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ABSTRACT

This research focuses on the development of a new direct stochastic algorithm
to address the global optimization of the constrained optimal control problem where
the interaction between state and control variables is governed by a system of ordinary
differential equations. The objective of this method is to localize a globally optimal
control curve in the feasible control space of the problem in such a way that the
performance index attains its minimum value. The stochastic methodology is used
on the development of the method. Thus, the resulting method is still effective when
the complexity of the arising problems prohibits applying gradient-based methods.
In this approach, the aforementioned control problem has first to be transformed
into a nonlinear programming problem via a suitable discretization technique. The
resulting problem is then solved using a stochastic method called Probabilistic Global
Search Johor (PGSJ). The idea underpinning the PGSJ is to intelligently sample among
potential solutions while no recombination or mutation operator is used. The sampling
procedure is performed in accordance with some probability density functions (pdf)
which are first initialized uniformly and then iteratively biased towards a globally
optimal solution using the information obtained by evaluating the sampling points.
After the PGSJ has been successfully implemented, it is found that it is able to arrive
at an acceptable solution of the applied optimal control problems. The algorithm is
also furnished with some theoretical supports verifying its convergence in probabilistic
sense. In addition, some existing global stochastic methods which are based on using
pdf are also applied on the optimal control problems where simulations reveal that the
PGSJ method is superior to its competitors in terms of computation time and solution
quality. These investigations lead to the extension of PGSJ into PGSJ-LS where LS
indicates a line search operator added to the original method. These are then assessed
and compared by applying them to a practical problem of controlling avian influenza
H5N1 where it is verified that the PGSJ-LS performs slightly better than PGSJ.
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ABSTRAK

Kajian ini memberi tumpuan kepada pembangunan algoritma langsung
berstokastik baharu untuk menangani masalah pengoptimuman sejagat kawalan
optimum berkekangan dengan interaksi di antara pembolehubah keadaan dan kawalan
ditadbir oleh sistem persamaan terbitan biasa. Objektif kaedah ini adalah untuk
membendung lengkung kawalan optimum sejagat dalam ruang kawalan tersaur
sehinggakan suatu indeks prestasi mencapai nilai minimumnya. Metodologi
stokastik digunakan pada pembangunan kaedah. Lantas kaedah terhasil masih
berkesan walaupun kerumitan masalah yang timbul membataskan penggunaan kaedah
berasaskan kecerunan. Dalam pendekatan ini, masalah kawalan tersebut perlu
diubah terlebih dahulu menjadi masalah pengaturcaraan tak linear melalui teknik
pendiskretan yang bersesuaian. Masalah terhasil kemudiannya diselesai menggunakan
suatu kaedah stokastik dinamakan Kaedah Carian Sejagat Berkebarangkalian Johor
(PGSJ). Idea asas kepada PGSJ ialah melakukan persampelan bijak di kalangan
penyelesaian berpotensi dengan tiada operator penggabungan semula atau mutasi
digunakan. Prosedur pensampelan dilakukan sejajar dengan beberapa fungsi
kebarangkalian ketumpatan (pdf) yang diberi nilai awal secara seragam dan
kemudiannya dicenderungkan secara lelaran ke arah penyelesaian optimum sejagat
menggunakan maklumat yang diperoleh daripada penilaian titik pensampelan. PGSJ
telah dilaksanakan dengan jayanya, didapati bahawa kaedah ini berkemampuan untuk
menumpu kepada penyelesaian masalah kawalan optimum yang boleh diterima pakai.
Algoritma ini juga dilengkapi dengan beberapa teori sokongan yang mengesahkan
penumpuannya daripada aspek kebarangkalian. Di samping itu, beberapa kaedah
stokastik sejagat sedia ada yang berasaskan fungsi ketumpatan kebarangkalian juga
diguna pakai pada masalah kawalan optimum. Simulasi tersebut menunjukkan bahawa
kaedah PGSJ adalah lebih baik berbanding pesaing-pesaing lain dari segi masa
pengiraan dan kualiti penyelesaian. Kajian ini menjurus kepada perlanjutan kaedah
PGSJ kepada kaedah PGSJ-LS dengan LS mewakili operator gelintaran garis yang
telah ditambah kepada kaedah asal. Kaedah-kaedah ini ditaksir berbanding satu sama
lain dengan mengguna kan masalah praktikal pengawalan selesema burung H5N1 di
mana kajian ini mengesahkan bahawa kaedah PGSJ-LS berprestasi lebih baik daripada
PGSJ.



vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii
DEDICATION iii
ACKNOWLEDGEMENT iv
ABSTRACT v
ABSTRAK vi
TABLE OF CONTENTS vii
LIST OF TABLES x
LIST OF FIGURES xi
LIST OF ABBREVIATIONS xiv
LIST OF SYMBOLS xvi
LIST OF APPENDICES xviii
LIST OF ALGORITHMS xix

1 INTRODUCTION 1
1.1 Introduction 1
1.2 Motivations 2
1.3 Background of the Problem 3
1.4 Optimal Control Problem 4
1.5 Statement of the Problem 6
1.6 Objectives of the Research 6
1.7 Scope of the Research 7
1.8 Significance of the Study 7
1.9 Main Contributions 7
1.10 Thesis Overview 9

2 LITERATURE REVIEW 10
2.1 Introduction 10
2.2 Dynamic Optimization 11
2.3 Discretization Methods 15



viii

2.4 Constraint Handling Methods 19
2.5 System Integration Methods 22
2.6 Global Optimization Methods 26
2.7 Random Numbers 32
2.8 Probability 33
2.9 Direct Stochastic Methodology 36
2.10 Steps for Development of PGSJ 37
2.11 Probabilistic Tools 38
2.12 Steps for Analyzing PGSJ 38
2.13 Improvement and Comparisons 40
2.14 Concluding Remarks 41

3 PROBABILISTIC GLOBAL SEARCH METHOD 42
3.1 Introduction 42
3.2 The PGSJ Algorithm 43
3.3 Convergence Analysis 55
3.4 Numerical Simulation 60
3.5 Complexity Analysis 63
3.6 Numerical Direct Strategies 64
3.7 Control Parameterization Framework 65
3.8 Implications of Constraints 66
3.9 Case Studies 66
3.10 Parameter Selection in PGSJ Algorithm 74
3.11 Concluding Remarks 78

4 CONTINUOUS ANT COLONY OPTIMIZATION 79
4.1 Introduction 79
4.2 Ant Colony Optimization 80
4.3 Continuous Ant Colony Optimization 82
4.4 Diversity in Ant Colony Optimization 85
4.5 Improvement on Ant Colony Optimization 88
4.6 Numerical Simulations 91
4.7 Concluding Remarks 102

5 ANALYSIS OF RESULTS AND DISCUSSION 103
5.1 Introduction 103
5.2 Comparisons 103
5.3 Discussions 114



ix

5.4 Improvements 116
5.5 A Practical Problem 121
5.6 Concluding Remarks 125

6 CONCLUSION 130
6.1 Introduction 130
6.2 Summary of the Thesis 130
6.3 Directional Future Research 133

REFERENCES 134

Appendix A 151



x

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Some trial parameters and their corresponding value of
performance index regarding Problem (1.3) 17

3.1 The algorithm inputs functions and parameters 46
3.2 Results of testing PGSJ with several benchmark problems 62
3.3 Solution of Example 3.2 using BCP/PGSJ method 70
4.1 Comparing the performance of ACO family 96
5.1 The performance of PGSJ, PGSJ-LS1, PGSJ-LS2, and

PGSJ-LS3 based on the iterative solutions 118
5.2 The performance of PGSJ, PGSJ-LS1, PGSJ-LS2, and

PGSJ-LS3 based on the number of function evaluations 119



xi

LIST OF FIGURES

FIGURE NO. TITLE PAGE

1.1 An illustration of a tunnel-diode oscillator 5
2.1 Illustration of the control graphs corresponding to some

parameters regarding Problem (1.3) 18
2.2 The chart of available approaches for the solution of

constrained OCPs 35
2.3 An illustration of the direct methodology used in this study 39
3.1 A uniform pdf when N = 5, and the domain of the pdf is

[2.5, 5] 45
3.2 An illustration of a general pdf when N = 5, and the

domain of the pdf is [2.5, 5] 45
3.3 An illustration of a pdf after bisecting when N = 5, and

the domain of the pdf is [2.5, 5] 48
3.4 The PGSJ flowchart 51
3.5 The search space 52
3.6 Initialization 52
3.7 Uniform pdf 52
3.8 pdf-updating 52
3.9 Continuing pdf-updating 53
3.10 Bisecting 53
3.11 Continuing the bisecting 54
3.12 The second iteration 54
3.13 pdf-updating 54
3.14 Continuing pdf-updating 54
3.15 Bisecting 54
3.16 The third iteration 54
3.17 The number of the function evaluations while the

dimension is increased 64
3.18 The graph of optimal control for Example 3.1. 68
3.19 The graph of error between exact and computational

control for Example 3.1. 68



xii

3.20 The graph of state variables for Example 3.1. 69
3.21 The graph of optimal control for Example 3.2. 71
3.22 The graph of state variables for Example 3.2. 71
3.23 The optimal control for Example 3.3 73
3.24 The optimal value for state variable x1 for Example 3.3 74
3.25 The graph of the constraint for Example 3.3 75
3.26 The optimal control for Example 3.4 75
3.27 The optimal value for state variable x1 for Example 3.4 76
3.28 The optimal value for state variable x2 for Example 3.4 76
3.29 The optimal value for state variable x3 for Example 3.4 77
3.30 The graph of the constraint for Example 3.4 77
4.1 Performance of the ACOR algorithm on example 3.1 98
4.2 Solution of example 3.1 using ACOR algorithm 99
4.3 Performance of the DACOR algorithm on example 3.1 99
4.4 Solution of example 3.1 using DACOR algorithm 100
4.5 Performance of the IACOR-LS algorithm on example 3.1 101
4.6 Solution of example 3.1 using IACOR-LS algorithm 101
5.1 The performance of the pdf–based algorithms against the

exact solution on the solution of Example 3.1 104
5.2 The state variable x1(t) obtained by the pdf-based methods

on the solution of Example 3.1 104
5.3 Solution of Example 3.1 using the pdf–based algorithms 105
5.4 The performance of the pdf–based algorithms on the

solution of Example 3.2 106
5.5 The state variable x2(t) obtained by the pdf-based methods

on the solution of Example 3.2 106
5.6 The state variable x1(t) obtained by the pdf-based methods

on the solution of Example 3.2 107
5.7 Solution of Example 3.2 using the pdf-based algorithms 107
5.8 The performance of the pdf–based algorithms on the

solution of Example 3.3 108
5.9 Solution of Example 3.3 using the pdf-based algorithms 108
5.10 The constraint of Example 3.3 obtained by the pdf–based

algorithms 109
5.11 The state variable x1(t) obtained by the pdf-based methods

on the solution of Example 3.3 109
5.12 The state variable x2(t) obtained by the pdf-based methods

on the solution of Example 3.3 110



xiii

5.13 The state variable x4(t) obtained by the pdf-based methods
on the solution of Example 3.3 110

5.14 The state variable x5(t) obtained by the pdf-based methods
on the solution of Example 3.3 111

5.15 The performance of the pdf–based algorithms on the
solution of Example 3.4 111

5.16 Solution of Example 3.4 using the pdf-based algorithms 112
5.17 The constraint of Example 3.4 obtained by the pdf–based

algorithms 112
5.18 The state variable x1(t) obtained by the pdf-based methods

on the solution of Example 3.4 113
5.19 The state variable x2(t) obtained by the pdf-based methods

on the solution of Example 3.4 113
5.20 The state variable x4(t) obtained by the pdf-based methods

on the solution of Example 3.4 114
5.21 The iterative solutions used to evaluate the performance of

PGSJ, PGSJ-LS1, PGSJ-LS2, and PGSJ-LS3 120
5.22 The iterative solutions used to evaluate the performance of

PGSJ, PGSJ-LS1, PGSJ-LS2, and PGSJ-LS3 120
5.23 The performance of PGSJ, PGSJ-LS1, PGSJ-LS2, and

PGSJ-LS3 based on the number of function evaluations 120
5.24 The performance of PGSJ, PGSJ-LS1, PGSJ-LS2, and

PGSJ-LS3 based on the number of function evaluations 124
5.25 The control variable u1(t) obtained by the PGSJ and PGSJ-

LS methods on the solution of Problem (5.1) 125
5.26 The control variable u2(t) obtained by the PGSJ and PGSJ-

LS methods on the solution of Problem (5.1) 126
5.27 The state variable x5(t) obtained by the PGSJ and PGSJ-LS

methods on the solution of Problem (5.1) 126
5.28 The state variable x1(t) obtained by the PGSJ and PGSJ-LS

methods on the solution of Problem (5.1) 127
5.29 The state variable x2(t) obtained by the PGSJ and PGSJ-LS

methods on the solution of Problem (5.1) 127
5.30 The state variable x3(t) obtained by the PGSJ and PGSJ-LS

methods on the solution of Problem (5.1) 128
5.31 The state variable x4(t) obtained by the PGSJ and PGSJ-LS

methods on the solution of Problem (5.1) 128
5.32 The state variable x6(t) obtained by the PGSJ and PGSJ-LS

methods on the solution of Problem (5.1) 129



xiv

LIST OF ABBREVIATIONS

ACO - Ant Colony Optimization

ACK - Ackleys Problem

ARS - Adaptive Random Search

BB - Branch and Bound

BC - Bee Colony

BCP - Bernstein based control parameterization

CRS - Controlled Random Search

CM - Cosine Mixture Problem

EA - Evolutionary Algorithms

GA - Genetic Algorithm

GARS - Generalized Adaptive Random Search

GW - Griewank Problem

HAS - Hesitant Adaptive Searches

IDP - Iterative Dynamic Programming

IVP - Initial Value Problem

LHS - Latin Hypercube Sampling

LM1 - Levy and Montalvo 1 Problem

LM2 - Levy and Montalvo 2 Problem

LMM - Linear Multistep Methods

MS - Monkey Search

NLP - Nonlinear Programming Problem

NP - Nested Partitions

NLP - Nonlinear Programming Problem

OCP - Optimal Control Problem

pdf - probability density function

pdfs - probability density functions

PGSJ - Probabilistic Global Search Johor

PGSL - Probabilistic Global Search Lausanne



xv

PRS - Pure Random Searches

PSO - Particle Swarm Optimization

SA - Simulated Annealing

SIN - Sinusoidal Problem

SIVP - Stiff Initial Value Problem

TS - Taylor Series



xvi

LIST OF SYMBOLS

A - The acceptable probability density

b - The number of bisecting procedure

d - Dimension of the problem

D - The box of feasible controls

f - The objective function,

H - Hamiltonian function

I in - The ith interval in the nth iteration

I ijn - The jth subinterval of the ith interval in the nth iteration

M - Maximum number of iterations

N - The number of partitions on each interval

P - Probability of sampling from complementary search space

S - The number of samples in each iteration

t0 - Initial time

tf - Final time

u - The control curve

u∗ - The optimal control curve

x - The state variable

x∗ - The optimal state variable
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CHAPTER 1

INTRODUCTION

1.1 Introduction

A set of interrelated objects when considered as a unit is usually recognized to
be a system where the objects obey certain rule and regulations. Especially when
a system is about artificial process, these regulations can often be mathematically
modeled into an ordinary differential equation involving input and output variables.
The input variables are usually collectively shown by u and also called control
variables. These are actually the systems parameters that facilitate influencing the
system to achieve desirable outputs. The output variables, in turn, are collectively
represented by x and also called state variables. These variables are the system respond
to a selected set of the inputs parameters.

In this case, a performance index in the form of a real valued function can be
designed to measure the quality of control variables regarding to a standard desired
for the behavior of the system. Therefore, the performance index is used to measure
how the output of a system is close to the required standard when a control profile
is considered. When the need for the best possible control variables to minimize or
maximize a performance index arises, an Optimal Control Problem (OCP) occurs.

Possibly, this problem for the first time occurred in ancient civilization when
human started to practice farming. As long as human perceived the cultivation system
can be influenced, perhaps the first question was what strategy can optimize the food
production process? Then, even in the early food producing era this problem might
have been arisen and it was probably answered through trial and error. However, in
the industrial applications the scale of the systems is often quite large and it is not
affordable to search for the best control strategy through trial and error.
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The first time this problem appeared in the open literature was when the Italian
astronomer and mathematician Galileo Galilei (1564–1642) posed the brachistochrone
problem in 1638 (Sargent, 2000). This problem is about a smooth wire and a bead
that could slide along the wire under gravity assuming no friction. The objective of
this problem is to attain the best possible shape of the wire such that the bead could
traverse from one end-point to another in minimum time where the end-points are not
located in a vertical line.

The solution of this problem which is a segment of a cycloid was unknown
until Isaac Newton (1642–1727) and his contemporaries Leibniz, L’Hospital, Johann
Bernoulli and his brother were challenged on this problem, and their efforts led to
solution of this problem. When this solution was published, it stimulates the interest
of researchers on this kind of problems leading to the initiation of the calculus of
variations approach.

After a long period of evolution and investigation, this field of study evolved
into the optimal control theory. Among greatest contributions on this area, in 1953
the American mathematician Richard Bellman (1920–1984) invented the Dynamic
Programming method. Later in 1962 the Soviet mathematician Lev Pontryagin (1908–
1988) laid the theoretical foundation of the minimum principal for this problem. These
discoveries have been perceived as major breakthroughs in the last century.

Thereafter, many great mathematicians were interested to work on this problem
leading to the establishment of this field into an active research area that attracted
the interest of many researchers from many disciplines. However, the interest on
this problem really flourished when the efficient and affordable computes become
everywhere accessible, and the industrial dynamic optimization problems become
more complex.

1.2 Motivations

As the technology being used in the industry is developing, the safety standards
are strictly regulated and the demands for high quality products are continuously
growing. These procedures are affecting the applied control problems to be more
and more complicated. Therefore, in today’s industrial applications sophisticated
techniques have to be developed to synthesis the optimal control for arising problems.
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Moreover, as no method can be applied for every problem, there always is the need for
developing more efficient methods to accommodate arising more complex problems.

In addition, the investigation into OCP has been of importance not only for
traditional application in aerospace (Krotov and Kurzhanski, 2005) and chemical
process engineering (Ilse et al., 2002), but also this class of problems has been
recognized in diverse areas ranging from agriculture (Straten, 1999) to food production
process (Banga et al., 2003; Ouseguia et al., 2012), leading to numerous significant
studies focusing on different aspects of these problems either in computational or
theoretical areas.

1.3 Background of the Problem

As the explicit use of analytical results is often prohibitive due to complexity
and scale of applied problems, many numerical techniques have been proposed. These
methods in attempt to find solution use techniques as diverse as classical variational
methods to inspire heuristic approaches. The classical computation methods mostly
apply either the necessary condition of optimality or direct techniques. The former
approach, leads to a boundary problem, and the solution of this problem helps to obtain
gradient information. The classical direct techniques (Polak, 1973) are also gradient
based methods, and consequently these methods may converge to a local optimum.

On the other hand, the difficulty to achieve the optimal control for multimodal
control problems is to localize a globally optimum control among many locally
optimum controls. This class of problems have already been recognized as challenging
problems in control system engineering (Grune and Junge, 2008), control of chemical
process (Choi et al., 1999; Ferrari et al., 2010), control of electrical power systems
(Cao et al., 1998; Robandia et al., 2001; Yan et al., 2010; Amjady and Nasiri-Rad,
2010), food production process (Garcia et al., 2006), water management problems
(Moles et al., 2003; Faria and Bagajewicz, 2011), agricultural management problems
(Cruz et al., 2003b), and other nonlinear and nonconvex control problems in science
and engineering where the control space includes several or even just two locally
optimum controls.

Unfortunately, even the most advanced recent gradient-based methods (Loxton
et al., 2009; Marzban and Razzaghi, 2010; Cimen, 2010) are not appropriate enough
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to contribute a reasonable solution to challenging control problems cited above. Thus,
global optimization techniques should be studied and developed to surmount the
nonconvex multimodal control problems.

1.4 Optimal Control Problem

This research focuses on Mayer problem of optimal control (Shapiro, 1966;
Cesari, 1983; Lewis and Syrmos, 1995). We consider a general class of these problems
where the system of dynamics is governed by an ordinary differential equation, and
the objective is to find the best control curve to minimize a real valued performance
index. The problem also involved inequality constraints, while the control variables are
constrained by a hypercube subset of a finite Euclidean space. The problem is stated
by,

min φ(x(tf )) (1.1)

subject to ẋ(t) = f(x(t), u(t), t)

g(x(t), u(t), t) ≤ 0

x(t0) = x0

x ∈ Rn, u ∈ D ⊂ Rm t0 ≤ t ≤ tf

where φ is a real valued function on Rn. The time interval is [t0, tf ]. As mentioned
earlier x and u indicate respectively state and control variables which are actually
curves from time interval to respectively Rn and D ⊂ Rm where D is a box. ẋ is the
first derivative of the function x. f is a function from Rn×Rm×R to Rn. The function
g is from Rn × Rm × R to Rr and the inequality can be understood componentwise.
Finally, x0 ∈ Rn is a given initial state.

An illustrative example of this problem arises when studying tunnel-diode
oscillator that is depicted in Figure 1.1. Considering this electric circuit where L
denotes the inductility, C capacity, R resistance, and D indicates diode, and assuming
the state variable x(t) represents the electrical current related to this circuit at time
t, and the control variable u(t) denotes a suitable transformation of the voltage V 0(t)

which is designed as a control function, the following Rayleigh equation can be derived
(Maurer and Augustin, 2001),

ẍ(t) = −x(t) + ẋ(t)(1.4− pẋ(t)2) + 4u(t). (1.2)
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Figure 1.1: An illustration of a tunnel-diode oscillator

Additionally, assigning the value 0.14 to the parameter p in the Equation (1.2),
considering the time interval to be [0, 4.5], and defining the state variables x1(t) = x(t)

and x2(t) = ẋ(t), x1(0) = −5, x2(0) = −5, then Equation (1.2) is turned into the
following system,

.
x1 (t) = x2(t)
.
x2 (t) = −x1(t) + x2(t)(1.4 + 0.14x22(t)) + 4u(t)

The above system of equations facilitates acquiring the value of electrical current
functions corresponding to a given control function. In this case, the following
performance index is designed to measure the quality of applied control inputs,

J =

∫ 4.5

0

u(t)2 + x21(t)dt.

Introducing one more state variable, the above equation can be written as J = x3(4.5)

where x3(t) = u(t)2+x21(t)dt and x3(0) = 0. In addition, the aforementioned variables
have to be satisfied in,

u(t) +
1

6
x1(t) ≤ 0, for t ∈ [0, 4.5].

Therefore, the optimal control problem of finding the best voltage V 0(t) which
regulate the electrical current of the tunnel-diode oscillator circuit in such a way that it
minimize the value of J can be stated as follows,

min x3(4.5)
.
x1 (t) = x2(t)
.
x2 (t) = −x1(t) + x2(t)(1.4 + 0.14x22(t)) + 4u(t)
.
x3 (t) = u(t) + x21(t)

u(t) +
1

6
x1(t) ≤ 0
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where x1(0) = −5, x2(0) = −5, x3(0) = 0, and 0 ≤ t ≤ 4.5. This optimal control
problem is known as Rayleigh’s problem (Loxton et al., 2009).

1.5 Statement of the Problem

Although the form of control problem described in Problem (1.1) has long
been under investigation, authors mostly contented themselves with weak forms
of problem where some specific smoothness and convexity assumption satisfied.
However, as discussed above, ill-behavior control problems, exhibiting attributes
such as multimodality and non-smoothness are frequently arising in control system
engineering. Consequently, investigation into these OCPs has been an absorbing topic
in few last decades. Therefore, in this study we are aiming at expanding literature on
this area by introducing a new probabilistic method for the solution of the problem
mentioned above. Hence, this research addresses the development of a new stochastic
search technique to be employed in achieving global optimal control.

1.6 Objectives of the Research

In order to obtain this goal, several objectives have to be pursued. These are as
follow:

� To develop a new probabilistic global search technique based on probability
density functions.

� To analyze and prove the convergence of the new algorithm in probabilistic
sense.

� To propose a new discretization method based on control parametrization
framework to convert OCP into Nonlinear Programming Problem (NLP).

� To carry out simulations to evaluate the effectiveness of the new algorithm on
the solution of OCPs.

� To compare the efficiency of the new algorithm against some other existing
global stochastic approaches which are based on probability density functions.
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1.7 Scope of the Research

This research concentrates on the stochastic global optimization methods that
use probability density functions to sample new potential solutions. The study also
focuses on reducing the complexity and improving the reliability of these techniques
especially when they are applied on the OCPs of Mayer type. Therefore, the research
is focused on efforts towards investigations that result in enhancing the quality of
optimal solution and enriching reliability of these stochastic techniques. Additionally,
the deterministic global approaches are beyond the scope of this research.

1.8 Significance of the Study

The existing stochastic search techniques often need long time to achieve
an enough precision and reliable solution for practical problems. On the other
hand, a reasonable running time for control problems is usually of great importance.
Therefore, if the control problem is nonconvex multimodal and the assumptions of
other approaches fail to satisfy, where the stochastic techniques are the only alternative,
the research on these techniques is highly significant.

1.9 Main Contributions

The significance of this research can be explained from the following aspects:

� A probabilistic algorithm is developed based on the exploitation of the
probability density functions to efficiently direct the search efforts towards
global optima. This algorithm called Probabilistic Global search Johor (PGSJ)
as it shares some features with another algorithm called Probabilistic Global
Search Lausanne (PGSL). These algorithms consist in four nested loops, where
each loop invokes a special operator. However, the operators used in the PGSJ
algorithm are different. Chapter 3 includes a detailed description of this
algorithm.

� One important difference between PGSJ and PGSL is distinguished when it
comes to guarantee the global convergence of these algorithms. The convergence
of the PGSL has not been proved, while the convergence of the PGSJ algorithm
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is theoretically proved in the probabilistic sense. The details of this theory is
available in Chapter 3.

� The PGSJ algorithm can be applied on NLPs. In order to use this algorithm
on the solution of OCP, a new efficient method for converting OCP into NLP is
proposed. In this technique the Bernstein bases function is used to discretize a
control problem in the control parameterization framework. Chapter 3 includes
a description of this Bernstein based control parameterization (BCP).

� The PGSJ algorithm along with BCP method implemented using C++
programming language as well as MATLAB environments. Then, some case
studies were simulated to study the effectiveness and efficiency of the PGSJ
method on the solution of the OCPs. In addition, complexity analysis of this
algorithm including time and memory complexity was carried out and it was
revealed that this algorithm is an efficient optimization method with linear time
and memory complexity.

� This is the first attempt that the continuous ant colony optimization methods are
applied on the OCPs. The reason behind this study is to provide a methodology
to evaluate the PGSJ algorithm against the resent popular continuous ant
colony optimization methods that are based on probability density functions and
claimed to be very efficient.

� The new stochastic method was compared against the algorithms that use a
general probability density functions for means of sampling. This class of
algorithms includes some popular continuous ant colony algorithms and the
PGSL algorithm. All these algorithm coded in MATLAB, and then using
the same environment and same set of benchmark problems, the algorithms
compared based on the number of function evaluations they need to arrive at
a globally optimum solution. The results of these procedures are available in
Chapters 4 and 5.

� The investigations on the advantages and disadvantages of different stochastic
methods evaluated in this research directed us to consider the possibility of
improving the PGSJ algorithm by adding one mere local search operator to the
original algorithm. At this aim, three line search operators were selected, and the
behavior of the improved PGSJ which is called PGSJ-LS were compared against
the original PGSJ algorithm while they are applied on some benchmark OCPs.
The results of this comparison are discussed in Chapter 5 where these methods
also applied on a practical OCP arises from combating avian influenza H5N1.
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1.10 Thesis Overview

In previous sections a brief introduction on the OCP is given to motivate
introducing the research objectives and the scope of this study. Subsequently, it is
explained how significant it is to study the objectives outlined earlier. Following that
an overview on the existing methodologies documented in the literature for the solution
of an OCP is presented. This is followed by a description on the methodology used for
the purpose of delivering the objectives of this research. These objectives are addressed
in the subsequent chapters of this thesis.

As the focus of this study is on the direct optimization methods, in Chapter
3 a new discretization method is presented to competently convert an OCP into a
NLP. In addition, an efficient probabilistic global optimization method is developed
to address the resulting problem. Subsequently, the theoretical convergence of the
newly developed algorithm is also provided to support the method.

In the following chapter some continuous ant colony optimizations are also
applied on the control problem considered in this study. Then, in Chapter 5 these
methods are compared against the new method. The result of comparisons, simulations
as well as theoretical and numerical studies on this problem is finally summarized in
Chapter 6.
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