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ABSTRACT 

 

 

 

 

Phosphoric acid doped proton conducting membranes denoted as ETFE-g-

P(1-VIm) for possible use in high temperature polymer electrolyte membrane fuel 

cell (PEMFC) were prepared by radiation induced graft polymerization of 1-

vinylimidazole (1-VIm) onto poly(ethylene-co-tetrafluoroethylene) (ETFE) films 

followed by doping with phosphoric acid (PA). The ETFE films were irradiated by 

electron beam (EB) accelerator prior to grafting. The effect of the grafting 

parameters such as monomer concentration, absorbed dose, reaction time and 

medium temperature onto the degree of grafting (G%) were studied. The G% was 

found to be strongly dependent upon the investigated grafting parameters, which 

were optimized using response surface method (RSM) through the Box-Behnken 

design expert software. This led to the development of a quadratic model capable of 

predicting the degree of grafting. The validity of the statistical model was supported 

by the small deviation between the predicted (G = 61%) and experimental (G = 57%) 

values. The optimum conditions for achieving maximum G% were determined at: 

monomer concentration of 55 vol%, absorbed dose of 100 kGy, reaction time in the 

range of 14-20 h and medium temperature of 61°C. The effect of phosphoric acid 

doping parameters on the doping behaviour of the grafted ETFE films was also 

optimized using Taguchi method through implementing a Taguchi L9 (3
4
) orthogonal 

array. The optimum parameters for achieving a maximum acid doping level (7.45 

mmol/repeat polymer unit) were: G of 54%, acid concentration of 65%, temperature 

of 100
o
C and time of 5 days. The predicted doping value was deviated by 4.9% from 

the experimental one suggesting the validity of the model in prediction and 

optimization of acid doping reaction. The kinetics of phosphoric acid doping reaction 

was also investigated and two rate constants of 0.46 and 0.16 for PA doping reaction 

were graphically obtained suggesting a zero
th

 order reaction. The proton conductivity 

of the membranes was investigated using 4-probe conductivity cell attached to a 

direct current source meter in correlation with temperature and relative humidity. 

The proton conductivity was found to increase with the increase in doping level at 

constant temperature and relative humidity. Proton conductivity of 143 mS/cm at 

20% relative humidity was achieved in the membranes having G of 38 and 54% 

suggesting a less water dependant conductivity. It can be concluded that the obtained 

membranes have very good combinations of physico-chemical and material 

properties suitable for possible application in PEMFC operating above 100 
o
C.  
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ABSTRAK 

 

 

 

 

Membran pengalir proton terdop asid fosforik yang dinamakan sebagai 

ETFE-GP (1-VIm) mempunyai kemungkinan untuk digunakan dalam suhu tinggi 

Polimer Elektrolit Bahan Api Sel Membran (PEMFC). Membran telah disediakan 

menggunakan pencantuman teraruh sinaran 1-vinylimidaszole (1-VIm) ke atas Poli 

(Etilena bersama Tetrafluoroethylene) (ETFE) filem diikuti dengan proses pendopan 

dengan asid fosforik. Filem-filem ETFE telah disinarkan dengan pecutan alur 

elektron sebelum cantuman. Kesan parameter cantuman seperti kepekatan monomer, 

dos terserap, masa tindak balas dan suhu sederhana ke atas tahap cantuman (G%) 

telah dikaji. Nilai %G yang didapati amat bergantung kepada parameter cantuman 

yang disiasat, di mana parameter ini telah dioptimumkan dengan menggunakan 

kaedah sambutan permukaan (RSM) melalui modul yang terdapat dalam perisian 

pakar reka bentuk Box-Behnken. Penggunaan kaedah ini telah membawa kepada 

pembangunan model kuadratik yang mampu meramalkan %G dan mengurangkan 

penggunaan monomer. Kesahihan model statistik ini disokong oleh nilai sisihan yang 

kecil di antara yang diramal (G = 61%) dan eksperimen (G = 57%). Keadaan 

optimum untuk mencapai %G maksimum telah ditentukan pada: kepekatan monomer 

sebanyak 55 vol%, dos yang diterima sebanyak 100 kGy, masa reaksi dalam julat 14-

20 jam dan suhu pada 61 °C. Kesan pendopan asid fosforik ke atas filem ETFE yang 

dicantumkan juga telah dioptimumkan dengan menggunakan kaedah Taguchi 

melalui pelaksanaan tatasusunan ortogon L9 Taguchi (3
4
). Parameter optimum untuk 

mencapai tahap maksimum pendopan asid (7.45 mmol/ulangan polimer unit) adalah: 

G pada 54%, asid kepekatan  ialah 65%, suhu pada 100 
o
C dan masa ialah 5 hari. 

Nilai ramalan dopan yang diperolehi mencapai sisihan hanya sebanyak 4.9% dari 

eksperimen di mana ini mencadangkan kesahihan model ramalan dan 

pengoptimuman tindak balas pendopan asid. Kinetik tindak balas pendopan asid 

fosforik juga disiasat dan dua pemalar kadar 0.46 dan 0.16 grafik diperolehi 

menunjukkan tindak balas adalah tertib sifar. Kekonduksian proton membran dikaji 

dengan menggunakan sel kekonduksian 4-kuar yang dilampirkan pada meter sumber 

arus terus bersesuaian dengan suhu dan kelembapan relatif. Kekonduksian proton 

didapati meningkat dengan peningkatan jumlah dopan pada suhu dan kelembapan 

relatif yang tetap. Keberaliran proton sebanyak 143 mS/cm pada 20% kelembapan 

relatif telah dicapai pada membran yang mempunyai G sebanyak 38 dan 54%. Ini 

menunjukkan kekonduksian mempunyai kebergantungan yang rendah terhadap air. 

Dapat disimpulkan bahawa membran yang diperolehi mempunyai kombinasi yang 

sangat baik secara fizik-kimianya dan sifat bahannya sesuai untuk aplikasi dalam 

operasi PEMFC pada suhu melebihi 100 
o
C. 

 

 



CHAPTER 1

INTRODUCTION

1.1 General Introduction

Fuel cell technology is intended to substitute the current internal combustion 

engine as a green source for power generation. This is due to the various problems 

associated with the growing use of fossil fuels including air pollution, soaring prices 

and critical fuel reserves limitations. Fuel cells have the advantages of efficient 

generation, high power density, zero emission, no moving parts and no noise 

compared to internal combustion engine. Thus, fuel cells are promising alternative 

sources for power generation in many sectors including stationary, portable and 

mobile applications (Ahluwalia and Wang, 2008; Doss et al., 2002).

Historically, the principle of fuel cell technology goes back to more than a 

decade ago when Sir William Grove had presented the first ever known fuel-cell in 

1839. Ever since, various investigation has been carried out onto the fuel cell before 

it was accepted by the National Aeronautics and Space Administration (NASA) to be 

used for the purpose of supplying power for the Gemini and Apollo missions in the 

1960s. By the beginning of 1980s the fuel cell start to appear in markets, after being 

mainly utilized for 20 years for serving space programs (Thounthong et al., 2009).

Various types of fuel cells including solid oxide fuel cell (SOFC), molten 

carbonate fuel cell (MCFC) and phosphoric acid fuel cell (PAFC) are available. 

Among all proton exchange membrane fuel cells (PEMFC) are attracting attention
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because of its low temperature operation and suitability for transport and stationary 

applications. Thus, commercialization of PEMFC is currently being pursued.

The basic unit of PEMFC consists of a proton conducting membrane 

sandwiched between two gas diffusion electrodes forming a membrane electrode 

assembly (MEA). The MEA then is installed between two flow filed plates and 

sealing gaskets were used to prevent gas leakage at the MEA - flow field plate 

interface. Detailed components of PEMFC and their functions are presented in Table

1.1 and Figure1.1 also shows an exploded diagram for fuel cell stack.

End plate

Figurel.1 Exploded diagram for fuel cell Stack
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Table1.1 Fuel cell components

Component Function Common materials

Proton exchange 

membrane

Enables protons to travel from the 

anode to the cathode.

Perflurosulfonic acid 

membrane (Nafion 112, 

115,117)

Catalyst layers Breaks the fuel into protons and 

electrons. The protons combine 

with the oxidant to form water at 

the fuel cell cathode. The 

electrons travel to the load.

Platinum/load on carbon

Gas diffusion layers Allows fuel/oxidant to travel 

through the porous layer, while 

collecting electrons

Carbon cloth or carbon 

paper

Flow field plates Distributes the fuel and oxidant to 

the gas diffusion layer

Graphite, stainless steel

Gaskets Prevent fuel leakage, and helps to 

distribute pressure evenly

Silicon and Teflon

End plates Holds stack layers in place Stainless steel, graphite, 

polyethylene, PVC

At present the average cost for generating 1kW using fuel cells is around 50

750 USD for transport and stationary applications, respectively. This is quite 

expensive when compared to combustion engine but still lying within the allowable 

limits of the market. Thus, one of the greatest difficulties facing researchers 

regarding this issue is to develop a cost effective and efficient fuel cell systems based 

on the fuel cell concept. It was reported that reduction of materials (electrodes and 

membranes) cost can efficiently reduces the cost of the overall system reduction 

(Frank et al., 2009).
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Proton exchange membrane (PEM) is an extremely critical component of 

PEMFC; it acts as a barrier between the supplied H2 and O2, thus prevents their 

undesired mixing. It also allows the protons (H+) resulting from the oxidation of H2 

to migrate through it from the anode to the cathode (Hinaje et al., 2009). The state 

of the art in PEMs includes Nafion(TM) (DuPont), and its analogous materials such as 

Dow (Dow Chemicals), Aciplex® (Asahi Chemicals Co.), Aciplex-S® (Asahi Kasei)
®

based on a weak functional acid -COOH, Flemion (Asahi Glass Co.), Gore-Tex 

(Gore and Associate), BAM 3G (Ballard), CRA and CRS (Solvay), and Dais 

membranes (Dais Co.) (Tian and Savadogo, 2005; Ennari, 2008). Such 

perflourinated PEMs like Nafion combine hydrophobic (perfluorocarbon backbone ) 

and hydrophilic (sulfonic acid groups) domains together, thus the hydrophilic domain 

act as a conductive domain that allows the coupled proton and water migration, while 

the hydrophobic domain act as a robust support, and hence the membrane combines 

superior mechanical and electrochemical properties. Among all membranes, Nafion 

is the most used material as it indicated by wide range of investigation. Despite 

showing adequate proton conductivity when sufficiently humidified, Nafion and its 

analogous membranes considered to be expensive (500-700 USD/m ) adding to high 

cost of PEMFC system. A  barely, less expensive (370 USD/m ) family of 

membranes such as sulfonated poly( ether ether ketone) membranes (sPEEK) were 

developed to overcome the cost problem. However an economic membrane that 

conduct proton efficiently is yet required. Finally, all these membranes are relying on 

water as main charge transporters and it was reported that the ionic conductivity of it 

is strongly water dependant. (Kerres et al., 2009).

1.2 Problem Statement

High temperature polymer electrolyte membrane fuel cell (HT-PEMC) has 

been proposed for replacing its counterpart operating at 60-80oC. This is to bring 

about benefits associated with high temperature operation such as: better electrode 

kinetics, elimination of humidification, high tolerance to fuel impurities, higher 

efficiency and higher values of excess heat by cogeneration (Li et al., 2003).
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Currently, commercial perfluorosulfonated polymers such as Nafion and its 

analogous membranes are subjected to deterioration in their proton conductivity 

when operated at temperature above 80oC due to dryness and variation in their 

viscoelastic properties (Ennari, 2008). Therefore, a strong need for proton conducting 

membranes that meet high temperature operation in PEM fuel cell has been aroused.

Basic membranes doped with inorganic proton donors have recently attracted 

much attention as polymer electrolytes of HT-PEMC due to their high proton 

conductivity, chemical and electrochemical stability at high temperature, in addition 

to, facile processing procedure (Pisani, 2009). Particularly, phosphoric acid (PA) is 

one of the most attractive inorganic proton donors that have been found to maintain 

high conductivity and stability at elevated temperature. A typical example of 

membranes for high temperature PEM is phosphoric doped polybenzimadazole 

membranes which have been subjected to frequent investigations and showed 

reasonable performance in PEM fuel cell at temperatures up to 190 °C without 

humidification (Che et al., 2010). However, such membranes suffer from a 

degradation partially caused by the loss of electrolyte (Li et al., 2003).

Alternatively, PA membranes prepared by doping of precursor films obtained 

by radiation induced grafting of heterocyclic monomers such as 4-vinylpyridine (4- 

VP) and 1-vinylimidazole (1-VIm) onto poly(ethylene-co-tetraflouroethene) (ETFE) 

were reported in literature and found to be an attractive materials for high 

temperature PEM fuel cell (Schmidt and Schmidt-Naake, 2007; §anli and Gursel, 

2010). The use of radiation induced grafting simplifies the preparation procedure, 

allows composition and properties of the membranes to be controlled and provides 

solution for film formation as reaction starts from pre-existing sheets (Nasef and 

Saidi, 2002). The selection of heterocyclic monomers was to provide a basic center 

(-N+-) resembling that of PBI to conduct protons at temperatures above 100 oC when 

protonated by doping with phosphoric acid (PA) (Matar et al., 2010).0n the other 

hand, the selection of ETFE film as a base polymer is owing to its outstanding 

properties including chemical inertness, thermal stability and mechanical integrity, in 

addition to, high radiation resistance.
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Despite being recently reported in literature; the preparation of PEMs for high 

temperature PEMFC using radiation induced grafting of 1-VIm onto ETFE films and 

subsequent doping with phosphoric acid was not comprehensively covered. The 

modelling of the effect of the interaction of the reaction parameters on the degree of 

grafting and the acid doping level for both grafting and acid doping processes was 

not reported in literature. Also, there no optimization studies for both grafting and 

acid doping reactions. A kinetic study on the phosphoric acid doping of the grafted 

ETFE precursors was also not reported. Thus, present work is intended to provide a 

comprehensive investigation for the preparation of proton conducting membranes by 

radiation induced grafting of VIm onto ETFE film and subsequent acid doping 

covering the details of modelling, prediction, and optimization of the grafting and 

doping parameters together with kinetic investigation for acid doping. Such 

investigation would lead to reduction in; the number of experiments and monomer 

consumption and improve the economy of the preparation method. It would also 

results in a better understanding for the role of reaction parameters in two preparation 

stages (i.e. grafting and PA doping) in controlling the structure and the properties of 

these membranes.

1.3 Objectives of the Study

The objective of the present study is to prepare and characterize composite, 

less water dependent proton conducting membranes containing PA by radiation 

induced graft copolymeriztion (grafting) of 1-VIm onto ETFE film and subsequent 

acid doping with PA for possible use in a high temperature PEMFC (above 100oC). 

The objective can be divided into the following sub-objectives:

1. To study the effect of grafting conditions on the degree of grafting of 1- 

Vlm monomer onto ETFE films.

2. To optimize the grafting parameters and develop a statistical model to 

predict the degree of grafting using response surface method (RSM).
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3. To optimize the reaction conditions for phosphoric acid doping required 

for converting the obtained grafted membrane precursors into proton 

conducting membrane.

4. To determine the various chemical and physical properties of the obtained 

membranes using analytical and materials research aspects.

5. To evaluate proton conductivity of the obtained membranes under various 

levels of relative humidity and temperatures.

1.4 Scope of the Study

To achieve the objective of this study, the work was performed in three 

phases; i) irradiation of ETFE films, ii) preparation of the membranes which 

involves preparation of membranes precursors and functionalized by PA doping, iii) 

characterization of the obtained membranes Figure 1.3 presents a flow chart 

summarizing the scope of this study. The details of the scope of the present study 

cover the following stages:

1. Irradiation of ETFE film with electron beam (EB) accelerator under 

controlled conditions.

2. Radiation induced grafting of 1-VIm monomer onto ETFE films under 

various grafting conditions to obtain membrane precursors.

3. Establishing the effects of grafting conditions on the degree of grafting.

4. Optimization of the grafting parameters using RSM.

5. Introducing the functional groups to the prepared precursors by PA 

doping under controlled conditions.

6. Determination of various physical and chemical properties of the 

prepared membranes using techniques such as Fourier transform infrared 

(FTIR) spectral analysis, thermal gravimetric analysis (TGA), differential 

scanning calorimetry (DSC), gravimetric analysis, back titration and DC 

impedance spectroscopy.

7. Testing the proton conductivity of the membrane under various relative 

humidifies and temperatures above 100oC.
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1.5 Thesis Outline

The thesis contains five chapters. The first chapter provides a general brief 

background about the fuel cells and the role of PEMs in fuel cells. It also includes the 

problems statement, the objectives of and the scope of work. The second chapter 

presents a review of literature including an introduction about the fuel cell 

technology and types of fuel cell systems. The state of the art of PEMs is also 

reviewed including its preparation methods and preparation conditions. The progress 

in developing PEMs for high temperature PEMFC is also discussed. The use of 

radiation induced graft copolymerization for preparation of PEMs is thoroughly 

reviewed. The third chapter covers the methodology and includes a list of all the 

materials and equipments and techniques used in this work to prepare and 

characterize the membranes. In the fourth chapter, the results of experimental work, 

statistical modelling and characterization analysis are presented and discussed. The 

overall conclusions obtained from the presented work together with some 

recommendation for future works are presented in chapter 5.
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Figure 1.2 Flow chart summarizing the scope of work
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relative humidity levels: (a) 40%, (b) 50%, (c) 60% and 

(d) 65%. 
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4.32 Variation of ionic conductivity in relation with doping 

level of PA doped ETFE membranes for various relative 

humidity levels: (a) 40%, (b) 50%, (c) 60% and (d) 65%. 
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4.33 Variation of ionic conductivity in relation with time for 

PA doped ETFE membranes of different PA doping 

levels: (a) 6.6, (b) 3.8, (c) 2.0 and (d) 1.7 mmol/ repeat 

unit at 120
o
C.  
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LIST OF ABBREVIATIONS 

1-VIm  1-Vinylimidazole 

2-VP  2-Vinyl pyridine 

4-VP  4-Vinylpyridine 

AFC  Alkaline fuel cell 

AMS  α-Methylstyrene 

ANOVA  Analysis of variance 

ATR  Attenuated total reflectance 

DMFC  Direct methanol fuel cell 

DOG  Degree of grafting 

DSC  Differential scanning calorimetry  

DVB  Divinyl benzene 

EB Electron beam 

ETFE Poly(ethylene-co-tetraflouroethene) 

ETFE-g-p(1-VIm)  ETFE films grafted with poly(1-vinylimidazole) 

FEP  Poly(tetrafluoroethylene-co-hexafluoropropylene) 

FTIR  Fourier transform infrared  

HCl Hydrochloric acid 

HT-PEMFC  High temperature polymer electrolyte fuel cells 

IEC  Ion exchange capacity 

LT-PEMFC  Low temperature polymer electrolyte fuel cells 

MCFC  Molten carbon fuel cell 

NASA  National Aeronautics and Space Administration 

NVF  N-vinylformamide 



xvii 
 

NVP N-vinyl-2-pyrrolidone 

PA  Phosphoric acid 

PBI/H3PO4  Phosphoric acid-doped polybenzimidazole 

PE  Polyethylene 

PEM  Proton exchange membrane 

PFA  Poly(tetrafluoroethylene-co-perfluoropropyl vinyl ether) 

PSSA-co-MA  Poly(styrene sulfonic acid-co-maleic acid) 

PTFE  Polytetrafluoroethylene 

PVA  Poly(vinyl alcohol) 

PVDF  Poly(vinylidene fluoride) 

PVDF-co-HFP  Poly(vinylidenefluoride-co-hexafluoropropylene) 

PVF  Poly(vinyl fluoride) 

RH  Relative humidity 

RSM  Response surface method 

SPBI  Sulfonated polybenzimidzole 

SPEEK  Sulfonated poly(ether ether ketone) 

SPEEK/PEI  Sulfonated poly(etheretherketone) and polyetherimide 

SPES  Sulfonated polyether sulfones 

SPPO  Sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) 

TFS  α,α,β-trifluorostyrene 

Tg  Glass transition temperature 

TGA  Thermal gravimetric analysis  

Tm  Melting temperature 

VA  Vinylamine 

VBC  Vinylbenzyl chloride 

 

 



xviii 

 

LIST OF SYMBOLS 

1. A Surface are of the sample (cm
2
) 

b Regression coefficient (-) 

e Experimental error (-) 

G% Degree of grafting (wt%) 

L Thickness of the membrane sample (cm) 

mg Weight of the grafted film (g) 

mo Weight of the original film (g) 

Mp Molar mass of repeat unit (g/mol) 

Mpa Molar mass of phosphoric acid (g/mol) 

VNaOH Volume of NaOH (ml) 

Wdry Weight of the dry membrane (g) 

Wdry Weight of dry membrane (g) 

Wg Weight of grafted film (g) 

Wo Weight of original film (g) 

Wp Weight of phosphorylated membrane (g) 

Wuptake  Water uptake of the membrane from the vapour phase 

(wt%) 

Wwet Weight of the swelled membrane (g) 

x  Independent parameter (-) 

Xd Acid doping level per repeated unit of grafted polymer 

(mmol/repeating unit) 

y Response (-) 

σ Proton conductivity (Scm
−1

) 

 A 




