the problem and its rectification

at an optimal level. For this besides proposed (50-70% LS in first stage; depending

upon rate of decay; LS stages minimized to three stages, consideration of ef

dependent loads and least possible load to shed first), swing equation, Newton

Raphson (NR) iterative method, and ef combined with rate of change of frequency

( edf dt or ROCOF) method will be helpful.

To confirm and validate the developed work, it is to be tested on some of the

standard systems and compare with the previous work. This research work is tested

on some standard systems like IEEE 009, 039 bus and one utility for its 027 number

of buses. Finally to validate, the results are compared with some previous work.

Start

Problem
Identified

?

Yes

Sort out Problem to
develop new/to

introduce new/to
find out loop holes/
to challenge some
work/to improve

already work done
etc

Review Literature

No

Confirm
Problem
for PhD
validity

?

Yes

Select the
Environment/

Software/Program
in which problem

will be solved

Software
meets the need

of research work
?

No

No

Yes

(A)

Select the method
for the Statement,

Formulation &
Solution of the

problem

Does the
method suit

Software
environment

?
No

Yes

Is
Problem being

Solved
?No

Develop an Optimal
Algorithm for the

solution of problem

Apply developed
algorithm to some

Test system

Test the Results for
various events like
S/C, OL, Tie-line

tripping, gen.
deficiency, etc

(B)

Stop

Yes

Does the
Results satisfy

?

(B)

Yes

Improve the
Algorithm

Validate
the Algorithm with
other conventional
methods and test

systems
?

Yes

No

(A) (C)

(C)

No

Figure 1.5 Flow chart showing scope of the research work

Limited scope of this research is summarized as:

i) Furnishing UFLSR in DSPF.

ii) Development and implementation of an algorithm for UFLSR.

iii) Use of ef dependent loads.

iv) Use of modified and simplified primary controllers i.e. GOV and AVR.
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v) Testing of developed algorithm in contingencies causing mismatch between

electric power supply and demand on IEEE 009, 039 bus systems and in one

utility system for 027 number of nodes.

1.7 Thesis Organization

The structure of this thesis is outlined below:

Chapter 2 is mainly concerned with review of literature; elaborating need of

LS, problems associated with LS from time to time and their remedial, comparison of

different LS methods, selection of software by comparing their different features and

applications. The proposed method is also highlighted in this chapter.

Chapter 3 highlights dynamic simulation considerations for stability studies

including RMS or time domain analysis or simulation (TDS) in DSPF counting LF

execution methods, IC and simulation plus different disturbances generated. PS

standard element models like synchronous machine, transmission line, transformer,

and ef dependent load along with standard primary controller models like AVR and

GOV are also discussed in this chapter.

Chapter 4 contains frames and primary controllers used in this research. It

describes the simplified and modified models of primary controllers like AVR and

GOV. It also elaborates them mathematically. To identify controller performances

their step response tests are also added.
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In chapter 5 modeled dynamic UFLSR is discussed. For validation, along

obtained results the application of simplified and modified primary controllers and

developed UFLSR is discussed here.

Chapter 6 contains the study cases used in this research. It consist the results

of test cases with and without primary control and application of UFLSR with

dynamic LSS in different disturbances like load change, generator torque change

and/or generator outage.

Chapter 7 will, however, conclude the results obtained in this study and on

the basis of those findings some suggestions will be made for future line of research.
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