AN OPTIMAL DYNAMIC UNDERFREQUENCY LOAD SHEDDING SCHEME

DUR MUHAMMAD SOOMRO

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Power Systems)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > MAY 2011

To my beloved mother, brothers, sisters, wife and children

ACKNOWLEDGEMENT

I am grateful to almighty Allah for His uncounted blessings bestowed upon me and giving me opportunity to see the world and enhance my education, skills and gain diverse experience of my life.

Let me first of all express my sincere gratitude to my supervisor, Professor Ir. Dr. Abdullah Asuhaimi bin Mohd Zin, for his valuable guidance and support during the period of this research. His expert advice and continued encouragement have been instrumental towards the successful completion of this research for obtaining PhD degree.

I also thank to my departmental colleagues for their continuous inspiration, timely critical comments and valuable suggestions on my dissertation during course of my research conducted at this University.

I am also thankful to the staff of research laboratory, Department of Electrical Power Engineering, Faculty of Electrical Engineering, Universiti Teknologi Malaysia, for their continued help to facilitate me to conduct my research and analysis of my results in the department.

I acknowledge Fundamental Research Grant Scheme (FRGS), Ministry of Higher Education (MOHE), for financial support, Higher Education Commission of Pakistan for partial financial support and Balochistan University of Engineering and Technology Khuzdar, Balochistan, Pakistan for study leave.

Last but not least, heartfelt gratitude and thanks are due to my family. I feel a deep sense of gratitude for my mother and brothers for their continuous inspiration, support and at every stage of my life and my professional career. I can not forget patience, love and back-up of my wife and children throughout my stay for study at this campus. I would also like to thank my sisters for their prayers and encouragement.

ABSTRACT

Electric power system network is highly sensitive to the supply and demand of power at generation as well as at user level. Erratic power demand under prevailing generation conditions may cause decay in power system frequency that can lead power system network towards cascading, islanding or blackouts. To avoid this undesirable situation and further streamline the system, load shedding is one of the safe alternative to restore the frequency from further decay. Numerous researches have been conducted on this aspect of the problem; however, there is a potential for another provision through optimization of the load shedding. Therefore, the main purpose of this project is to devise and present an optimal dynamic underfrequency load shedding scheme. The parameters studied in this study include: the implementation of developed dynamic underfrequency load shedding relay, the modified and simplified primary controllers (turbine governor and automatic voltage regulator) and the application of dynamic loads (especially frequency dependent loads) to enhance the load shedding optimization using power system simulation tool. The developed algorithm for underfrequency load shedding relay has considered load priority whereby the load with least priority will be shed first. The algorithm has been tested on some IEEE standard systems and one utility system. These test systems include the IEEE 9, 39 bus systems and one 27 bus utility system. The results of these test cases confirm the achievement of the objectives of this thesis such as; saving of load shedding amount of 1 MW, 2 MW and 0.01 MW in IEEE 9, 39 bus systems and 27 bus utility system respectively. Other achievement includes reduction in load shedding steps i.e. for each test case, the complete load shedding was achieved in 3 steps compared to 4 or more steps in other researches and the frequency converged to its nominal value in less time i.e. 3 sec, 5 sec and 10 sec in each test case respectively, compared to greater than or equal to 20 seconds in other researches.

ABSTRAK

Sistem rangkaian tenaga elektrik sangat sensitif terhadap penghantaran dan permintaan kuasa samada pada tahap penjanaan serta penggunaan. Permintaan kuasa yang tidak menentu pada sistem penjanakuasa boleh menyebabkan pengurangan atau kejatuhan nilai frekuensi pada sistem rangkaian sehingga boleh berlakunya berturutan, masalah kepulauan atau bekalan elektrik terputus. Bagi mengelakkan daripada situasi yang tidak diingini dan untuk lebih mengefektifkan sistem, penyahbebanan adalah salah satu penyelesaian yang boleh digunakan untuk memulihkan sistem daripada kejatuhan nilai frekuensi yang lebih teruk. Banyak kajian telah dilakukan pada aspek permasalahan ini, namun terdapat kaedah lain iaitu melalui pengoptimalisasian penyahbebanan pada sistem boleh dilakukan. Tujuan utama projek ini adalah untuk memperkenalkan skim yang optimum mengenai penyahbebanan sekiranya sistem berada di bawah paras frekuensi. Parameter yang digunakan dalam kajian ini termasuklah penggunaan geganti bagi penyahbebanan dibawah paras frekuensi, pengubahsuaian dan permudahan kawalan utama (pengawalimbang turbin dan pengatur voltan automatik) serta penggunaan beban secara dinamik (terutamanya bagi beban yang bergantung pada frekuensi) untuk meningkatkan pengoptimuman penyahbebanan dengan menggunakan kaedah simulasi sistem kuasa. Algoritma yang dibangunkan untuk geganti penyahbebanan di bawah paras frekuensi ini telah mengambil kira faktor keutamaan beban di mana beban yang mempunyai keutamaan paling rendah terlebih dahulu dinyahbebankan. Algoritma ini telah diuji pada beberapa sistem IEEE yang piawai dan satu sistem utiliti. Sistem yang diuji ini meliputi sistem IEEE 9, 39-bas dan satu utiliti sistem 27bas. Keputusan dari ujikaji menunjukkan pencapaian objektif tesis ini seperti penjimatan penyahbebanan sebanyak 1 MW, 2 MW dan 0.01 MW pada sistem IEEE 9, 39-bas dan sistem utiliti 27-bas. Pencapaian lain termasuklah pengurangan langkah pada penyahbebanan dimana untuk setiap kes ujikaji, penyahbebanan yang lengkap dapat dicapai dengan hanya 3 langkah berbanding 4 langkah atau lebih yang dilakukan oleh pengkaji yang lain dan tempoh bagi frekuensi untuk kembali pada paras nominal adalah kurang iaitu 3 saat, 5 saat dan 10 saat untuk setiap kes tersebut berbanding dengan 20 saat atau lebih untuk tempoh yang dilakukan sebelum ini oleh pengkaji yang lain.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENTS	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xii
	LIST OF FIGURES	xiv
	LIST OF SYMBOLS	xvii
	LIST OF ABBREVIATIONS	XX
	LIST OF APPENDICES	xxiii
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Power System Stability, Control and	8
	Blackouts	
	1.3 Research Problem	11
	1.4 Significance of the Research/Motivation	13
	1.5 Research Objectives	14
	1.6 Scope of the Research	14
	1.7 Thesis Organization	16
2	LITERATURE REVIEW	18
	2.1 Introduction	18

2.2	Power	r System I	Phenomena and Instability	19
	Issues			
2.3	Power	r System I	Limits	23
	2.3.1	Stability	Problem and its Solutions	26
2.4	Active	e Power a	nd Frequency Control	28
	2.4.1	Effect of	f Change of Active Power on	30
		System 1	Frequency	
	2.4.2	Active P	ower Balance through	32
		Reserve	Capacity	
	2.4.3	Paramet	ers Affecting Rate of Change	34
		of Frequ	ency	
		2.4.3.1	Effect of Constant Load,	35
			and Generator Torque on	
			Rate of Change of	
			Frequency	
		2.4.3.2	Effect of Varying Inertia	36
			on Rate of Change of	
			Frequency	
		2.4.3.3	Effect of Variations in	37
			Generator and Load	
			Torque on Rate of Change	
			of Frequency	
	2.4.4	Active P	ower Balance through Load	39
		Sheddin	g	
	2.4.5	Effect of	f Load on Load Shedding	41
2.5	Need	of Load S	hedding	44
	2.5.1	Underfre	equency Load Shedding	45
		Schemes	8	
	2.5.2	Develop	ment in Load Shedding	48
		Schemes	5	
	2.5.3	Standard	ls for Design and Operation	49
		of Under	rfrequency Load Shedding	
		Schemes	5	

2.6	Problems Associated with Load Shedding	50
	Schemes and their Remedies/ Load	
	Shedding Constraints	
2.7	Methods, Tools and Techniques Applied for	r 51
	Load Shedding	
2.8	Underfrequency Load Shedding Relay	75
2.9	Conclusion and Hypothesis	78
CO	NAMIC SIMULATION NSIDERATIONS FOR STABILITY ALYSIS	79
3.1	Introduction	79
3.2	DIgSILENT PowerFactory as a Modeling	80
	and Simulation Tool	
	3.2.1 Load Flow Analysis	86
	3.2.2 Initial Condition	90
	3.2.3 Events Generation	91
	3.2.4 Electromechanical (RMS)	91
	Simulation	
3.3	Power System Elements in DIgSILENT	92
	PowerFactory for RMS Simulation	
	3.3.1 Synchronous Machine	93
	3.3.2 Transmission Line	99
	3.3.3 Transformer	100
	3.3.4 Load	101
3.4	Preparation of Test Cases for Stability	113
	Analysis	
3.5	Conclusion	113
PRI	MARY CONTROLLERS FOR	115
UNI	DERFREQUENCY LOAD SHEDDING	
ОРТ	FIMIZATION	
4.1	Introduction	115
4.2	Composite Frame	116

	4.3	Contr	oller Models	118
		4.3.1	Turbine-Governor Control	119
		4.3.2	Exciter/ Automatic Voltage	127
			Regulator Control	
	4.4	Concl	usion	134
5	UNI	DERFR	EQUENCY LOAD SHEDDING	136
	REI	LAY AI	ND DYNAMIC	
	UNI	DERFR	EQUENCY LOAD SHEDDING	
	SCH	IEME		
	5.1	Introd	uction	136
	5.2	Load-	f_e characteristic	137
	5.3		ling of Underfrequency Load ling Relay	138
	5.4		cation of Modeled Underfrequency Shedding Relay	141
	5.5		frequency Load Shedding Scheme	142
		5.5.1	Algorithm for Dynamic	146
			Underfrequency Load Shedding	
			Scheme	
	5.6	Concl	usion	152
6	RES	SULTS	AND ANALYSIS	153
	6.1	Introd	uction	153
	6.2	IEEE	009bus Test System	155
		6.2.1	Load- f_e characteristic	155
		6.2.2	Proposed UFLSS results with	157
			generator outage event in 009 bus	
			system	
	6.3	IEEE	039bus Test System	159
		6.3.1	Proposed UFLSS results with	160
			generator outage event in 039 bus	
			system	
	6.4	Utility	027 bus Test System	162

		6.4.1	Proposed UFLSS results with	162
			generator outage event	
	6.5	Summ	ary	164
7	COI	NCLUS	IONS AND SUGGESTIONS	165
	7.1	Concl	usions	165
	7.2	Accor	nplishment of Research Objectives	166
	7.3	Contri	bution	167
	7.4	Propo	sed Future Research/Development	167
REFERENC	ES			168
Appendices A	∧ – E			180-227

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Behavior of f_e under three combinations of Supply	30
	and Demand	
2.2	Summary of the review most relevant to this	71
	research	
2.3	Comparison of application features of PSS/E,	76
	DSPF, SINCAL and PSAT	
2.4	Uunderfrequency Load Shedding Relays used for	77
	Load Shedding Schemes	
3.1	Internal Parameters Identification of Synchronous	95
	Machine	
3.2	Range of Generator Dynamic Parameters	96
3.3	Typical over head line parameters at 60 Hz	99
3.4	Typical two underground cables (direct-buried	100
	Paper-Insulated Lead-Covered (PILC) and high-	
	pressure pipe type (PIPE)) parameters at 60 Hz	
3.5	Load- f_e Sensitivity of different types of loads	103
3.6	Selection of exponent or kpu/kqu ratio values for	105
	different load behavior	
3.7	Static characteristics of load components	109
3.8	Characteristics of different load classes	110
4.1	GOV_GAST_UFLS model parameters	123
4.2	AVR_ESDC1A_UFLS model parameters	131
5.1	Three steps of load shed for three load shedding	145

schemes

6.1	Load Shedding summary for 009 bus test case	159
6.2	Load Shedding summary for 039 bus test case	161
6.3	Load Shedding summary for utility test case	164

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Power System Operating States	3
1.2	Classification of Power System Stability	9
1.3	Time frame of the basic power system dynamic	10
	phenomena	
1.4	Characterization of transients in PS according	10
	to time scales or f_e bands	
1.5	Flow chart showing scope of the research work	15
3.1	Multilevel modelling of PS elements	80
3.2	RMS network model for mid-term and long-	81
	term transients under balanced network	
	conditions	
3.3	Basic Time Domain Simulation to Prepare the	83
	Test Case for Stability Analysis	
3.4	Schematic diagram of a three-phase round rotor	94
	synchronous machine	
3.5	Schematic diagram of a three-phase salient	94
	rotor synchronous machine	
3.6	Rotor angle definition	97
3.7	Input and Output structure of the Synchronous	98
	machine for RMS simulation	
3.8	A general Load model	101
3.9	Mixture of Static and Dynamic Loads for RMS	104
	simulation	
3.10	Input and Output structure of the General Load	107
	for stability studies	

3.11	Model used to approximate the behaviour of	110
2.10	the linear dynamic load	110
3.12	Model used to approximate the behaviour of	112
	the non linear dynamic load	
4.1	SYM-Frame No Droop Signal Interconnections	117
4.2	Steam Turbine-Governor speed control	120
4.3	Global Comprehensive structure of	121
	GOV_GAST model	
4.4	GOV_GAST_UFLS model	123
4.5	Working structure of each building block of the	125
	GOV_GAST_UFLS	
4.6	Step response test result of	126
	GOV_GAST_UFLS	
4.7	Fundamental structure of DC Exciter	128
4.8	Global Comprehensive structure of IEEE	129
	AVR_ESDC1A model	
4.9	AVR_ESDC1A_UFLS model	130
4.10	Step response test result of	133
	AVR_ESDC1A_UFLS	
4.11	Application of Simplified Controllers in DSPF	134
5.1	Block diagram of a 3 step UFLSR	139
5.2	Induction of three steps UFLSR in DSPF	141
5.3	Application of three steps UFLSR in PS	142
	structure	
5.4	Hypothesized f_e decay slope vs. LS	144
5.5	Flow chart of development of general	147
	Algorithm using DSPF	
5.6	Flow chart elaborating Dynamic UFLSS	148
5.7	Calculation of load shed block	151
6.1	Time- f_e plot against %OL with 100% static	156
	load model	
6.2	Time- f_e plot against %OL with 70% dynamic	156
	load model	

6.3	Load Shedding performed for Static and	158
	Complex Loads in 3 steps in 009 bus test	
	system	
6.4	Load Shedding performed for Static and	160
	Complex Loads in 3 steps in 039 bus test	
	system	
6.5	Load Shedding performed for Static and	163
	Complex Loads in 3 steps in real test system	

LIST OF SYMBOLS

Variable Variable Name in DSPF in DSPF

$\delta_{_e}$	-	Electrical Power Angle
9	-	Phase or voltage angle
ω_{0}	-	Synchronous Speed or Nominal Angular Speed
\leq	-	Less than or Equal to
$\frac{1}{2}mv^2$	-	Kinetic Energy
С	-	Capacitance
d	-	Deviation of or Change in referred parameter from its nominal
d/dt	-	Rate of change of
$df_e dt$ or	-	Derivative of Electrical Frequency or ROCOF
ROCOF		
df_ehz or	-	Deviation of Electrical Frequency
df_e		
$df_e q$	-	Deviation in Quasi Frequency
df_{rot}	-	Rotor angle deviation
dfrotx	-	
dload	-	machines in the system Change in Load
dltbr	-	Breaker Operating Time
dltfr	-	Time Delay
dorhz	-	Speed deviation
dpgt	-	Deviation in Electrical Power Generated

dP_{load}	-	change in P of Composite Load
$dP_{load 0}$	-	change in P of Composite Load in f_e Independent component
dP_{loadf}	-	change in P of Composite Load in f_e Dependent component
dP_T	-	Deviation in Mechanical Turbine Power input to Generator
droop	-	Frequency Droop
$f_{e}(0)$	-	Initial f_e
$f_e(\infty)$	-	Final f_e
$f_e h z / f_e$	-	Electrical Frequency in Hz/p.u.
$f_e q$	-	Quasi-frequency
f_{\min}	-	Minimum allowable/settling Frequency
fr _{dev}	-	Average frequency
f_{rnom} or	-	Nominal frequency or Set Frequency
f_{set}		
fr_{ref}	-	Reference Frequency
h/hpn	-	Inertia based on MVA or MW
I_0	-	Current
Κ	-	Secondary f_e bias/gain
k	-	Constant of Proportionality
Kpf	-	Primary f_e bias/gain
kpf	-	Load reduction factor or damping constant
L	-	Inductance
loading	-	Overload/ Overloading
$loading_0$	-	Initial loading
Р	-	Active or Real Power
P_{gen}	-	Active Power Generated
P_{gen_sum}	-	Total Active Power of Generation
pgt	-	Electrical Power Generated by Generator
phi	-	Rotor angle of the q-axis with reference to the reference U of the network ($f_{\text{rest}} = 0.02$)
P_{load}	-	the network (=firot-90°) Active Power of Load

P_{load_sum}	- Total Active Power of Load
$P_{load_sum_c}$	- Total Active Power of the Loads Connected
P_{loss}	- Total Active Power loss
P_{loss}	- Active Power Loss
P_{\max}	- Power Transfer Capability
P_{T}	- Mechanical Turbine Power input to Generator
p_z	- Generator number of pair of poles
Q	- Reactive Power
R	- Resistance
S_{base}	- Base Apparent Power
S_{gen}	- Generator Nominal Apparent Power
$Shed_{load}$	- Total load which must be shed
$\sin \delta_{_{e}}$	- Amplitude of Power Angle
S _{nom}	- Power rating
T_a	- Accelerating torque
T_{gen}	- Generator torque
T_{load}	- Load torque
T_s	- Relay Operating/Pickup Time
U or u	- Voltage or voltage magnitude
W_k	- K.E. of the rotating masses
xme	- Electrical or Generator Torque
xmt	- Mechanical or Turbine Torque
xspeed	- Speed of Generators
Y	- Admittance
Ζ	- Impedance

LIST OF ABBREVIATIONS

+ve	-	Positive
AGC	-	Generation Control or Automatic Generation Control
AI	-	Artificial Intelligence
AS	-	Slip Iteration
ATE	-	Area Transient Error
av	-	average
AVR	-	Automatic Voltage Regulator/Exciter
CIGRE	-	International Council on Large Electric Systems
CSC	-	China Steel Corporation
DE	-	Differential Equations
DS	-	DIgSILENT
DSL	-	DIgSILENT Simulation Language
DSPF	-	DIgSILENT PowerFactory 14
DUFR	-	Discrete UFR
EMT	-	Electromagnetic Transient
ETMSP	-	Extended Transient-Midterm Stability Package
Exe	-	Execute
FD	-	Frequency Domain
FSM	-	Finite-State Machines
FTR	-	Frequency Trend Relay
GA	-	Genetic Algorithm
GEC	-	General Electric Company
GOV	-	Governor
GPA	-	Guam Power Authority

IASTED	-	International Association of Science and Technology for
		Development
IC	-	Initial Condition
IEEE	-	Institute of Electrical and Electronics Engineers
K.E.	-	Kinetic Energy
km	-	kilo meter
LC	-	Load Curtailed/Load Curtailment
LDS	-	Total load which must be shed in p.u.
LDS		
LF	-	Load Flow
LFA	-	Load Flow Analysis or Power Flow Analysis
LFC or	-	Load Frequency Control or Automatic Load Frequency
ALFC		Control
LPF	-	Low-pass Filter
LS	-	Load Shedding
LSEOL	-	LS equal to OL
LSEOL		
LSR	-	Load Shedding Relay
LSS	-	Load Shedding Scheme
mmf	-	Magnetomotive force
msec	-	milli second
Mvar	-	mega var
MW	-	mega Watt
mW	-	milli Watt
NAERO	-	North American Electric Reliability Organization
NERC	-	North American Electric Reliability Council
NN	-	Neural Net
NR	-	Newton-Raphson
OC	-	Open Circuit
OF	-	Over-frequency
OL	-	Loading or Overloading
OS	-	Over shedding
p.u.	-	Per Unit

PDSS	-	Power Distribution System Simulator
PES	-	Power and Energy Society
PF	-	Power Flow
PF14	-	PowerFactory 14
PFUM	-	PowerFactory 14 User Manual
PS	-	Power System or System
PSA	-	Power System Analysis
PSS	-	Power System Stabilizer
RAS	-	Remedial Action Schemes
RMS	-	Electromechanical transient
SC	-	Short Circuit
SCADA	-	Supervisory Control Centre Department
sec	-	Seconds
SL	-	Slack
SPS	-	Special Protection Schemes
SYM	-	Synchronous Machine
TC	-	Time Constants
TD	-	Time Domain
TDS	-	Time Domain Analysis/Simulation
TG	-	Turbine Governor
TNB	-	Tenaga Nasional Berhad
UF	-	Underfrequency
UFLS	-	Underfrequency Load Shedding
UFLSR	-	Underfrequency Load Shedding Relay
UFLSS	-	Underfrequency Load Shedding Scheme
UFR	-	Underfrequency Relay
US	-	Under shedding
UV	-	Under Voltage
-ve	-	Negative
VT	-	Voltage Transformer
WCC	-	Western Coordination Council
WSCC/	-	Western Electricity Coordination Council
WECC		

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
А	Test Cases Data	180	
A.1	Structure of Test data	181	
A.2	IEEE 009 bus 03machine network parameters	185	
A.3	IEEE 039 bus 10machine network parameters	187	
A.4	Utility 027 bus 13machine network	190	
	parameters		
A.5	Single line diagram for the 009 bus system	193	
A.6	Single line diagram for the 039 bus system	194	
A.7	Single line diagram for the Utility 027 bus	195	
	system		
A.8	Convergence, Load flow and system	196	
	summary report for the 009 bus system		
A.9	Convergence, Load flow and system	197	
	summary report for the 039 bus system		
A.10	Convergence, Load flow and system	198	
	summary report for the Utility 027 bus		
	system		
A.11	Load flow analysis results of 009 bus system	199	
A.12	Load flow analysis results of 039 bus system	200	
A.13	Load flow analysis results of 027 bus system	204	
В	Modified primary controller reports	207	
	B.1 GOV_GAST_UFLS block	207	
	definitions, equations and check		
	report		
	B.2 AVR_ESDC1A_UFLS block	210	

	C	lefinitions, equations and check		
	r	eport		
С	Classical	and sixth order synchronous	214	
	machine	machine model		
	C.1 C	Generator model	214	
	C.2 C	Classical model	214	
	C.3 S	Sixth order model	216	
D	Simulatio	Simulation Tools		
	D.1 (General features considerations for	219	
	S	election of simulation tool		
	D.2 S	Selection of DSPF as a simulation	220	
	t	ool		
	D.3 F	Features of DIgSILENT	221	
	F	Powerfactory		
	D.4 F	Free and commercial simulation tools	224	
	u	used in the field of power system		
E	Publication	ons during the doctorate study	227	
Е	D.3 F F D.4 F	Features of DIgSILENT Powerfactory Free and commercial simulation tools used in the field of power system	22	

CHAPTER 1

INTRODUCTION

1.1 Background

In a stable and balanced power system (PS) network, all generating power stations are tied together and interconnected at constant power frequency or nominal frequency (f_{rnom}) but at different transmission voltage (U) levels. This is to feed the loads at different destinations in a radial or ring main way. The load demand, and need of more comfortable and luxurious life has given PS a new shape in day to day topology and stability limits. One of the examples at transmission end is wider PS network starting from medium transmission U to extra even ultra high U levels and increase of power electronics devices at the utilization end.

The geographical infrastructure of PS is directly related to climate and topographical structure of the area since it varies from very hot to cold even icy, humid to dry weather, open areas to congested areas, hilly areas to planes, and tropical to sub-tropical seasons. In this wider structure of PS, expected or unexpected natural calamities, some human errors are unavoidable to affect PS transmission network and in turn causing unbalance between supply and demand affecting its f_{rnom} . The use of power electronic appliances at consumer end also adds

 f_{rnom} an oscillating nature, while improving load shedding scheme (LSS) at optimal value needs more concentration in the area of PS stability and control.

The complex nature of modern PS (i.e. consisting of few hundreds of buses to thousands of buses with tens of generators to hundreds of generators respectively) leads to breakdowns, islanding, or blackouts either due to normal switching of bulk loads, natural cause, malfunction of protecting devices, human error or difference between generation and supply demand, i.e. due to increase in load demand.

At the planning level to overcome these untoward incidents (which on one hand suffers an enormous economical loss and on the other hand loss of trust of the consumer), design of some optimal LSSs including primary controllers like Turbine Governor (TG) or Governor (GOV), Exciter or Automatic Voltage Regulator (AVR), and Stabilizers or Power System Stabilizer (PSS) design or modifications are needed to bring back the f_{rnom} to its near possible value and/or to meet the objectives in the transient period like generator outage, sudden bulk load change or switching of the load, line fault and its tripping etc.

Complexity of PS stability has been a challenging issue for PS engineers since its recognition in 1920, when it was firstly observed as an important problem. Results of the first laboratory tests on miniature systems were reported in 1924; the first field tests on the stability on a practical PSs were conducted in 1925 (Proteus, 1920; AIEE Subcommittee Report, 1937; Prabha *et al.*, 1994; Prabha *et al.*, 2004).

Gregory (1991) has reported that until mid-1960s there was no major issue of reliability (i.e. the probability of satisfactory operation of PS for long and planned time, or the ability of PS to supply continuously satisfactorily, with few interruptions during the period) of bulk electric supply, either within electric utility industry or within its various publics. But this was realized by about 30 million people as their dependency on electricity when, on Tuesday November 9, 1965 at 5:16p.m., the nation experienced a biggest power failure in history across the Northeastern US and Ontario, Canada (Bishop, 1999), which lasted for 13 hours, while major power outages happened before and after this unique occasion but not severe of same situation.

Robustness of a system is defined by its ability to maintain stable operation under normal and perturbed conditions (PowerFactory, 2010). The PS can go under various conditions i.e. Normal, Stable-Alert, Preventive-Emergency, Immediate-Inextremis, Heroic and Restorative or Corrective (Lester and Kjell, 1978; Prabha, 1994) as shown in Figure 1.1.

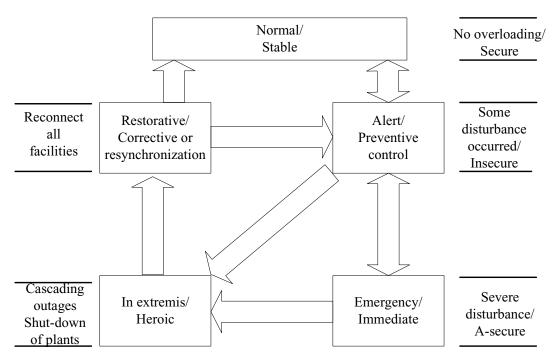


Figure 1.1 Power System Operating States

The question of level of security (i.e. limits applied against any disturbance caused at PS such as short circuits) as a control (online or offline) and robustness of a PS was discussed when in US a blackout (as of the first category) due to frequency (f_e) sag which remained for 7 hours in January 1977 and again on July 13, 1977

when thunderstorm and lightning was struck on two 345 kV transmission lines causing their tripping (Lester and Kjell, 1978).

Two blackouts due to fault at China Steel Corporation (CSC) and a ground fault at neighboring industrial customer (in December 1992) served by the same substation affected a serious blackout in CSC (Yenn *et al.*, 1996). Similar problem was also reported in western and northern India grid stations in 1995 to 1997 (Chandekar and Tarnekar, 2002). Likewise, on July 29, 1999 Tai power system in (Taiwan) had also received significant loss of energy for a long period due to failure of the 345 kV transmission line (Yi *et al.*, 2005).

The reports also show that similar problems (supply interruptions resulting in cascaded tripping), over the world, of power failure also occurred during 2003. Such type of interruptions, which are known as the worst PS failures in last few decades especially just in two months i.e. August and September 2003 are as under:

i) US-Canada blackout of August 14, 2003: Many states of North America were affected and went in dark due to power interruption/failure of North American Eastern Interconnection of 63 GW load (Amin, 2004; Andersson *et al.*, 2004a; 2005b; Yuri *et al.*, 2005).

ii) *August 28, 2003 Central UK blackout*: August 28, 2003 at 1826 hours, Central UK (Amin, 2004; Yuri *et al.*, 2005; Andersson *et al.*, 2005) faced a catastrophic failure caused by a fault in the 275 kV national grid system affecting a ring around London affecting at least 250,000 people.

iii) *Grand Northern Malaysia blackout in 2003*: September 01, 2003 at 0958 hours, Northern Malaysia (TNB, 2003).

iv) September 23, 2003 blackout in Southern Sweden and Eastern Denmark: September 23, 2003 at 1235 hours, nearly four million (1.6 million people in Sweden and 2.4 million people in Denmark) customers lost total load power of 4700 MW in Southern Sweden and 1850 MW of load in Eastern Denmark following a cascading outage that struck Scandinavia in 2003 (Amin, 2004; Andersson *et al.*, 2004a; 2005b; Yuri *et al.*, 2005).

v) Italian blackout of September 28, 2003: On September 28, 2003 at 0328 hours many parts of Italy and Southern Switzerland remained in dark due tripping of major tie-line supplying to Switzerland and other countries of Western Europe in last quarter of the 2003, and Southern Switzerland (Sandro and Carlo, 2004; Andersson et al., 2004). Such disaster was also experienced in Karachi Pakistan, on July 29, 2006, where almost half of the Karachi city (industrial and biggest city) including one of the largest Steel Mill of Asia experienced a major breakdown due to supply suspension from National Grid affecting 21 out of 52 Grid stations. The power was restored after 12 minutes (http://dawn.com.pk/2006/07/30/local4.htm, 2006). In addition, other countries such as; Singapore, Brazil, UK, USA, Indonesia, Italy, China, Denmark, Sweden, Switzerland, Canada, Iran, Australia, Thailand, Malaysia, Taiwan, also had major blackouts at different timings of the year under report (Majid and Mohammad, 2004; Andersson et al., 2004; CIGRE Working Group B5.21, 2005).

Due to blackouts, these countries have suffered a big economic loss (millions of dollars) and losing of trust of the consumer. One of the causes of blackout is due to underfrequency (UF) constraint. Some of the causes of UF are: severe demand and generation gap or imbalance, protection system failures, incorrect or slow actions of system operator. Generally, UF causing power interruptions are due to stresses produced on the generators exceeding its limits causing them to trip. The difficulty in seeking solutions is to prevent cascaded tripping from a single outage that eventually leads to violations of n-1 contingencies. An important fact is that, such electrical problems will continue to happen and cannot be completely prevented. Causes of these outages can be due to lightning strikes, storms, broken conductors,

random equipment damages, terrorist firings on towers or lines and/or transformers, fire, tree encroachments or human errors.

One of the factors that often delay the restoration process is either loss of generation or tie line tripping or overloading (*loading*) when load exceeds the generation, it could disturb the balance between generation and demand causing f_e decline. This f_e decline due to mismatch of generation to meet the demand will acquire power from the stored energy from prime mover and will slow down the rotation or speed (in turn reduction in f_{rnom}).

However, if the disturbance is not severe, the reservoir will have tendency to compensate it, otherwise if this loss is not corrected in the predetermined time the f_e will decline rapidly and will affect the main components of steam plant i.e. station auxiliaries, the turbine and thus reducing cooling and efficiency of the system leading it to trip or shut down the plant through protection devices. Other PS accessories affected by abnormal f_e include generator and the step-up transformer (Rockefeller *et al.*, 1988; PS Relaying Committee, R2009).

After contingency, the system is in dynamic phase leading to long or short term f_{rnom} instability which is determined by; inertia (*h* or *hpn*, rated to MVA or MW respectively), and *loading* capacity of the generators. Through these parameters, the in-equilibrium condition of the generation and load can be predicted directly after the disturbance occurred. In this case, some immediate and preselected LSS can provide a path for the PS to restore the f_{rnom} back to its **set value**. The UF needs to control the governor runback or count operator action to correct the turbine speed. The convergence problem, has been found in the form of overshoot and/or undershoot of the f_e due to over shedding (OS) and/or under shedding (US) of the load respectively (Mahmoud *et al.*, 1995; Abdullah *et al.*, 2004). This may be either due to lack of coordination between load shedding (LS) steps and the corresponding f_e , delay between the steps, or effect of some system equipments (i.e. f_e dependent loads). Hence to acquire optimal underfrequency load shedding scheme (UFLSS), beside other parameters affecting f_{rnom} , capacitor banks; f_e dependent loads; etc. are some of the variables which are needed to be studied.

The invention of underfrequency relay (UFR) from its time taking electromechanical to very fast acting numerical ones nowadays it is possible to detect the incident and take fast action against cause through underfrequency load shedding relay (UFLSR). Various LSSs from its traditional to automatic even dynamic UFLSSs have been reported by different researchers. In different countries the stages used for UFLSSs are found to be from 5 to as many as 15. The fast action of these numerical relays can be utilized in order to enhance their work and hence with the proper programming of numerical UFLSRs optimal results are possible.

However, in order to overcome such type of incidences; PS experts around the world were/are called and discussions were/are made also. PS Stability as well as PS Stability Controls Subcommittees of the Institute of Electrical and Electronics Engineers (IEEE) Power & Energy Society (PES), Western Electric Coordinating Council (WECC), PS Dynamic Performance Committee meetings were/are invited, and at various International forums such as: International Council on Large Electric Systems (CIGRE), IEEE, North American Electric Reliability Corporation (NERC), International Association of Science and Technology for Development (IASTED), North American Electric Reliability Organization (NAERO) etc. were/are held to sort out the problem and recommend ways and means to get rid of these incidences or to reduce the risk of major blackouts by using emerging technologies in future.

1.2 Power System Stability, Control and Blackouts

Reflecting the current industry needs, definition of PS Stability is required to be redefined with reference to the experiences, and understanding, which is physically motivated similar to any dynamic system (confirming to precise mathematical definitions) providing systematic basis for its classification, reliability and security. One of the definitions of PS Stability as given by Prabha *et al.* (2004) depicts that an electric PS should be able to regain the state of operating equilibrium duly coupled with whole system after exposed to a physical disturbance at initial operating condition.

The classification of PS stability (Prabha *et al.*, 1994; Prabha *et al.*, 2004) is shown in Figure 1.2. Due to dynamic behavior of PS broadly, it can be divided into different dynamic phenomena (Jan *et al.*, 1997) as shown in Figure 1.3. Further, dynamic phenomena can be separated into different transient areas of study i.e. shortterm transients (or electromagnetic transients), mid-term transients (electromechanical transients), long-term transients according to their time scale characteristics and f_e bands (Prabha *et al.*, 1994; PowerFactory, 2010) as shown in Figure 1.4.

Since rotor angle (*phi*) and f_e stability falls in the scope of this research hence it is discussed here. On the basis of general definition of PS stability, two categories of stability are derived; small-signal and large-signal stability with nonlinear dynamics. Under small-signal stability the system will return back to the normal operation with a small disturbance; and this may be worked out through linearized state space equation to delineate the PS dynamics. Whereas, the large or transient stability of the system brings system back to its normal state, but with a high disturbance to the extent of loss of the circuits (single/multi phase) and even to generation unit. Under these circumstances linearized PS model will not apply, thus the use of nonlinear equations for analysis would be useful for direct analysis of the PS dynamics.

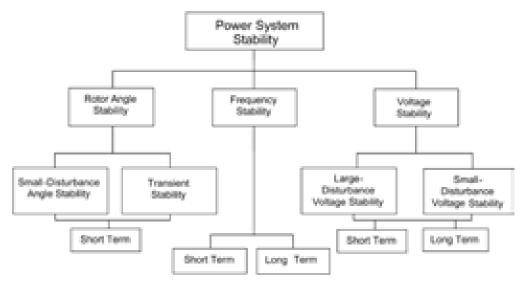


Figure 1.2 Classification of Power System Stability

Bikash and Chaudhuri (2005) explained the appearance of electromechanical oscillations and their reduction in stability as: it started with the operation of synchronous generators in parallel. Oscillations caused by mechanical inertia and power angle characteristics of 1-3 Hz are described as hunting. Low f_e electromechanical oscillations with frequencies ranging from 0.1 Hz to 2 Hz are inherent to electric PS. Problems due to inadequate damping of such oscillations have been encountered throughout the history of PS. As discussed above, the earliest problems, which were experienced in the 1920s, were in the form of spontaneous oscillations or hunting.

The application of continuously acting AVR contributed to the improvement in small-signal (or steady-state) stability. In the 1950s and 1960s, utilities were primarily concerned with transient stability. However, this situation has gradually changed since late 1960s. Significant improvements in transient stability performance have been achieved through the use of high response exciters and special stability aids.

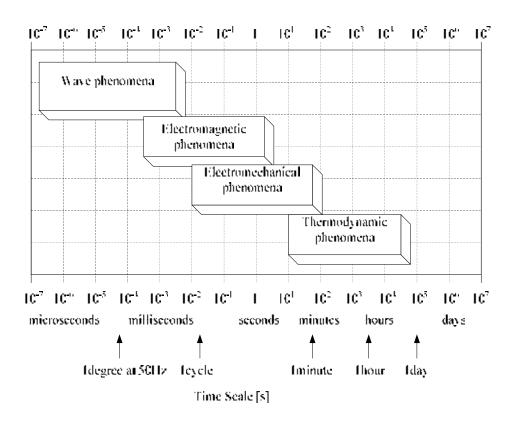
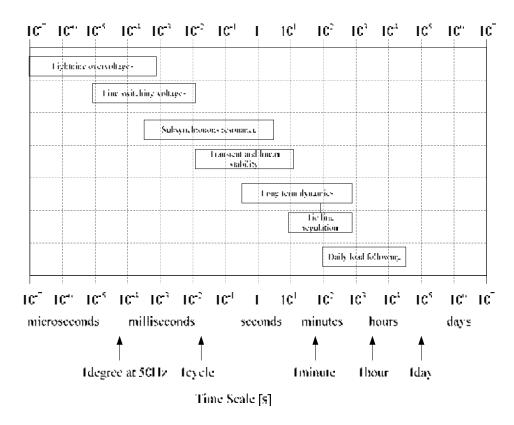



Figure 1.3 Time frame of the basic PS dynamic phenomena

Figure 1.4 Characterization of Transients in PS according to Time Scales or f_e bands

Bikash and Chaudhuri (2005) also have reported the role of inter-area oscillations in many system separation and few wide-scale blackouts by highlighting the incidents occurred at: Detriot Edison (DE), Ontario Hydro (OH), Hydro Quebec (HQ) (1960s, 1985), Finland-Sweden-Norway-Denmark (1960s), Saskatchewan-Manitoba Hydro-Western Ontario (1966), Italy-Yugoslavia-Austria (1971-1974), WECC (1964 and 1996), Mid-continent area power pool (MAPP) (1971, 1972), South East Australia (1975), Scotland-England (1978), Western Australia (1982, 1983), Taiwan (1985), Ghana-Ivory Coast (1985). Besides also the Malaysian system disturbance was reported in August 1996.

It is observed that the weak and poorly damped low f_e electromechanical oscillations occur due to insufficient damping torque in some generators, causing both local-mode oscillations (1 Hz to 2 Hz) and inter-area oscillations (0.1 Hz to 1 Hz) (Bikash and Chaudhuri, 2005).

1.3 Research Problem

Underfrequency Load Shedding (UFLS) is a common practice for electric utilities around the world (Vladimir *et al.*, 1996). It is imperative to save generator from damage at supply end and blackouts from trust as well as economic loss at consumer end or PS network from cascading and islanding. In certain conditions such as; tie line tripping, generator outage, bulk load switching, local mode or interarea oscillations, various types of LSSs are in practice. For such LSSs, the UFRs found are of modern types like; microprocessor based UFLSR or numerical UFLSR, however traditional or old type of electromechanical as well as solid state LSR (especially in the old power plants) are still being used.

The convergence problem in an emergency condition has been reported by various researchers (Mahmoud et al., 1995; Abdullah et al., 2004). They have proposed its improvement by considering effect of; f_e dependent loads, capacitor banks, and synchronous machine or induction motors (in simulation). However besides mitigating such convergence problem, if some other additional factors are taken into consideration, they can help to obtain optimal load shed and to retrieve f_e at its nearest possible nominal value which is the main objective of this research. Such factors can be about software selection, development of LSS, and application of primary controllers. At first instant selection of proper software and insertion of accurate dynamic component parameters especially of f_e dependent loads (this is also due to some software limitations while designing LSS) can help in getting accurate f_e decay response. While developing LSS, selecting total number of LS stages, considering time between two stages (this helps to make discrimination between two steps), selecting amount of LS in first stage can minimize the LS amount. Primary controllers' proper selection and simplification/tuning (because of the probability that same controller could function properly in one or two or three conditions but not for all contingency conditions as used in this research) can help to retrieve f_e at its nearest possible nominal value.

Based on the above problems faced by the PS network in the form of blackouts or islanding or system separation and their solution through LS, the following problem statement is devised for this research:

OS and/or US are the main attractive parameters for this research to design an optimal dynamic UFLSS. These parameters are found being the cause of convergence problem.

1.4 Significance of Research/Motivation

PS reliability and security practically is not 100% possible, therefore, PS stability has remained challenging task in Reliability, Security and Quality for the PS planners, working committees, and researchers due to; day to day rising demand of power, network congestions, development in technology from source end (generator) to user end (load), increasing transmission U levels, use of different components or devices or appliances from different makes in the same network, and unavoidable natural calamities like; storms, lightning, atmospheric temperature changes etc.

It is very difficult to keep PS stable in catastrophic and unavoidable circumstances. However, through proper planning, PS stability can be achieved through: saving the PS from further big loss i.e. *loading* causing network disconnections, generator trips, islanding, and blackouts and making system easy to be restored. The first could be done by the LS so that some amount of load is cut off to save the further network disconnections, generator trips or turbine-generators (mechanically coupled) from any mechanical damage (leading to permanent loss), which will not only give financial loss but will also be time taking to replace the system. Moreover in such prevailing conditions to find out the alternative source of supply is also challenging task when there is lack of reserve capacity. Thus, optimization of LS (i.e. to minimize the LS amount) is possible to overcome the OS and/or US; as a result the convergence problem could be minimized by incorporating f_e dependent loads, counting primary controllers.

1.5 Research Objectives

This research is mainly focused to overcome problems by optimizing the LS in UF decay condition. However other objectives include:

- i) To develop an UFLSR for trapping the cause at its first time and its rectification.
- ii) To observe the effect of f_e dependent loads on LS.
- iii) To develop an algorithm performing quick action in minimum stages and/or time for complete LS.
- iv) To reduce over shedding.

1.6 Scope of the Research

Flow chart in Figure 1.5 shows the scope of this research work. It consists of four parts. First is to sort out the problem, second is to find out the solution through software or tool and method of formulation of the problem and solution, third is to test the solution on some standard systems to obtain optimal results and finally to validate the results by comparing with other methods and testing on other test and utility systems.

The problem is identified through review of literature in order to have the loop holes left by other researchers which needs for its improvement in their work regarding UFLSSs or to develop some new work. For its solution a suitable software or program will be helpful. Convergence problem was found for this research and Commercial *DIgSILENT PowerFactory* 14 (DSPF) software was selected in this regard because of its attractive features.

An algorithm will help to detect and identify the problem and its rectification at an optimal level. For this besides proposed (50-70% LS in first stage; depending upon rate of decay; LS stages minimized to three stages, consideration of f_e dependent loads and least possible load to shed first), swing equation, Newton Raphson (NR) iterative method, and f_e combined with rate of change of frequency ($df_e dt$ or ROCOF) method will be helpful.

To confirm and validate the developed work, it is to be tested on some of the standard systems and compare with the previous work. This research work is tested on some standard systems like IEEE 009, 039 bus and one utility for its 027 number of buses. Finally to validate, the results are compared with some previous work.

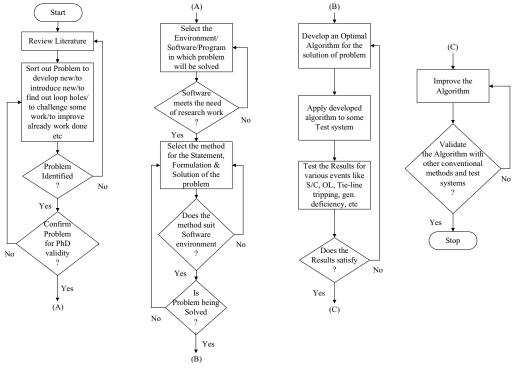


Figure 1.5 Flow chart showing scope of the research work

Limited scope of this research is summarized as:

- i) Furnishing UFLSR in DSPF.
- ii) Development and implementation of an algorithm for UFLSR.
- iii) Use of f_e dependent loads.
- iv) Use of modified and simplified primary controllers i.e. GOV and AVR.

 v) Testing of developed algorithm in contingencies causing mismatch between electric power supply and demand on IEEE 009, 039 bus systems and in one utility system for 027 number of nodes.

1.7 Thesis Organization

The structure of this thesis is outlined below:

Chapter 2 is mainly concerned with review of literature; elaborating need of LS, problems associated with LS from time to time and their remedial, comparison of different LS methods, selection of software by comparing their different features and applications. The proposed method is also highlighted in this chapter.

Chapter 3 highlights dynamic simulation considerations for stability studies including RMS or time domain analysis or simulation (TDS) in DSPF counting LF execution methods, IC and simulation plus different disturbances generated. PS standard element models like synchronous machine, transmission line, transformer, and f_e dependent load along with standard primary controller models like AVR and GOV are also discussed in this chapter.

Chapter 4 contains frames and primary controllers used in this research. It describes the simplified and modified models of primary controllers like AVR and GOV. It also elaborates them mathematically. To identify controller performances their step response tests are also added.

In chapter 5 modeled dynamic UFLSR is discussed. For validation, along obtained results the application of simplified and modified primary controllers and developed UFLSR is discussed here.

Chapter 6 contains the study cases used in this research. It consist the results of test cases with and without primary control and application of UFLSR with dynamic LSS in different disturbances like load change, generator torque change and/or generator outage.

Chapter 7 will, however, conclude the results obtained in this study and on the basis of those findings some suggestions will be made for future line of research.

REFERENCES

- Abdullah A. A. M. Zin, Hafiz, H. M., and Aziz, M. S. (2004). A Review of Underfrequency Load Shedding Scheme on TNB System. *IEEE National Power and Energy Conference (PECon), Shah Alam, Malaysia*. 170-174.
- Abdullah A. A. M. Zin, Hafiz, H. M., and Wong, W. K. (2004). Static and dynamic under-frequency load shedding: a comparison. *IEEE International Conference* on Power System Technology – POWERCON. 1, 941-945.
- Adly A. Girgis and William L. Peterson (1990). Adaptive estimation of power system frequency deviation and its rate of change for calculating sudden power system overloads. *IEEE Transactions on Power Delivery*. 5(2), 585–594.
- Adly A. Girgis, and Shruti Mathure (2010). Application of active power sensitivity to frequency and voltage variations on load shedding. *Electric Power Systems Research.* 80(3), 306-310.
- AIEE Subcommittee Report on Interconnections and Stability Factors (1937). First report of power system stability. *AIEE Transactions February 1937*. 261–282.
- Ali Maghami (2007). IPSERC Seminar on PSS/E-DIgSILENT-SINCAL Overview and comparison. *IPSERC Seminar at Tarbiat Modarres University*.
- Allen J. Wood and Bruce F. Wollenberg (1996). *Power Generation, Operation, and Control.* (2nd ed.) New York USA: John Wiley & Sons Inc.
- Amin, M. (2004). Power System Infrastructure Security and Defence. Proceedings of IEEE Power Engineering Society General Meeting 6–10 June 2004. 1, 7–8.
- Anderson, P. M., and Fouad, A. A. (2003). *Power System Control and Stability*. (2nd ed.) Piscataway, N.J. USA: John Wiley & Sons Inc.
- Anderson, P. M., and Mahmood Mirheydar (1990). A low-order system frequency response model, *IEEE Transactions on Power Systems*. 5(3), 720-729.

- Anderson, P. M., and Mahmood Mirheydar (1992). An adaptive method for setting underfrequency load shedding relays. *IEEE Transactions on Power Systems*. 7(2), 647-655.
- Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., and Vittal, V. (2005). Causes of The 2003 Major Grid Blackouts In North America And Europe, And Recommended Means To Improve System Dynamic Performance. *IEEE Transactions on Power Systems*. 20(4), 1922–1928.
- Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., and Vittal, V. (2004). Administrative Committee of the Power System Dynamic Performance Committee. Causes of the 2003 Major Grid Blackouts in North America and Europe, and Recommended Means to Improve System Dynamic Performance. *IEEE Power Engineering Society General Meeting* in Denver, Colorado.
- Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., and Vittal, V. (2005). Causes of The 2003 Major Grid Blackouts In North America And Europe, And Recommended Means To Improve System Dynamic Performance. *IEEE Transactions on Power Systems*. 20(4), 1922–1928.
- Andersson, G., Donalek, P., Farmer, R., Hatziargyriou, N., Kamwa, I., Kundur, P., Martins, N., Paserba, J., Pourbeik, P., Sanchez-Gasca, J., Schulz, R., Stankovic, A., Taylor, C., and Vittal, V. (2004). Administrative Committee of the Power System Dynamic Performance Committee. Causes of the 2003 Major Grid Blackouts in North America and Europe, and Recommended Means to Improve System Dynamic Performance. *IEEE Power Engineering Society General Meeting* in Denver, Colorado.
- Baldwin, M. S., and Schenkel, H. S. (1976). Determination of Frequency Decay Rates during Periods of Generation Deficiency. *IEEE Transaction on PAS*. PAS-95(1), 26-36.

- Bernhard R. Oswald and Markus A. Poller (1999). Modeling Power Systems with General Difference Equations-A Systematic Formulation. *International Conference on Power Systems Transients*.
- Bikash Pal, and Chaudhuri, B. (2005). *Robust control in power systems*. Springer Science_Business Media, Inc.
- Bin Qiu, Liu, Y., Chan, E. K., and Cao, L. L. J. (2001). LAN-based control for load shedding. *IEEE Computer Applications in Power*. 14(3), 38-43.
- Bishop, M. T. (1999). Frequency Sensing and Load Shedding Schemes. *The Line*. 7-8.
- Branden Fox and Allen McCartney (1988). Emergency control of frequency on the NIE system. *Power Engineering Journal*. 2(4), 195-201.
- Brendan Fox, Thompson, J. G., and Tindall, C. E. (1989). Adaptive control of load shedding relays under generation loss conditions. *Fourth International Conference on Developments in Power Protection*. 259 - 263.
- Bruno Delfino, Massucco, S., Morini, A., Scalera, P., and Silvestro F. (2001). Implementation and comparison of different under frequency load-shedding schemes. *IEEE Power Engineering Society Summer Conference*. 1, 307-312.
- Byoung K. Choi, Chiang, H. D., Wu, H., Li, H., and Yu, D. C. (2008). Exciter model reduction and validation for large-scale power system dynamic security assessment. *IEEE PES General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century*.
- Cease T. W., Horowitz, S. H., and Thorp, J. S. (2002). Protection and Control A Blueprint for the Future of a Secure Power System Infrastructure. *Power Systems and Communications Infrastructures for the Future*. 1-9.
- Chandekar, S. M., and Tarnekar, S. G. (2002). Revised load shedding schedule for power system incorporating the effect of transmission line performance. *International Journal of Electrical Power & Energy Systems*. 24(5), 379-386.
- Charles Concordia, Fink, L. H., and Poullikkas, G. (1995). Load shedding on an isolated system. *IEEE Transactions on Power Systems*. 10(3), 1467-1472.
- Cheng T. Hsu (2003). Modification of under-frequency relay settings for the upgrading of a cogeneration plant. 2003 IEEE Power Engineering Conference. 2, 1145-1150.
- Chin –C. Huang and Shyh J. Huang (1999). A time-based load shedding protection for isolated power system. *Electric Power Systems Research*. 52, 161-169.

- Chiou T. Hsu, Chen, C. S., and Chen, J. K. (1997). The load-shedding scheme design for an integrated steelmaking cogeneration facility. *IEEE Transactions on Industry Applications*. 33(3), 586-592.
- Chuco P., B. Electrical Software Tools Overview. *Centro de Investigaciones Eléctricas Electrónicas del Perú – CIEEP. SINATEC-IEEE CIEEP-GISEI.*
- CIGRE Working Group B5.21, Workshop, Kuala Lumpur (2005).
- Cote, P., and Marc Lacroix (2001). Benefits of special protection systems in competitive market. 22nd IEEE Power Engineering Society. International Conference on Power Industry Computer Applications. 192-195.
- Damir Novosel and Roger L. King (1990). Development of a pattern recognition approach to underfrequency relaying. *IEEE SOUTHEASTCON '90 Conference*. 1, 145-149.
- Damir Novosel, Vu, K. T., Hart, D., and Udren, E. (1996). Practical protection and control strategies during large power-system disturbances. *IEEE Transmission and Distribution Conference Proceedings*. 560-565.
- David P. Chassin, Huang, Z., Donnelly, M. K., Hassler, C., Ramirez, E., and Ray C. (2004). Estimation of WECC System Inertia Using Observed Frequency transients. *IEEE Transaction on Power Systems*. 20(2), 1190-1192.
- Davies, M., Moran, F., and Bird, J. I. (1958). Power/frequency characteristics of the British grid system. *IEE Proceedings-C*. 105(11), 154–167.
- Denis L. H. Aik (2006). A general-order system frequency response model incorporating load shedding: analytic modeling and application. *IEEE Transactions on Power Systems*. 21(2), 709-717.
- Diganta Hazarika and A. K. Sinha (1998). Method for Optimal Load Shedding in case of generation deficiency in a power system. *Electrical Power and Energy Systems*. 20(6), 411-420.
- DIgSILENT (2009). Grid Integration of Wind Energy. DIgSILENT Seminar on Grid Integration of Wind Energy. Cape Town/South Africa.
- DIgSILENT PowerFactory (2010). User's Manual DIgSILENT PowerFactory Version 14.0. Gomaringen, Germany: DIgSILENT GmbH.
- Dong Mingchui, Chinwang, L., and Chikong, W. (2008). Adaptive Under-Frequency Load Shedding. *TSINGHUA SCIENCE AND TECHNOLOGY*. 13(6), 823-828.
- Emmanuel J. Thalassinakis and Evangelos Dialynas (2004). A Monte-Carlo Simulation Method for Setting the Underfrequency Load Shedding Relays and

Selecting the Spinning Reserve Policy in Autonomous Power Systems. *IEEE Transactions on Power Systems*. 19(4), 2044-2052.

- Ewald F. Fuchs, Roesler, D. J., and Masoum, M. A. S. (2004). Are Harmonic Recommendations According to IEEE and IEC Too Restrictive? *IEEE Transactions on Power Delivery*. 19(4), 1775-1786.
- Fawzi M. Abusharkh and Hiyasat, A. A. (1988). Load shedding scheme of the Jordanian national power system. *IEE Fourth International Conference on Developments in Power Protection*. 96-101.
- Federico Milano (2007). Power System Analysis Toolbox. *Documentation for PSAT* v.2.0.0β. http://www.power.uwaterloo.ca/~fmilano/
- Francisco D. Galiana, Bouffard, F., Arroyo, J. M., and Restrepo, J. F. (2005). Scheduling and pricing of coupled energy and primary, secondary and tertiary reserves. *Proceedings of IEEE*. 93(11), 1970–1983.
- Frequency Task Force of the NERC Resources Subcommittee (2004). Frequency Response Standard Whitepaper.
- Graham Rogers (2000). *Power System Oscillations*. UK: Kulwer Academic Publishers.
- Gregory S. Vassell (1991). Northeast blackout of 1965. *IEEE Power Engineering Review*. 11(1), 4–8.
- Gursharan S. Grewal, Konowalec, J. W., and Hakim, M. (1998). Optimization of Load Shedding Scheme. *IEEE industry Applications magazine*. 25-30.
- Hadi Saadat (2004). Power System Analysis. NY USA: McGraw-Hill Inc.
- Haibo You, Vittal, V., and Wang, X. (2004). Slow Coherency-Based Islanding. *IEEE Transactions on Power Systems*. 19(1), 483-491.
- Haibo You, Vittal, V., and Yang, Z. (2003). Self-healing in power systems: an approach using islanding and rate of frequency decline-based load shedding. *IEEE Transactions on Power Systems*. 18(1), 174-181.
- Haibo You, Vittal, V., Jung, J., Liu, C. C., Amin, M., and Adapa, R. (2002). An Intelligent Adaptive Load Shedding Scheme. 14th PSCC Sevilla conference. Session 17, paper 6, 24-28.
- Halevi Y. and D. Kottick (1993). Optimization of load shedding systems. *IEEE Transactons Energy Conversion.* 8, 207–213.
- Hamish H. Wong, Flores, J. C., Fang, Y., and Baldevia, R. P. (1995). Guam Power Authority automatic underfrequency load shedding study. *IEEE 1995*

International Conference on Energy Management and Power Delivery EMPD. 1, 112-117.

- Hans -P. Asal, Bart, P., Grebe, E., and Quadflieg, D. (1998). Dynamic System studies of new requirements and strategies for the primary control in the UCPTE/CENTREL Power System. *CIGRE session 1998*.
- Hao D. Vu and J. C. Agee (2002). WECC Tutorial on Speed Governors. *WECC Control Work Group*.
- Heresh Seyedi and Majid Sanaye-Pasand (2009). Design of New Load Shedding Special Protection Schemes for a Double Area Power System. *American Journal of Applied Sciences*. 6(2), 317-327.
- Heresh Seyedi, Sanaye-Pasand, M., and Dadashzadeh, M. R. (2006), Design and simulation of an adaptive load shedding algorithm using a real network.
- Hisham Omara and Francois Boufard (2009). A Methodology to Study the Impact of an Increasingly Nonconventional Load Mix on Primary Frequency Control. *IEEE Power and Energy Society General meeting*, *PES*' 09. 1-7.

http://dawn.com.pk/2006/07/30/local4.htm

http://www.digsilent.de/

- http://www.scribd.com/doc/6824941/power-system-stability-lecture
- IEEE Power Engineering Society (2007). IEEE Guide for Synchronous Generator Modeling Practices and Applications in Power System Stability Analyses. *IEEE Power Engineering Society*. IEEE Std 1110TM-2002(R2007).
- James R. Jones and William D. Kirkland (1988). Computer algorithm for selection of frequency relays for load shedding. *IEEE Computer Applications in Power*. 1(1), 21-25.
- Jan Machowski, Bialek, J. W., and Bumby, J. R. (1997). *Power System Dynamics and Stability*. England: John Wiley & Sons Ltd.
- Jorge Martinez and Carlos Dortolina (1994). Dynamic simulation studies on electric industrial systems for designing and adjusting load shedding schemes. *IEEE Industrial and Commercial Power Systems Technical Conference*. 23-29.
- Jovanovic S., Fox, B., and Thompson, J. G. (1994). On-line load relief control. *IEEE Transactions on Power Systems*. 9(4), 1847-1852.
- Juhwan Jung, Chen-Ching, L., Tanimoto, S. L., and Vittal, V. (2002). Adaptation in Load shedding under vulnerable operating conditions. *IEEE Transactions on Power Systems*. 17(4), 1199 – 1205.

- Kwang –H. Lee and Young –M. Park (1996). An expert system for Switching Operations for Blackout restoration—Line, bus-bar and feeder switching. *Engineering Applications of Artificial Intelligence*. 9(2), 195-203.
- L. J. Shih, Lee, W. J., Gu, J. C., and Moon, Y. H. (1991). Application of df/dt in power system protection and its implementation in microcontroller based intelligent load shedding relay. *IEEE Industrial and Commercial Power Systems Technical Conference*. 11-17.
- Lester H. Fink and Kjell Carlsen (1978). Operating under stress and strain. *IEEE spectrum*. 48-53.
- Load shedding, load restoration and generator protection using solid-state and electromechanical underfrequency relays
- Lopes J. A. P., Wong, C. W., and Proenca, L. M. (1999). Genetic algorithms in the definition of optimal load shedding strategies. *International Conference on Electric Power Engineering (PowerTech Budapest 99)*. 154.
- Mahmoud A. Mostafa, El-Hawary, M. E., Mansour, M. M, El-Nagar, K. M., and El-Arabaty, A. M. (1995). Optimal dynamic load shedding using a Newton based dynamic algorithm. *Electric Power Systems Research*. 34(3), 157-163.
- Mahmoud A. Mostafa, El-Hawary, M. E., Mbamalu, G. A. N., Mansour, M. M., El-Nagar, K. M. and El-Arabaty, A. M. (1997). A computational comparison of steady state load shedding approaches in electric power systems. *IEEE Trans. Power Systems*. 12/16(1), 30-37/3-7.
- Mahmoud A. Mostafa, El-Hawary, M. E., Mbamalu, G.A.N., Mansour, M. M., El-Nagar, K. M., and El-Arabaty, A. N (1996). Steady-state load shedding schemes: a performance comparison. *Electric Power Systems Research*. 38(2), 105-112.
- Majid S. Pasand, and Mohammad R. Dadashzadeh (2004). Iran national grid blackout, power system protection point of view. 8th IEE International Conference on Developments in Power System Protection April 2004, Amsterdam. 1, 20-23.
- Majid Sanaye-Pasand, and Mohammad R. Dadash Zadeh (2009). Performance Investigation of Load Shed Scheme for a Real Power System using a Distributed-Dynamic Model. *International Review of Electrical Engineering*. 4(1), 86-93.

- Mak, T. S., Law, and C. K. (1991). Spinning reserve and under-frequency load shedding strategies for the interconnected China Light power system. *IEE International Conference on Advances in Power System Control, Operation and Management APSCOM.* 2, 542-8.
- Markus Poller, Maier, B., and Dierks, A. Modelling the Steady State and Transient behaviour of protection Devices. http://www.digsilent.de/Publications/
- Mats Larsson and Christian Rehtanz (2002). Predictive Frequency Stability Control based on Wide-area Phasor Measurements. *Power Engineering Society Summer Meeting*. 1, 233-238.
- Matthew Mitchell, Lopes, J. A. P., Fidalgo, J. N., and McCalley, J. D. (2000). Using a neural network to predict the dynamic frequency response of a power system to an under-frequency load shedding scenario. *IEEE 2000 Power Engineering Society Summer Conference*. 1, 346-351.
- Mehdi Etezadi-Amoli (1990). On underfrequency load shedding schemes. Proceedings of the 22nd Annual North American Power Symposium. 172-180.
- Miodrag B. Djukanovic, Popovic, D. P., Sobajic, D. J., and Pao, Y. H. (1993). Prediction of power system frequency response after generator outages using neural nets. *IEE Proceedings C: (Generation, Transmission and Distribution)*. 140(5), 389-398.
- Mohamed A. H. El-Sayed (1998). Economical generation reserve in isolated power Systems. *Electric Power Components and Systems*. 26(9), 963-976.
- Mohamed Z. El-Sadek, Mahmoud, G. A., Dessouky, M. M., and Rashed, W. I. (1999). Optimum load shedding for avoiding steady-state voltage instability. *Electric Power Systems Research*. 50(2), 119-123.
- Mohammad R. Dadashzadeh and Majid S. Pasand (2004). Simulation and investigation of load shedding algorithms for a real network using dynamic modeling. 39th International Universities Power Engineering Conference (UPEC). 3, 1111-1115.
- Mukesh Nagpal, Moshref, A., Morison, G. K., and Kundur, P. (2001). Experience with Testing and Modeling of Gas Turbines. *IEEE Power Engineering Society Winter Meeting*. 2, 652-656.
- Nima Amjadi and Farzad Fallahi (2010). Determination of frequency stability border of power system to set the thresholds of under frequency load shedding relays. *Energy Conversion and Management*. 51, 1864-1872.

- O. I. Elgerd (1982). *Electric Energy Systems Theory: An Introduction*, 2nd ed., New York, NY: McGraw-Hill.
- Oscar Moya (1996). Power system computer controlled load shedding. *Electric Power Systems Research*. 37(3), 165-171.
- P. Centeno, Egido, I., Domingo, C., Fernández, F., Rouco, L., and González, M. (2005). Review of Gas Turbine Models for Power System Stability Studies. 9th Spanish Portuguese Conference on Electrical Engineering (9Chlie).
- Paolo Pinceti (2002). Emergency load-shedding algorithm for large industrial plants. *Control Engineering Practice*. 10(2), 175-181.
- Power System Relaying Committee (1988). IEEE Guide for Abnormal Frequency Protection for Power Generating Plants. *IEEE Power Engineering Society*. IEEE Std C37.106-1988(i-vi), 1-34.
- Power System Relaying Committee (R2009). IEEE Guide for Abnormal Frequency Protection for Power Generating Plants. *IEEE Power Engineering Society*, IEEE Std C37.106-2003(R2009) (Revision of ANSI/IEEE C37.106-1987).

Power System Stability Lecture by Dr. Craig Aumuller

Prabha Kundur (1994). Power System Stability and Control. USA: McGraw Hill, Inc.

- Prabha Kundur, Paserba, J., Ajjarapu, V., Andersson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D., Stankovic, A. Taylor, C., Cutsem, T. V., and Vittal, V. (2004). Definition and Classification of Power System Stability. *IEEE Transaction on Power System*. 19(2), 1387-1401.
- Prasetijo D., Lachs, W. R., and Sutanto, D. (1994). A new load shedding scheme for limiting underfrequency. *IEEE Transactions on Power Systems*. 9(3), 1371-1378.
- Proteus C. Steinmetz (1920). Power control and stability of electric generating stations. *AIEE Trans. July 1920.* XXXIX (Part II), 1215–1287.
- Qingsheng Zhao, and Chen, C. (2005). Study on a system frequency response model for a large industrial area load shedding. *International Journal of Electrical Power & Energy System*. 27(3), 233-237.
- R. Pearmine, Song, Y. H., Williams, T. G., and Chebbo, A. (2006). Identification of a load-frequency characteristic for allocation of spinning reserves on the British electricity grid. *IEE Proceedings-Generation Transmission and Distribution*. 153(6), 633–638.

- Richard Ford (2005). Blackout Scare underlines industry dilemma. *IEE Power Engineer*. 16.
- Richard P. Schulz (1999). Modeling of governing response in the Eastern interconnection. *Proc. IEEE PES Winter Meeting, New York, NY.* 1, 561-566.
- Rockefeller, G. D., Linders, J. R., and Arehart, R. F. (1988). Summary of the Guide for abnormal frequency protection for power generating plants. *IEEE Transactions on Power Delivery*. 3(1), 153-158.
- Saffet Ayasun, Yiqiao Liang, Chika O. Nwankpa (2006). A sensitivity approach for computation of the probability density function of critical clearing time and probability of stability in power system, transient stability analysis. *Applied Mathematics and Comutation*.176(2), 563-576.
- Sandro Corsi and Carlo Sabelli (2004). General Blackout in Italy Sunday September 28, 2003, h. 03:28:00. Proceedings of IEEE Power Engineering Society General Meeting 6–10 June 2004. 2, 1691–1702.
- Shu –J. Huang and C. C. Huang (2000). An adaptive load shedding method with time-based design for isolated power systems. *International Journal of Electrical Power and Energy Systems*. 41(2), 51-58.
- Steven A. Nirenberg, McInnis, D. A., and Sparks, K. D. (1992). Fast acting load shedding, *IEEE Transactions on Power Systems*. 7(2), 873–877.
- Subramanian P. V., Viswanathan, M., and Kairamkonda, V. T. (1992). Frequency trend and discrete underfrequency relaying practices in India for utility and captive power applications. *IEEE Transactions on Power Delivery*. 7(4), 1878-1884.
- Tamer Adanir (2007). Extremely short term frequency estimation (ESTFE) algorithm for underfrequency protection. *International Journal of Electrical Power & Energy Systems*. 29(4), 329-337.
- Tenaga Nasional Berhad (TNB) (2003). Investigation Report of Northern System Collapse on 1st September 2003. TNB Task Force Investigation, September 2003.
- Thompson J. G. and Brendan Fox (1994). Adaptive load shedding for isolated power systems. *IEE Proceedings Generation, Transmission and Distribution*. 141(5), 491-496.

- Tomaz Tomsic, Verbic, G., and Gubina, F. (2005). Revision of the underfrequency load shedding scheme of the Slovenian power system. *IEEE PES General Meeting*. 1782-1787.
- Toshio Inoue, Taniguchi, H., Ikeguchi, Y., and Yoshida, K. (1997). Estimation of power system inertia constant and capacity of spinning-reserve support generators using measured frequency transients. *IEEE Transactions on Power Systems*. 12(1), 136-143.
- Vladimir Gurevich (2006). *Electric Relays Principles and Applications*. CRC Press, Taylor and Francis Group, Boka Raton, FL.
- Vladimir N. Chuvychin, Gurov, N. S., Venkata, S. S., and Brown, R. E. (1996). An adaptive approach to load shedding and spinning reserve control during underfrequency conditions. *IEEE Transactions on Power Systems*. 11(4), 1805-1810.
- Vladimir V. Terziji and Hans -J. Koglin (2002). Adaptive underfrequency load shedding integrated with frequency estimation numerical algorithm. *IEE proceedings on Generation Transmission and Distribution*. 149(6), 713-718.
- Warren C. New (2010). Load Shedding, Load Restoration and Generator Protection Using Solid-state and Electromechanical Underfrequency Relays. *GE Power Mangement*. 1-34. www.GEindustrial.com/pm
- WECC, Relay Working Group (2003). Underfrequency Load Shedding Relay Application Guide.
- William D. (Jr.) Stevenson (1982). Elements of Power System Analysis. USA: McGraw Hill Inc.
- Wong K. P. and Lau (1992). Algorithm for load-shedding operations in reduced generation periods. *IEE Proceedings C: (Generation, Transmission and Distribution*).139(6), 478-90.
- Xianzhang Lei, Lerch, E., and Xie, C. Y. (2002). Frequency security constrained short-term unit commitment. *Electric Power Systems Research*. 60(3), 193-200.
- Yann G. Rebours, Kirschen, D. S., Trotignon, M., and Rossignol, S. (2007). A survey of frequency and voltage control ancillary services—Part I: technical features. *IEEE Transactions on Power Systems*. 22(1), 350–357.

- Yenn M. Tzeng, Chen, C. S., Hsu, C. T., and Chen, J. K. (1996). Design of load shedding scheme for a cogeneration facility: a case study. *International Journal of Electrical Power and Energy Systems*. 18(7), 431-436.
- Yi J. Wang, Liu, C. W., and Liu, Y. H. (2005). A PMU based special protection scheme: a case study of Taiwan power system. *International Journal of Electrical Power & Energy Systems*. 27(3), 215-223.
- Young –M. Park and Kwang H. Lee (1996). Application of expert system to power system restoration in local control center. *Fuel and Energy Abstracts*. 37(2), 407-415.
- Yuri V. Makarov, Reshetov, V. I., Stroev, A., and Voropai, I. (2005). Blackout Prevention in the United States, Europe, and Russia. *Proceedings of IEEE November 2005*. 93(11), 1942 – 1955.
- Zang Shuai, Choi, J-H., and Nam, H-k. (2009). Simulation studies of JeJu AC Power System Modelling by using PSCAD/EMTDC. *IEEE T & D Asia 2009*. 1-4.
- Zhang Z., Li, K. K., Yin, X. G., Zhang, Y. H., and Chen, D. S. (1999). An adaptive microcomputer based load shedding relay. 34th IAS Annual Meeting, Industry Applications Conference 1999. 3, 2065-2071.
- Zoran Salcic and Robert Mikhael (2000). A new method for instantaneous power system frequency measurement using reference points detection. *Electric Power Systems Research*. 55, 97–102.
- Zoran Salcic, Zhenguo, L., Annakkage, U. D., and Pahalawaththa, N. (1998). A comparison of frequency measurement methods for underfrequency load shedding. *Electric Power Systems Research Journal*. 45(9), 209-219.