POST-TENSION COLUMN FOR IBS BLOCKWORK BUILDING SYSTEM

ZALILAH BINTI AYOP

A project report submitted in partial fulfillment of the requirement for the award of the degree of Master of Engineering (Civil - Structure)

> Faculty of Civil Engineering Universiti Teknologi Malaysia

> > JAN 2013

I dedicate this piece of my hard work to the person that I love most.

Especially My Mother and Father

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful. Praise be to Allah for bestowed me health, intelligence and patience in order to accomplish this project.

First and foremost I offer my sincerest gratitude to my supervisor, Assoc. Prof. Dr Abdul Kadir Bin Marsono, who has supported me throughout this project with his patience, knowledge and his continuous guidance and advices whilst allowing me the room to work in my own way. I attribute the level of my degree to his encouragement and effort and without him this thesis, too, would not have been completed or written. One simply could not wish for a better or friendlier supervisor.

I wish to express my warm and sincere thanks to my partner, Muhammad Zakaria who have been very helpful in accomplishing this project. I thank my fellow labmates Farah, Faeza, Ejan and Nazwan for the cooperation during labworks and for all the fun we have had in the last year. Special thanks to all the lecturers and technicians in Faculty of Civil Engineering of Structural Laboratory in UTM who had always guide and help me conducting experimental work.

Last but not least, to my beloved family and precious peoples in my life for their understandings and supports.

ABSTRACT

Industrialized Building System (IBS) is now a common remark in construction industry. The used of this system have grown rapidly around develop country including Malaysia. This research is mainly focused on the interlocking blockwork system for the residential building house. The concrete blocks were assembled by stacking up and jointed together, by the bolt only without the interlocking void in the blocks. The assembly of beam and column are by bolts only. This study focuses on the pretension bolt at the column only. The stress value at the bolt is needed in order to apply pretension or preloading to the bolt. The purpose of this study is to investigate the behaviour of the frame structure of the blockwork system under point loads in both experimental which is constructed in the laboratory and analysis of the structure modeled in finite element analysis software (Abaqus/CAE). The behaviour of the structure observed during the testing was merely the pattern of the crack occurred when the frame is loaded. Based on the analysis that has been performed, the residual stress in the bolt is determined and the actual pretension bolt value in the column is calculated which gives 0.251 kN, while the torque that need to be applied at the nut is 0.102 kNmm.

ABSTRAK

Sistem Bangunan Perindustrian (IBS) kini merupakan perkataan yang tidak asing lagi dalam industri pembinaan. Penggunaan sistem ini telah berkembang dengan pesat di seluruh negara membangun termasuk Malaysia. Kajian ini lebih tertumpu pada sistem blok konkrit saling mengunci untuk bangunan rumah kediaman. Blok konkrit ini telah dipasang dengan meletakkan dan menysusun secara bertingkat melalui bolt tanpa ruang kosong saling mengunci di dalam blok konkrit. Pemasangan tiang dan rasuk adalah melalui bolt sahaja. Kajian ini hanya memfokuskan bolt prategangan pada tiang sahaja. Nilai tegasan pada bolt adalah perlu supaya prategangan boleh diaplikasikan pada bolt tersebut. Tujuan kajian ini adalah untuk menyiasat tingkah laku struktur kerangka sistem blok konkrit di bawah beban tumpu pada kedua-dua eksperimen yang dibina di makmal dan analisis dari perisian unsur terhingga (Abaqus/CAE). Kelakuan struktur yang diperhatikan semasa ujian yang dilakukan adalah semata-mata corak retak yang berlaku apabila beban diletakkan. Berdasarkan analisis yang telah dijalankan, tegasan baki dalam bolt telah ditentukan dan nilai sebenar prategangan bolt dalam tiang adalah 0.251 kN, manakala tork yang perlu diaplikasikan pada nat adalah 0.102 kNm.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	V
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLE	Х
	LIST OF FIGURE	xi
	LIST OF SYMBOL	xiv
	LIST OF APPENDICES	XV
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Problem Statement	3
	1.3 Objectives of The Study	3
	1.4 Scope of The Study	4
	1.5 Importance of The Study	4
2	LITERATURE REVIEW	5
	2.1 Definition of Industrialized Building System (IBS)	5
	2.1.1 The Characteristic of IBS	7
	2.1.2 Benefits of IBS	11
	2.1.3 Disadvantages of IBS	12
	2.2 Blockworks System	13
	2.2.1 Introduction	13

	2.2.2 Concrete Blocks Type and Size	14
	2.2.3 Manufactured of Concrete Blocks	18
	2.2.4 Properties of Concrete Blocks	19
	2.2.5 Bond	21
	2.2.6 Reinforcement	22
	2.2.7 Movement Control	23
	2.3 Lightweight Concrete	25
	2.3.1 Introduction	25
	2.3.2 Structural Lightweight Concrete	26
	2.4 Bolted Joints	27
	2.4.1 Tensile Joints	28
	2.4.2 Shear Joints	29
	2.5 Pre-Tension Bolt	30
	2.5.1 Problems Encountered by Incorrect Preload	30
	2.6 Torque Control Method	32
3	METHODOLOGY	35
	3.1 Introduction	35
	3.2 Laboratory Works and Testing	36
	3.2.1 Preparation of Mix Concrete Design of Grade 30	36
	3.2.2 IBS blockwork Specification and Mould Preparation	40
	3.2.3 Reinforcement Bar and PVC for M&E Void	41
	Preparation	
	3.2.4 Concrete Placing and Compaction of the Concrete	42
	3.2.5 Curing and Storage	43
	3.2.6 Compression Test	45
	3.2.7 Assembly of Blocks to Form a Frame System	46
	3.2.8 Static Load Test	47
	3.3 Model Simulation in Finite Element Analysis Software	49
	3.3.1 Part	51
	3.3.2 Material	54
	3.3.3 Assembly	56
	3.3.4 Step	57

	3.3.5 Interaction	58
	3.3.6 Load	61
	3.3.7 Mesh	63
	3.3.8 Job	65
	3.3.9 Visualization	65
4	RESULTS AND DISCUSSIONS	67
	4.1 Introduction	67
	4.2 Experimental Testing	67
	4.3 Finite Element Analysis (Abaqus/CAE)	76
	4.3.1 Deflection Check	77
	4.3.2 Verification of Finite Element Result with	77
	Experimental Result	
	4.3.3 Pretension Value of the Bolt	79
5	CONCLUSION	82
	5.1 Introduction	82
	5.2 Research Findings	82
	5.3 Recommendation	83
REFERENC	CES	85
APPENDIX		87 - 93

LIST OF TABLE

TABLE NO	TITLE	PAGE
2.1	Typical Work Sizes and Strengths for Concrete Blocks to	16
	BS 6073:2008 (Lyons, A. 2008)	
2.2	Limit Of Tolerances On Aggregate Concrete Block Sizes	17
	(Lyons, A. 2008)	
2.3	Limit Of Tolerances On Autoclaved Aerated Concrete	18
	Block Sizes (Lyons, A. 2008)	
2.4	Typical Relationship between Density and Thermal	20
	Conductivity for Concrete (Lyons, A. 2008)	
A.1	Concrete Mix Design Form	87
A.2	Approximate Compressive Strength (N/mm ²) Of Concrete	88
	Mixes Made with a Free-Water/Cement Ratio Of 0.5	
A.3	Approximate Free-Water Contents (Kg/m ³) Required to	89
	Give Various Levels of Workability	
B.1	Force (kN) and Displacement (mm)	92

LIST OF FIGURE

FIGURE NO

TITLE

PAGE

2.1	Types of Concrete Blocks (Lyons, A. 2008)	14
2.2	The Standard Work Face Size (Lyons, A. 2008)	15
2.3	Manufacture of Aerated Blocks (Lyons, A. 2008)	19
2.4	Selection of Bonding Patterns For Visual Blockwork (Lyons,	22
	A. 2008)	
2.5	Reinforced Blockwork (Lyons, A. 2008)	23
2.6	Blockwork Movement Joints (Lyons, A. 2008)	24
2.7	Bolted Joints Are Classified by the Service Loads Placed on	28
	Them (Bickford, 2008)	
3.1	Methodology of Research	35
3.2	Flow chart of laboratory works and testing	36
3.3	Flow Chart of Preparation of Mix Concrete Design	37
3.4	Steel Mould	41
3.5	Reinforcement and PVC Pipes Installation in the Mould	42
3.6	Casting Work	43
3.7	Mould Stripping before Curing	44
3.8	Curing and Storage of the Concrete Blocks	44
3.9	Compression Test	46
3.10	Assembly of the Concrete Blocks using Overhead Crane	47
3.11	Static Load Test Set-up	48
3.12	Frame Blockwork Structure with Lightweight Infill before	48
	Testing	
3.13	The Modeling Of Frame Structure In ABAQUS/CAE	50
3.14	Flow of the Model Simulation	50
3.15	Window of the Part Module	51

3.16	Window of the Part Module with the Sketch Layout to	52
	Sketch the Two-Dimensional Profile of the Base Features	
3.17	L-Shape Concrete Block Created in Part	53
3.18	Reinforcement Bar for L-Shape Block Created in Part	53
3.19	The Region (The Block) That Has Been Already Assigned	55
3.20	All Part Instances Have Been Assembled	57
3.21	Window of Step Module with Create Step Dialog Box	58
3.22	Interaction between Concrete Blocks	60
3.23	Embedded Region of Polystyrene Are Highlighted	60
3.24	Embedded Region of Steel in the Concrete Block Are	61
	Highlighted	
3.25	Loading	62
3.26	Boundary Condition	62
3.27	Meshing of L-Shape Block, Bolt and Nut	63
3.28	Meshing of Reinforcement Bar	64
3.29	Meshing of Assembled Part	64
3.30	Window of Job Module with Create Job and Job Manager	65
	Dialog boxes	
3.31	Window of Visualization Module; the Plot Undeformed	66
	Shape for the Frame Structure.	
4.1	Load (kN) versus Displacement (mm) at 3 rd Cycle Loading	68
	Graph.	
4.2	First Crack Occurred at the Bottom Beam at 70 kN of	70
	Applied Load	
4.3	Cracking at the Edge of the Bottom Beam Have Occurred	70
4.4	Cracking at the Edge of the Upper Beam Is Occurred	71
4.5	Crushing at the Base of the Bottom Block Supporting the	71
	Beam	
4.6	Crushing at the Edge of Bottom Block Supporting the Beam	72
	and Cracking at the Bottom Beam was propagated	
	extensively	
4.7	Cracking Was Occurred at Lightweight Infill Wall	72
4.8	Cracking Was Occurred at Upper Beam and Propagated as	73

the Loading Increased

4.9	Propagation of the Crack and Crushing Occurred at	73			
	Lightweight Infill Wall as the Loading Is Increased				
4.10	Spalling of Concrete at the Bottom Beam Is Occurred	74			
4.11	Failure of the Bottom Beam				
4.12	Failure of the Upper Beam				
4.13	Failure of the lightweight infill wall				
4.14	Frame Structure at Collapse State				
4.15	The Deflection of the Frame Structure				
4.16	Displacement Value of the Upper Beam	78			
4.17	Stress Plot Contour of the Frame Structure	79			
4.18	Stress Plot Contours for the Bolt				
A.1	Relationship between Standard Deviation and Characteristic	88			
	Strength				
A.2	Relationship between Compressive Strength and Free-Water/	89			
	Cement Ratio				
A.3	Estimated Wet Density of Fully Compacted Concrete	90			
A.4	Recommended Proportions of Fine Aggregate According to	90			
	Percentage Passing a 600 mm Sieve				

LIST OF SYMBOL

]	F _p		Preload force
f	ub	-	Ultimate tensile strength of the bolt
1	A _s	-	Tensile stess area
	Т	-	Torque
	р	-	Pitch diameter
	μ _t	-	Coefficient of friction between nut and bolt threads
	r _t	-	Effective of contact radius of the threads
	β	-	Half angle of the threads
I	u _n		coefficient of friction between the face of the nut and the
			upper surface of the joint
	r _n	-	Effective radius of contact between the nut and joint
			surface
f	cu		Design compressive strength of concrete

LIST OF APPENDICES

APPENDIX	TITLE	PAGE	
A	Tables and Figures for designing mix concrete	87	
В	Table for Load and Displacement	92	

CHAPTER 1

INTRODUCTION

1.1 Background

The Government intends to provide an adequate supply of affordable houses especially for the low income. For this, 78,000 affordable houses will be built during the plan period. Related laws will also be tightened and enforcement enhanced to ensure the quality of affordable houses built (Tenth Malaysia Plan 2011-2015). Low to medium cost housing in Malaysia has been demanded to be develop. Construction materials such as timber, steel and cement have become costly for a large scale project and due to that reason, contractors are not eager to construct these houses with a firm and constraint construction budget.

Alternatively, industrialized building system (IBS) has to be implemented due to many benefits. The government also has promoted and encourages the construction industry to use IBS for their projects. Adopting IBS will reduce completion time of construction, cut cost in terms of manpower and quality of affordable houses can be control hence, projects will be completed faster in projected schedule. A generic classification for IBS can be derived as the followings (Mohd Kamar *et al.* 2011):

- 1) Frame System (pre-cast or steel)
- 2) Panellised System
- 3) Onsite fabrication
- 4) Sub-assembly and components
- 5) Block work System
- 6) Hybrid System
- 7) Volumetric and Modular System

The classification is based on current Construction Industry Development Board's (CIDB's) IBS classification well known in Malaysia with an important addition of hybrid and volumetric and modular system.

Block work system is the idea to implement the low cost housing. The blocks will be fabricated in the factory with the standardize dimension and materials used. These blocks then transported to the construction site and ready to be installed in a short time. The construction method of using conventional bricks has been revolutionized by the development and usage of interlocking concrete masonry units (CMU) and lightweight concrete blocks. The tedious and time –consuming traditional brick-laying tasks are greatly simplified by the usage of these effective alternative solutions (Mohamed Ali. N *et al* 2009).

1.2 Problem Statement

Blockwork has considerable economic advantages over brickwork in respect of speed of construction in such example; the lightweight blocks can be lifted in one hand. Concrete blocks can be defined as solid, cellular or hollow. They are manufactured to various workface dimensions in an extensive range of thickness, offering a wide choice of load-bearing capacity and level of insulation (Lyons, A. 2008). The main idea in blockwork system is to build up houses from interlocking blocks. The interlocking blocks are different from conventional brick; they do not require masonry (mortar) layer during bricklaying work. They are very dependent on the interlocking bond between the blocks. Structure element such as column, beam and wall are totally using interlocking blocks except for the roof and others. However, to maintain the stability of the structure also need the clamping system.

1.3 Objective of the Study

- i. To test the frame structure constructed by blockworks system using concrete grade 30 blocks to seek its behavior upon loading vertically
- ii. To model the frame structure constructed by blockworks system using software Finite Element Analysis, ABAQUS/CAE
- iii. To verify the response of the frame structure in laboratory with the model in ABAQUS/CAE
- iv. To determine the preloading bolt value for the column

1.4 Scope of the Study

Structures in general can be strengthened and stabilize under load by using different mechanism such as direct reinforcement, pre-stressed reinforcement, post-tensioning, interlocking and etc. In post-tension structures, the tension is only applied after the beam or structure had been produced. The load is applied to the tendons inside the structure via bolts and nuts arrangement. Thus, the resulting stress in the structure depends on the level of torque being applied to the nuts. The concept of post-tensioning are applied in this research. The concrete blocks were assembled by stacking up and jointed together, and then the bolt will keep them bonded by tightening the nut. The installation of the bolt is at the column and beam. This study only considers the pretension bolt at the column only. The stresses values at the bolt are needed in order to apply pretension or preloading bolt. The frame structure will be analyzed by Finite Element Analysis (FEA) software.

1.5 Importance of the Study

This study is aimed to determine the survivability (robustness) of models. It also checks its ability to resist extreme loadings events and to produce the most effective and feasible interlocking blocks that to be standardized in design and construction. In addition, this will give benefits in a sense of faster completion of construction, reduce cost and manpower in a large scale project. This study is to give benefits for both contractor and client as this study is to develop and upgrade our construction industry towards the standard of IBS in Malaysia and to provide a secure, modifiable and affordable house.

REFERENCES

ABAQUS (2011); ABAQUS manual, Version 6.10, Pawtucket, R.I.

BS EN 1090-3, Execution of steel structures and aluminium structures – Part 3: Technical requirements for aluminium structures

BS 8110-1: 1997, Structural use of concrete – Part 1: Code of practice for design and construction.

- Bickford J.H., *Introduction to the Design and Behavior of Bolted Joints*. CRC Press, Taylor & Francis Group, New York, 2008.
- Chen W.F., Plasticity in Reinforced Concrete, , J. Ross Publishing, 2007
- CIDB. Industrialized Building System (IBS) Roadmap 2003-2010 Construction Industry Development Board (CIDB), Kuala Lumpur, 2003.
- Fleischman R.B., Chasten C.P, Lu Le-wu, Driscoll G.C., Top-and-Seat-Angle Connections and End-Plate Connections: Snug vs. Fully Pretensioned Bolts. Journal of Engineering., AISC 1973.
- H. O. Fuchs and R. I. Stephens, *Metal Fatigue in Engineering*, John Wiley & Sons, NewYork, 1980.
- J. F. Knott, Fundamentals of Fracture Mechanics, Butterworths, London, 1973.

Liew F. K, Hamdan S., et al, *The Relationship between the Applied Torque and* Stresses in Post-Tension Structures, ECNDT 2006

Lyons, A., Materials for architects and builders, Elsevier, USA, 2008

Motosh, N., *Development of Design Charts for Bolts Preloaded up to the Plastic Range.* Journal of Engineering for Industry, ASME Aug. 1976

W. D. Callister, Jr, *Materials Science and Engineering*, John Wiley & Sons, New York, 1999.