A 10-BIT 50 MEGA-SAMPLES-PER-SECOND PIPELINED ANALOG-TO-DIGITAL CONVERTER

YUZMAN BIN YUSOFF

UNIVERSITI TEKNOLOGI MALAYSIA

A 10-BIT 50 MEGA-SAMPLES-PER-SECOND PIPELINED ANALOG-TO-DIGITAL CONVERTER

YUZMAN BIN YUSOFF

A thesis submitted in fulfilment of the requirements for the awards of the degree of Master of Engineering (Electrical)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > OCTOBER 2010

ACKNOWLEDGMENTS

First, I would like to express my deep appreciation to my supervisor and cosupervisor, Dr. Muhammad Nadzir Marsono and Mr. Mohd Shahiman Sulaiman, for their invaluable guidance, their kindness, and support throughout my long journey as a graduate student. Without their encouragement and patient support, this work would not have been possible.

Thanks to Mr. Reza Lotfi from Mars Semiconductor Technology for his helps on MATLAB programming.

I would like to thank my fellow colleague, Mr Wee Leong Son and friends from Microelectronics department in MIMOS Berhad for their helps, suggestions and inspirations toward the success of this project.

My warmest appreciation also goes to my family who has given their unfailing support and patience; especially to my beloved wife.

Finally, I want to acknowledge the financial support from MIMOS Berhad throughout my studies.

ABSTRACT

Most of modern communication devices are implemented on portable systems powered by a battery with limited energy. Due to their dependence on batteries, some efforts have to be made to minimize the power consumption of these devices. One of the approaches is to use low power analog-to-digital converter (ADC). This thesis focuses on the design implementation of low power pipelined ADC for wireless communication system. The pipelined ADC was realized using 1.5-bit per-stage structures with digital error correction. For power reduction, dedicated front-end sample-and-hold circuit used in conventional pipelined ADC architecture is removed. Furthermore, power analysis has been performed using MATLAB® to assist in determining the best stage resolution in pipelined stages. A dynamic comparator is employed to optimize further the power consumption in pipelined stages. This low power pipelined ADC is implemented using Siltera's 0.18µm, 1.8-3.3V complementary metal oxide semiconductor process, with double layer poly-silicon and five metal layers. The designed pipelined ADC exhibits a 10-bit resolution at 50 Mega-Sample per-second and 50.82dB signal to noise and distortion ratio with an effective number of bits of 8.15-bit. The differential non-linearity (DNL) and the integral non-linearity (INL) are ±1 least-significant of bits (LSB). The power consumption is 97mW from a 3V supply and the entire area of the pipelined ADC including input and output pads is 2.4 mm².

ABSTRAK

Hampir keseluruhan alat komunikasi moden diimplementasi pada sistem mudah alih yang dikuasai oleh tenaga bateri yang terbatas. Disebabkan oleh kebergantungan alat-alat kominukasi ini kepada bateri, sesuatu usaha perlu dilakukan untuk mengurangkan penggunaan kuasa mereka. Salah satu pendekatan ialah dengan menggunakan penukar analog kepada digital (analog-digital) yang berkuasa rendah. Tesis ini memberi tumpuan pada pelaksanaan rekabentuk penukar analog kepada digital jenis talian paip kuasa rendah untuk digunakan di dalam sistem komunikasi tanpa wayar. Penukar analog-digital talian paip ini dihasilkan dengan menggunakan struktur 1.5-bit disetiap peringkat bersama dengan litar pembetulan ralat. Untuk mengurangkan penggunaan kuasa, litar khusus untuk sampel dan pegang yang lazimnya digunakan di bahagian hadapan kebanyakan senibina penukar analog-digital talian paip telah disingkirkan. Tambahan lagi, analisis mengenai penggunaan kuasa di dalam beberapa struktur rekabentuk telah dilakukan dengan bantuan perisian MATLAB® bagi menentukan senibina terbaik untuk resolusi di dalam setiap peringkat talian-talian paip ini. Pembanding dinamik juga turut digunakan untuk mengurangkan lagi penggunaan kuasa di dalam semua peringkat talian-talian paip ini. Penukar analog-digital yang berkuasa rendah ini telah dihasilkan dengan menggunakan teknologi 0.18µm pelengkap logam oksida semiconduktor daripada Siltera dengan dua lapisan polisilikon dan lima lapisan logam. Penukar analog-digital yang telah direkabentuk ini berjaya mencapai resolusi 10-bit pada kelajuan 50 Mega sampel per satu saat dan nisbah isyarat kepada hingar dan herotan adalah 50.82dB. Disamping itu, nombor bit berkesan ialah 8.15-bit. Nilai ketaklurusan kebezaan dan ketaklurusan kamiran masing-masing ialah ±1 bit bererti terkecil. Penggunaan kuasa oleh penukar analog-digital yang direkabentuk ini ialah sebanyak 97mW pada voltan bekalan 3V dan seluruh keluasan bentangan termasuk pad masukan dan keluaran ialah 2.4mm².

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DEC	CLARATION	ii
	ACI	KNOWLEDGEMENTS	iii
	ABS	STRACT	iv
	ABS	STRAK	V
	TAI	BLE OF CONTENTS	vi
	LIS	T OF TABLES	Х
	LIS	T OF FIGURES	xi
	LIS	Γ OF ABBREVIATIONS	XV
	LIS	Γ OF APPENDICES	xvii
	LIS	T OF PUBLICATIONS	xviii
1	INT	RODUCTION	1
	1.1	Motivation	2
	1.2	Problem Statement	4
	1.3	Research Contribution	5
	1.4	Thesis Organization	6
2	LIT	ERATURE REVIEWS	7
	2.1	Performance parameters	7
		2.1.1 Differential and Integral Non-Linearity	8
		2.1.2 Signal-to-Noise Ratio	9

	2.1.3	Total Harmonic Distortion	10
	2.1.4	Signal-to-Noise Distortion Ratio	10
	2.1.5	Spurious Free Dynamic Range	10
	2.1.6	Effective Number of Bits	11
	2.1.7	Latency	11
2.2	Overv	iew of Analog-to-Digital Converter Architecture (ADC)	12
	2.2.1	Flash ADC	12
	2.2.2	Successive Approximation ADC	13
	2.2.3	Pipelined ADC	14
	2.2.4	Over-Sampled ADC	15
	2.2.5	Summary of ADC Architectures	15
2.3	Basic	Building of Pipelined ADC	17
	2.3.1	Multiplying Digital-to-Analog Converter (DAC)	17
	2.3.2	Sub-ADC	21
	2.3.3	Operational Amplifiers	22
	2.3.4	Comparator	31
	2.3.5	Digital Error Correction	33
2.4	Chapt	er Summary	34
SYS	STEM I	DESIGN ARCHITECTURE	35
3.1	ADC	Specifications	35
3.2	Power	Optimization	36
	3.2.1	Bit Per Stage Architecture	36
	3.2.2	Sample and Hold Removal	40
	3.2.3	Stage and Capacitor Scaling	41
3.3	Syster	n Level Simulation	42
3.4	Chapt	er Summary	44

4 DESIGN IMPLEMENTATIONS

4.1	1.5-bit Multiplying DAC	45		
	4.1.1 Operational Amplifier	46		
	4.1.2 Common Mode Feedback	50		
	4.1.3 Bias Circuit	51		
	4.1.4 Sub-DAC	51		
	4.1.5 Switches	54		
	4.1.5.1 Transmission gate	54		
	4.1.5.2 Bootstrap Switch	55		
	4.1.6 Non Overlapping Clock Generator	56		
	4.1.7 MDAC Characterizations	57		
4.2	Sub-ADC	59		
4.3	4.3 Digital Error Correction Circuit			
4.4	Fully Integrated 10-bit 50MS/s Pipelined ADC	64		
4.5	Chapter Summary	66		
ADC	C CHARACTERIZATION	67		
5.1	Functionality	67		
5.2	Static Linearity	70		
5.3	Dynamic Linearity	71		
5.4	Chapter Summary	74		
CO	NCLUSION	76		
U		/0		
6.1	Thesis Contributions	76		
6.2	Future Work	77		

REFERENCES

Appendices A-E

85 - 95

79

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	ADC applications and their design constraints	2
3.1	Design specifications for pipelined ADC for wireless communication system application.	36
3.2	Different configurations for different pipelined architecture	39
3.3	Pipelined ADC preliminary result using MATLAB	44
3.4	Design requirements for MDAC design	44
4.1	Possible state for Sub-DAC outputs	52
4.2	Summary of FFT results for 1.5-bit MDAC	59
4.3	Lists of required comparators in the designed pipelined ADC	61
5.1	Summary of functional simulation results	69
5.2	Summary of the pipelined ADC performances	75

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	The direct conversion receiver architecture for SDR	3
2.1	INL and DNL errors in a 3-bit ADC	8
2.2	Latency of Pipelined ADC	11
2.3	Flash ADC	12
2.4	Successive approximation ADC	13
2.5	A pipelined ADC block diagram	14
2.6	Block diagram of an over-sampling ADC	15
2.7	Tradeoffs between resolutions and sampling rates	16
2.8	Basic building blocks of a pipelined ADC	17
2.9	Typical SC circuits (a) one-capacitor SC (b) two- capacitors SC	18
2.10	SC realization of a 1.5 bit/stage MDAC with equal valued capacitor array	19
2.11	Transfer function of 1.5 bit/stage MDAC	20
2.12	The 2.5-bit sub-ADC	22
2.13	Circuit schematic of current mirror amplifier	23
2.14	Circuit schematic of two-stage Miller amplifier	25
2.15	Circuit schematic of telescopic amplifier	27

2.16	Circuit schematic of folded-cascode amplifier	29
2.17	Input/output characteristic of an ideal comparator	31
2.18	A CMOS regenerative latch	32
2.19	Digital error correction techniques used for 1.5-bit stage	33
3.1	Flow chart of a power optimization algorithm	38
3.2	MATLAB simulation result for power consumption estimations	40
3.3	Conceptual diagram of scaled pipelined ADC architecture	41
3.4	Histogram plot for 100 Monte Carlo runs versus SNDR	42
3.5	Histogram plot for 100 Monte Carlo runs versus SFDR	42
3.6	MATLAB simulation results for DNL	43
3.7	MATLAB simulation results for INL	43
4.1	1.5-bit MDAC with fully differential configuration	46
4.2	Gain boosting cascode amplifier	47
4.3	(a) Schematic and (b) layout of fully differential gain-enhancement telescopic amplifier	48
4.4	AC and bode plots for simulated gain and phase margin of gain-boosted op-amp	49
4.5	Gain-boosted op-amp settling behaviors in 3 corners	49
4.6	A common mode feedback circuit	50
4.7	Biasing circuit of op-amp	51
4.8	Circuit schematic of sub-DAC for 1.5 bit per-stage	52
4.9	Simulation result for sub-DAC	53
4.10	Sub-DAC layout	53
4.11	(a) Circuit schematic and (b) layout of transmission gate	54

4.12	Bootstrap switch (a) circuit and its (b) layout	55
4.13	Simulated results for bootstrap switch	55
4.14	Non-overlapping clock generator	56
4.15	Timing simulation for non-overlapping clock generator	56
4.16	Layout of 1.5-bit MDAC	57
4.17	Post simulation result for MDAC residue	57
4.18	Post simulation result for functional MDAC	58
4.19	64-points FFT plots for MDAC	58
4.20	Dynamic resistive comparator (a) circuit and (b) layout	60
4.21	Simulation results of comparator with threshold of $+\frac{1}{4}V_{ref}$	61
4.22	Digital error correction circuit	62
4.23	Illustration of simulation results for digital error correction circuit.	63
4.24	Layout design for digital error correction circuit.	63
4.25	Block diagrams for all ADC's sub-circuits	64
4.26	Top level schematic of 10-bit 50MS/s pipelined ADC	65
4.27	Layout of 10-bit 50MS/s pipelined ADC	65
5.1	Post simulation result for functionality check on pipelined ADC.	68
5.2	ADC functional characterizations using ideal DAC	69
5.3	Partial result of HSPICE simulation for ADC static performances	70
5.4	Simulated (a) DNL and (b) INL for pre layout pipelined ADC	71
5.5	Simulated (a) DNL and (b) INL for post layout pipelined ADC	71

5.6	32-Points FFT spectrum for pre layout pipelined ADC	72
5.7	32-Points FFT spectrum for post layout pipelined ADC.	72
5.8	ADC power distributions	73
5.9	Comparison of this design with previously published ADCs	74

LIST OF ABBREVIATIONS

ADC	-	Analog to digital converter
CMFB	-	Common mode feedback
CMOS	-	Complimentary Metal Oxide Semiconductor
DAC	-	Digital to analog converter
DEC	-	Digital error correction
DNL	-	Differential non linearity
DPFM	-	Double poly five metals
ESD	-	Electro static discharge
ENOB	-	Effective number of bit
FFT	-	Fast Fourier Transform
GBW	-	Gain bandwidth
IF	-	Intermediate frequency
INL	-	Integral non linearity
I/O	-	Input-output
LNA	-	Low noise amplifier
LSB	-	Least significant of bit
LO	-	Local Oscillator
MDAC	-	Multiplying digital to analog converter
MSB	-	Most significant of bit
NMOS	-	n-channel metal oxide semiconductor
PMOS	-	p-channel metal oxide semiconductor
SAR	-	Successive approximate register
SC	-	Switch capacitor
SDR	_	Software defined radio

SFDR	-	Spurious free dynamic range
S/H	-	Sample and hold
SNR	-	Signal to noise ratio
SNDR	-	Signal to noise and distortion ratio
SR	-	Slew rate
Sub-ADC	-	Sub-Analog to digital converter
Sub-DAC	-	Sub-Digital to analog converter
THD	-	Total harmonic distortion
VGA	-	Variable gain amplifier

LIST OF APPENDICES

APPENDIX

TITLE

PAGE

A	MATLAB [®] code for INL and DNL simulation at system level	85
В	MATLAB [®] code for SNDR and SFDR simulation at system level	88
С	MATLAB [®] code for SNDR and SFDR simulation for MDAC	91
D	MATLAB [®] code for DNL and INL characterization for pipelined ADC at circuit level	92
E	MATLAB [®] code for SNDR, SFDR and ENOB characterization for pipelined ADC at circuit level	94

LIST OF PUBLICATIONS

NO.

1

TITLE

Yuzman Yusoff, Rohana Musa, Nazaliza Othman, Mohd Shahiman Sulaiman and Muhammad Nadzir Marsono. A High-Gain and High-Speed OTA for 10-bit 50MS/s Pipelined ADC. *Student Conference on Research and Development (SCORed)*, November 2008. Skudai, Malaysia: IEEE, 58-1 - 58-5.

CHAPTER 1

INTRODUCTION

Over the past few decades, silicon integrated circuit (IC) technology has evolved rapidly. This evolution has been driven mostly by the industry in digital circuits such as microprocessor and memories. As IC fabrication technology has improved, more analog signal processing functions have been replaced by digital circuitries. Despite of this trend, analog-to-digital converters (ADCs) play an important role in most modern electronic systems. The reason is that most of interests signals are analog in nature and must to be converted to digital signals for further signal processing in the digital domain [1].

ADC architectures include flash, pipelined, successive approximation, and sigma-delta; each with its own unique features. Which architecture for which application is typically determined by the speed and resolution requirements. Table 1.1 summarizes some of the ADC applications and their design constraints in terms of resolutions and sampling rates [2].

Area	System Applications	Resolutions	Sampling Rate
Wireline	Gigabit Ethernet	6-7 bit	250 MS/s
Communication	Fast Ethernet	7-8 bit	125 MS/s
	xDSL	13-16 bit	35 MS/s
Wireless Communication	Zero-IF Receiver: 802.11 WiMAX	10-14 bit	50-80 MS/s
	IF Sampling Multi-Standard: Software Radio Architectures	10-16 bit	10-100 MS/s
Audio and Video	CD/DVD Quality	24 bit	192 KS/s
	Imaging & Video Processing: Imaging Devices, HDTV	8-12 bit	40 MS/s
Instrumentations	Lab Bench Equipments: Digital Oscilloscope	8 bit	20 GS/s
	Scientific & Medical Equipments, Tester	12 bit	40 MS/s
Storage & Computing	Hard Disk Drive	6-7 bit	0.5-1.5 GS/s
Devices	Data Acquisition Cards	12-18 bit	1-100 MS/s

Table 1.1: ADC applications and their design constraints.

1.1 Motivation

In wireless telecommunication systems, the goal of the trend toward digitization is to move analog-to-digital converters (ADCs) close to the antennas so that all of the analog functions such as mixing, filtering, and demodulating can be implemented in the digital domain. Thus, one radio system can handle multiple standards by simply changing the programs in the digital signal processing block. This concept is known as software-defined-radio (SDR) [3]. The system architecture of SDR receiver is shown in Figure 1.1.

Depending on the receiver architecture, analog filtering, and gain control range, the ADCs with a resolution of 10-16 bits and a sample rate between 10 and 100 MS/s are required [4]. Because of growing market on wireless digital communication, ADCs with medium-to-high resolutions and medium-to-high sampling rates are in high demand. However, since these kinds of ADCs are often designed solely for maximum speed, they tend to consume significant amount of power. Consequently, the demand for increased functionality in high-speed ADCs also carries with it the need for low power dissipation. As the above architecture is mostly used on mobile device, the power dissipation is an important design constraint and must be kept low to extend battery life.

Figure 1.1 The direct conversion receiver architecture for SDR.

Another trend in implementing wireless telecommunication systems is toward higher-level circuit integration for lower cost and smaller feature size. The goal of this trend is to have a single chip solution, in which analog and digital circuits are placed on the same die with advanced CMOS technology. Although advanced fabrication technology benefits digital circuits, it poses great challenges for analog circuits. The scaling of CMOS devices degrades important analog performance. For instance, lowering output resistance lowers amplifier gain, although cascading transistors or an added gain stage can compensate for this lowered gain. However, the use of cascoding transistors runs into a limitation on the number of transistors that can be stacked, a limitation that is imposed by the low power supply voltage of scaled CMOS technology. Turning to the solution of additional stages has the disadvantages of increased power dissipation and more complicated circuitry.

The low power supply voltage of scaled CMOS technology also limits the performance of analog circuits. Therefore, just as is the case with digital circuits, simply lowering the power supply voltage in analog circuits does not necessarily result in lower power dissipation. In addition, requirements for high gain and high speed make it more difficult to lower their power consumption. This is especially true for already complicated analog systems like ADCs; reducing their power consumption requires careful analysis of system requirements and special strategies.

1.2 Problem Statement

Most modern communication devices are implemented on portable systems powered by a battery with limited energy. Due to their dependence on batteries, some efforts have to be made to minimize the power consumption of these devices. One of the approaches is to use low power ADC. In this application, pipelined topology is the most promising ADC architecture. Its properties are suited to the system requirement that requires ADC with medium-to-high resolution and medium-to-high sampling rate. The pipelined architecture also can be easily calibrated for higher resolution and has potential for low voltage and low power operation. Thus, the objective of this work is to design a low power 10-bit 50MS/s (Mega-Sample per-second) pipelined ADC for wireless communication system applications.

1.3 Research Contribution

This research concentrates on pipelined ADC for wireless communication system. Requirements and optimization of the pipelined ADCs, at the circuit and architectural levels, are addressed to meet the specifications of this target application. Although the proposed ADC is designed according to the specifications of the target systems of wireless communication system, it can be exploited in other applications as well. Based on this research work, some of the analysis and circuit implementations have been partially reported in a related publication [5]. The contributions of this research work are:

- (i) *Pipelined ADC MATLAB system model*: MATLAB behavior models are developed for the proposed pipelined ADC characterizations on its static and dynamic linearity.
- (ii) A low power 10-bit pipelined ADC architecture: Different architectures on pipelined stages are investigated in order to determine the optimum bit per stage structure in term of low power operation.
- (iii) Transistor level pipelined ADC sub-circuits design and analysis: The ADC sub-blocks such as amplifiers, comparators, non-overlapping clock generator, switches, and digital error correction are designed and simulated at circuit level.
- (iv) Pipelined ADC layouts: The layout for 10-bit 50MS/s Pipelined ADC is implemented using Siltera's 0.18um CMOS process with double polysilicon and five metals technology. All techniques such as commoncentroid, cross-coupled, interdigitation, and IC decoupling are employed in this layout to reduce parasitic effects.

The rest of the thesis is organized as follows. Chapter 2 presents the literature review of ADCs and it is divided into three small sections. First, Section 2.1 describes the importance of ADC performance parameters. Section 2.2 presents an overview of various ADC architectures. In section 2.3, the pipelined ADC is presented in more details on its basic operation and subblocks. Chapter 3 describes system architecture for the proposed pipelined ADC as well as some analysis on its power optimization. Chapter 4 details the design implementation of 10-bit 50MS/s pipelined ADC covering all its subcomponents including the amplifier, comparator, and digital error correction circuit. Chapter 5 assesses the performance of the designed 10-bit 50MS/s pipelined ADC. The thesis summary, research contribution, and direction for future works are in Chapter 6.

REFERENCES

- [1] B. Razavi. Design of Analog CMOS Integrated Circuits, McGraw-Hill. 2000
- [2] S. Rapuano, P. Daponte, E. Balestrieri, L. De Vito, S. J. Tilden, S. Max, and J. Blair. ADC parameters and characteristics. *Instrumentation & Measurement Magazine*, vol.8, no.5, 2005. pp. 44-54.
- [3] M. Sawan, A. Djemouai, K. El-Sankary, H. Dang, A. Naderi, Y. Savaria, and
 F. Gagnon. High speed ADCs dedicated for wideband wireless receivers. *IEEE Northeast Workshop on Circuits and Systems (NEWCAS) Conference*, June 2005. Quebec, Canada. pp. 283-286
- [4] L. Sumanen. Pipelined Analog-to-Digital for Wide-Band Wireless Communications. Ph.D. Thesis. Helsinki University of Technology, Finland; 2002
- [5] Y. Yusoff, R. Musa, N. Othman, M. S. Sulaiman and M. N. Marsono. A High-Gain and High-Speed OTA for 10-bit 50MS/s Pipelined ADC. *Student Conference on Research and Development (SCORed)*, November 2008. Skudai, Malaysia. Pp. 58-1-- 58-5.
- [6] B. Razavi and B. A. Wooley. A 12-b, 5-Msample/s two-step CMOS A/D converter. *IEEE Journal of Solid-State Circuits*. vol. 27, no.12, 1991. pp. 1667-1678.
- [7] R. L. Geiger, P. E. Allen, N. R. Strader. *VLSI Design Techniques for Analog and Digital Circuits*, McGraw Hill, 1990.
- [8] M. Gustavsson, J. Jacob Wikner, and N. Nick Tan. CMOS Data Converters for Communications, Kluwer Academic Publisher, 2000.

- [9] T. Cho. Low-power Low-voltage Analog-to-Digital Conversion Technique using Pipelined Architectures. Ph.D Thesis. University of California, Berkeley; 1995.
- [10] B. Nejati and O. Shoaei. A 10-bit, 2.5-V, 40Msample/s, Pipelined Analog-to-Digital Converter in 0.6-um CMOS. *IEEE International Symposium on Circuits and Systems*. May, 2004. Vancouver, Canada. pp. I-73 -- I-76.
- [11] H. Chen, B. Song and K. Bacrania. A 14-b 20-Msamples/s CMOS Pipelined ADC. *IEEE Journal Solid-State Circuits*, vol. 36, no.6, 2001. pp. 997-1001.
- [12] L. Williams and B. A. Wooley. A third-order sigma-delta modulation with extended dynamic range," *IEEE Journal Solid-State Circuits*, vol. 29, no. 3, 1994. pp. 193-202.
- [13] B. P. Brandt, D. Wingard, and B. A. Wooley. Second-order sigma-delta modulation for digital-audio signal acquisition. *IEEE Journal on Solid-State Circuits*, vol. 26, no.4, 1991. pp.618-627.
- [14] A. Reddy. Noise Shaping with Sigma Delta Modulators in Fractional-N Synthesizers. *IEEE International Workshop on Radio-Frequency Integration Technology*. December 2007, Singapore. pp. 329-332.
- [15] J. Goes, J. C. Vital, J. E. Franca. A CMOS 4-bit MDAC with Self-Calibrated14-bit Linearity for High-Resolution Pipelined A/D Converters. *Proceedings of the IEEE Custom Integrated Circuits Conference*. May 1996, San Diego, California. pp. 105-108.
- [16] R. Gregorian, *Introduction to CMOS Op-Amps and Comparators*, John Wiley and Sons. 1999.
- [17] S. Kwak, B. Song, and K. Bacrania. A 15-b, 5-Msample/s Low-spurious CMOS ADC. *IEEE Journal Solid-State Circuits*, vol. 32, no. 12, 1997. pp. 1866-1875.
- [18] P. Allen and D. R. Holberg. CMOS Analog Circuit Design. 2nd edition, Oxford University Press, 2002.

- [19] G. Nicollini, P. Confalonieri, D. Senderowicz. A Fully Differential Sample and Hold Circuit for High-Speed Applications. *IEEE Journal on Solid-State Circuits*, vol. 24, no. 5, 1989. pp. 1461–1465.
- [20] K. Gulati and H. S. Lee. A High-Swing Telescopic Operational Amplifier. *IEEE Journal on Solid-State Circuits*. vol. 33, no. 12, 1998. pp. 2010-2019.
- [21] M.Yavari and O. Shoaei. Low-voltage Low-power Fast-settling CMOS Operational Transconductance Amplifier for Switch Capacitor Applications. *IEEE Proceeding of Circuits, Devices and System*, vol. 151, no. 6, 2004. pp. 573-578.
- [22] B. Razavi, Principles of Data Conversion System Design, IEEE Press, 1995.
- [23] N. Carter. A 12-b 50Msample/s Pipelined Analog to Digital Converter. MSc. Thesis. Worcester Polytechnic Institute; 2000
- [24] K. Kim, N. Kusayanagi, and A. Abidi. A 10-b, 100-MS/s CMOS A/D Converter. *IEEE Journal Solid-State Circuits*. vol. 32, no.12, 1997. pp. 447-454.
- [25] S. H. Lewis. Optimizing the stage resolution in pipelined, multistage, analogto-digital converters for video-rate applications. *IEEE Transaction on Circuits* and Systems-II. vol.39, no.8, 1992. pp. 516-523.
- [26] P. T. F. Kwok and H. C. Luong. Power Optimization for Pipelined Analog-to-Digital Converters. *IEEE Transaction on Circuits and Systems-II*. vol. 46, no. 5, 1999. pp. 549-553.
- [27] D. Kelly, W. Yang, I. Mehr, M. Sayuk and L. Singer. A 3V 340mW 14b 75MSPS CMOS ADC with 85dB SFDR at Nyquist. *IEEE International Solid-State Circuit Conference Digest of Technical Papers*. February 2001. pp. 134-135.
- [28] L. Reza, T. S. Mohd, M. Y. Azizi and O. Shoei. A Low-Power Design Methodology for High-Resolution Pipelined Analog-to-Digital Converter. *Proceeding of International Symposium on Low Power Electronics and Design*. August 2003, Seoul, Korea. pp. 334-339.

- [29] Y. Chiu. High-Performance Pipelined A/D Converter Design in Deep-Submicron CMOS. Doctoral dissertation. University of California, Berkeley; 2004
- [30] K. Bult, G. J. G. M. Geelen. A Fast-Settling CMOS Op Amp for SC Circuits with 90-dB DC Gain. *IEEE Journal Solid-State Circuits*. vol. 25, no. 6, 1990. pp. 1379-1384.
- [31] P. C. Yu, H-S. Lee, A High-Swing 2-V CMOS Operational Amplifier with Replica-Amp Gain Enhancement, *IEEE Journal Solid-State Circuits*. vol. 28, no. 12, 1993. pp. 1265–1272.
- [32] M. Das. Improved design criteria of gain-boosted CMOS OTA with highspeed optimization. *IEEE Transaction on Circuit and System-II*. vol.49, no. 3, 2002. pp. 204-207
- [33] A. M. Abo. Design for Reliability of Low-Voltage, Switched-capacitor Circuits. Doctoral dissertation. University of California, Berkeley; 1999.
- [34] M. Dessouky and A.Kaiser. Very low-voltage digital-audio ΣΔ modulator with 88-dB dynamic range using local switch bootstrapping. *IEEE Journal Solid-State Circuits*. vol. 36, no. 3, 2001. pp. 349-355.
- [35] A. Hasting. The Art of Analog Layout. Prentice-Hall, Inc. 2001
- [36] J. Li, X. Zeng, J. Chen, J. Zhang, and Y. Guo. A 1.8-V 22mW 30MS/s Subsampling Pipelined CMOS ADC. *IEEE Custom Integrated Circuit Conference*. September, 2006. San Jose, California. pp. 513-516.
- [37] W. Yang, D. Kelly, I. Mehr, M. Sayuk, and L.Singer. A 3-V 340mW 14-b 75Msample/s CMOS ADC with 85-dB SFDR at Nyquist Input. *IEEE Journal* on Solid-State Circuits, vol.36, no12, 2001. pp. 1031-1936.
- [38] I. Mehr, and L. Singer. A 55-mW, 10-bit, 40-Msample/s Nyquist-Rate CMOS ADC. *IEEE Journal on Solid-State Circuits*, vol. 35, no. 3, March 2000. pp. 318-325.

- [39] J. Talebzadeh, M. R. Hasanzadeh, M. Yavari, and O. Shoaei. A 10-bit 150-MS/s, Parallel Pipelined A/D Converter in 0.6-um CMOS. *Proceeding of IEEE Symposium on Circuits and Systems*. May 2002, Arizona, USA, pp. III-(133-136).
- [40] H. Liu, and M. Hassoun. A 9-b 40-MSample/s Reconfigurable Pipelined Analog-to-Digital Converter. *IEEE Journal on Solid-State Circuits*, vol. 49, no. 7, July 2002. pp. 449-456.
- [41] M. Byung-Moo, P. Kim, F. W. Bowman, D. M. Boisvert, A. J. Aude. A 69mW 10-bit 80-MSample/s Pipelined CMOS ADC. *IEEE Journal on Solid-State Circuits*, vol. 38, no. 12, December 2003. pp. 2031-2039.
- [42] P. Jong-Bum, Y. Sang-Min, K. Se-Won, C. Young-Jae, and L. Seung-Hoon. A 10-b 150-MSample/s 1.8-V 123-mW CMOS A/D Converter with 400-MHz Input Bandwidth. *IEEE Journal on Solid-State Circuits*, vol. 39, no. 8, August 2004. pp. 1335-1337.
- [43] L. Jipeng, and Un-Ku Moon. A 1.8-V 67-mW 10-bit MS/s Pipelined ADC Using Time-Shifted CDS Technique. *IEEE Journal on Solid-State Circuits*, vol. 39, no. 9, September 2004. pp. 1468-1476.
- [44] H. Mohamad-Faizal, Y. Yuzman, and M. Rais-Ahmad. A 10-bit 50-MSPS Pipelined CMOS ADC. Proceeding of International Conference on Semiconductor Electronics. Nov 2006, Kuala Lumpur, Malaysia. pp. 459-463.
- [45] N. Sasidhar, K. Youn-Jae, S. Takeuchi, K. Hamashita, K. Takasuka, P. K. Hanumolu, and Un-Ku Moon. A 1.8V 36-mW 11-bit MS/s Pipelined ADC Using Capacitor and Opamp Sharing. *IEEE Asian Solid-State Circuits Conference*, November 2007, Jeju, Korea. pp. 240-243.
- [46] R. Seung-Tak, S. Bang-Sup, and K. Bacrania. A 10-bit 50-MS/s Pipelined ADC With Opamp Current Reuse. *IEEE Journal on Solid-State Circuits*, vol. 42, no. 3, March 2007. pp. 475-485.
- [47] J. Li, X. Zeng, L. Xie, J. Chen, J. Zhang, and Y. Guo. A 1.8-V 22-mW 10-bit 30MS/s Pipelined CMOS ADC for Low-Power Subsampling Applications.

IEEE Journal on Solid-State Circuits, vol. 43, no. 2, February 2008. pp. 321-329.

- [48] C. Junmin, C. Zhongjian, L. Wergao, and Z. Baoying. A Low Power 12-Bit 20 MSample/s Pipelined ADC. Proceeding of International Conference on Signal Processing System. May 2009, Singapore.
- [49] L. Jin-Fu, C. Soon-Jyh, L. Chun-Cheng, and H. Chih-Hao. A 10-bit 60-MS/s Low-Power Pipelined ADC with Split-Capacitor CDS Technique. IEEE Transactions on Circuits and Systems, vol. 57, no. 3, March 2010. pp. 163-167.
- [50] Y. Lai, Y. Xiumei, and Y. Huazhong. A 10-bit 100MSPS Low Power Time-Interleaved ADC using OTA sharing. *Journal of Semiconductor*, vol. 31, no.9, September 2010. pp. 095012-(1-6).