ISOLATION AND CHARACTERIZATION OF HYDROGEN PRODUCING BACTERIA FROM PALM OIL MILL EFFLUENT (POME)

MARYAM GHANBARIAN

A dissertation submitted in partial fulfillment of the requirements for the award of degree of Master of Science (Biotechnology)

Faculty of Biosciences and Medical Engineering Universiti Teknologi Malaysia

JANUARY 2013

DEDICATION

I would like to dedicate this thesis to special people in my life:

To my mother and father who always give me energy and without their encouragement and support I could not achieve this degree.

To Ali my amazing husband for her wonderful love, patience and sacrifice during this difficult stage of our life.

To my brother, Ali and my sister, Mahsa for their inspiration and love.

And finally, a special dedication goes to my in laws who have provided me all I need and have given me financial and moral support.

ACKNOWLEDGEMENT

Firstly, I would like to thank my supervisor, Dr. Mohd Firdaus Abdul Wahab, for his guidance and support throughout this study. Without his support, this dissertation would not have been possible. I appreciate all my lecturers and the staff of Faculty of Biosciences and Bioengineering, University Technology Malaysia.

I would like to thank all my classmates, who kindly helped me in my study. Especially Judit, Ali, Maryam, Arman, Karim, and Kiandokht who provided me with all information that I needed for my research. The learning experience with all of you will always be in my memory.

ABSTRACT

Hydrogen gas and its usage in electricity generation and transportation is attracting wider interests nowadays. This is because it possesses a high-energy yields (122 kJ g^{-1}), it is a renewable energy source, and does not contribute to the greenhouse effect. In Malaysia, 15.2 million tons of wastewater is generated annually by the palm oil industry. The wastewater is known as Palm Oil Mill Effluent (POME). This study is focused on the isolation and characterization of hydrogenproducing bacteria from POME. Samples were taken from the sludge and raw waste of palm oil processing effluent. Bacterial isolation was performed to isolate facultative anaerobes and strict anaerobes. The isolated colonies of bacteria were identified and characterized by microbiological analysis and biochemical tests (catalase, indole, nitrate reduction, urea, TSI and citrate test). From TSI test, it was found that one facultative anaerobe (out of 13 colonies altogether) produced gas; and all strict anaerobes produced gas (8 colonies altogether). The gas-producing colonies were then cultivated at 37°C for 24 hours in a synthetic media simulating starch wastewater for screening of hydrogen production. Hydrogen gas production was then analyzed using RGA (Residual Gas Analyzer). Results show that the facultative anaerobe colony did not produce hydrogen gas by starch fermentation; and four colonies obtained via strict anaerobe isolation show hydrogen production. These colonies can be the subject of future studies to optimize hydrogen production from waste materials.

ABSTRAK

hidrogen dan penggunaannya dalam penjanaan Gas elektrik dan pengangkutan menarik lebih luas kepentingan pada masa kini. Ini adalah kerana ia mempunyai hasil yang tinggi tenaga (122 kJ g-1), ia adalah satu sumber tenaga boleh diperbaharui, dan tidak menyumbang kepada kesan rumah hijau. Di Malaysia, 15200000 tan air sisa yang dijana setiap tahun oleh industri minyak sawit. Air sisa yang dikenali sebagai Kilang Minyak Sawit Efluen (POME). Kajian ini memberi tumpuan kepada pengasingan dan pencirian bakteria menghasilkan hidrogen dari POME. Sampel telah diambil daripada enapcemar dan sisa mentah pemprosesan minyak sawit efluen. Pengasingan bakteria telah dilakukan untuk mengasingkan fakultatif anaerobes dan anaerobes ketat. Jajahan terpencil bakteria telah dikenal pasti dan dicirikan oleh analisis mikrobiologi dan ujian biokimia (katalase, indole, pengurangan nitrat, urea, TSI dan ujian sitrat). Dari ujian TSI, ia telah mendapati bahawa satu fakultatif anaerobe (daripada 13 jajahan sama sekali) yang dihasilkan gas dan semua anaerobes ketat yang dihasilkan gas (8 jajahan sama sekali). Negaranegara jajahan gas menghasilkan kemudian ditanam pada 37 ° C selama 24 jam dalam media sintetik simulasi air sisa kanji untuk pemeriksaan pengeluaran hidrogen. Pengeluaran gas Hidrogen telah dianalisis menggunakan RGA (Gas Analyzer Residual). Keputusan menunjukkan bahawa koloni fakultatif anaerobe tidak menghasilkan gas hidrogen oleh penapaian kanji; dan empat jajahan yang diperolehi melalui pengasingan anaerobe ketat menunjukkan pengeluaran hidrogen. Tanah jajahan ini boleh menjadi subjek kajian masa depan untuk mengoptimumkan pengeluaran hidrogen daripada bahan-bahan buangan.

TABLE OF CONTENTS

TITLE

TITLE PAGE	i
AUTHOR'S DECLARATION	ii
DEDICATION	iii
ACKNOWLEDGEMENT	iv
ABSTRACT	v
ABSTRAK	vi
TABLE OF CONTENTS	vii
LIST OF TABLES	х
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS AND SY	MBOLS xiii
LIST OF APPENDICES	XV
1 INTRODUCTION	
1.1 Background of Study	1
1.2 Statement of Problem	3

1.3	Significance of Study	5
1.4	Objective of Study	6

1.5Scope of Study6

2 LITERATURE R	EVIEW	

CHAPTER

2.1	Energy Problem	9
2.2	Waste Problem	11

PAGE

2.3	Biohydrogen Production	12
2.4	Palm Oil Biohydrogen	15

viii

3 METHODOLOGY

3.1	Instruments			
3.2	Collection of samples			
	3.2.1	Palm Oil Sample	19	
3.3	Isolati	Isolation Media Preparation		
	3.3.1	Facultative Anaerobic Media Preparation	20	
	3.3.2	Anaerobic Media Preparation	21	
3.4	Metho	ds of Isolation	22	
	3.4.1	Facultative Anaerobic	22	
	3.4.2	Anaerobic	23	
	3.4.3	Selection of Isolated Bacteria	24	
		3.4.3.1 Streak Plate Method	24	
3.5	Storag	e of Isolated Bacteria	25	
3.6	Characterization			
	3.6.1	Microbial Characterization	25	
		3.6.1.1 Gram Staining	26	
		3.6.1.2 Colony Morphology	26	
3.7	Bioche	emical Test	27	
	3.7.1	Citrate Test	28	
	3.7.2	Urease Test	29	
	3.7.3	(Triple Sugar Iron) Test	30	
	3.7.4	Indole Test	31	
	3.7.5	Nitrate Reduction Test	32	
	3.7.6	Catalase Test	33	
3.8	Hydro	gen Production Assay of Isolated Bacteria	34	
by R	GA		54	
	3.8.1	Synthetic Starch Wastewater	35	
	3.8.2	RGA Analysis of Biogas Produced	38	

4 **RESULTS AND DISCUSSION**

4.1	Isolati	on of Bac	teria	40
4.2	Charac	cterization	n of Isolated Bacteria	43
	4.2.1	Microbi	al Characterization	43
		4.2.1.1	Gram staining	43
		4.2.1.2	Colonies Morphology	46
	4.2.2	Biocher	nical Characterizations	48
		4.2.2.1	Citrate Utilization Test	50
		4.2.2.2	Urease Test	51
		4.2.2.3	TSI Test	52
		4.2.2.4	CatalaseTest	54
		4.2.2.5	Nitrate Reduction Test	56
		4.2.2.6	Indole Test	57
4.3	Determ	nination o	of Hydrogen Production	58
	4.3.1	RGA (R	Residual Gas Analysis)	58
4.4	Pathwa	ay of Bac	terial H ₂ Generation	63

5 CONCLUSION

5.1	Conclusion	6	6
5.2	Future Work	6	7

REFERENCES	69
Appendices A - C	75-94

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Comparison in hydrogen production using POME with	16
	other research	10
3.1	The amount of materials to prepare synthetic starch	36
	wastewater	50
4.1	The gram staining results of facultative anaerobic bacteria	44
4.2	The gram staining results of strict anaerobic bacteria	46
4.3	The morphological characteristics of facultative anaerobic	47
	bacteria	47
4.4	The morphological characteristics of strict anaerobic	48
	bacteria	40
4.5	The results of the biochemical tests for facultative	49
	anaerobic bacteria	49
4.6	The results of the biochemical tests for strict anaerobic	50
	bacteria	30
4.7	The summary results of H2% production in strict anaerobic	62
	and facultative anaerobic	63

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
1.1	Hydrogen production procedure and its applications	5
1.2	Research methodology	8
3.1	RGA (Model; Cirrus 2, Singapore)	18
3.2	The pools of palm oil mil effluent (POME) (a, b) and sludge and raw samples(c)	19
3.3	Sparging the NB	21
3.4	Color change of NB during sparging	22
3.5	Rolling method	24
3.6	Different characteristics of bacterial morphology	27
3.7	Citrate agar media	29
3.8	Urease agar media	30
3.9	TSI media	31
3.10	Nitrate reduction media	33
3.11	Catalase reaction	34
3.12	Connection of Buchner flask and synthetic starch media	37
3.13	Buchner flask containing gas fastened by ligator	38
4.1	Facultative anaerobic single colonies isolated from sludge samples (a) and raw samples (b)	41

4.2	Strict anaerobic single colonies isolated from sludge and	42
	raw samples	
4.3	Positive result of citrate test from facultative anaerobic	51
	bacteria	
4.4	The positive and negative results of urease test from	52
	facultative anaerobic bacteria.	
4.5	Different results of TSI test: R/Y (a), Y/Y and H2S	54
	production (b), Y/Y and gas production (c)	
4.6	Positive and negative results of catalase tests	55
4.7	Results of nitrate reduction test: strict anaerobic bacteria	57
	(a) and facultative anaerobic bacteria (b)	51
4.8	Results of indole test: facultative anaerobic bacteria (a)	58
	and strict anaerobic bacteria (b)	20
4.9	Differences in the % partial pressure obtained for the	
	biogases (H ₂ , CO ₂ and CH ₄) from raw strict anaerobic	59
	samples	
4.10	Differences in the % partial pressure obtained for the	
	biogases (H_2 , CO_2 and CH_4) from sludge anaerobic	60
	isolated	
4.11	The percentage of H2 production in raw anaerobic	61
	isolates	01
4.12	The percentage of H ₂ production in raw anaerobic isolates	61
4.13	The comparison of H ₂ production among facultative	62
	anaerobic (fan) and strict anaerobic samples (an)	02
4.14	Anaerobic fermentation in clostridium	65

xii

LIST OF ABBREVIATIONS AND SYMBOLS

μLMicrolitereASBRAnaerobic Sequencing Batch ReactorBODBiochemical Oxygen DemandCFCChloro Fluor CarbonCH4MethaneCOCarbon monoxideCO2Carbon dioxideCODChemical Oxygen DemandCODChemical Oxygen DemandPOGCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentFFBFresh Fruit BunchFFBFresh Fruit Bunchgr GramGraen House GasgrGramHHourH2/molHydrogen/molarityH2O2Dihydrogen oxide(water)H2O2Hydrogen proxide	°C	Degree Centigrade Celsius
BODBiochemical Oxygen DemandCFCChloro Fluor CarbonCH4MethaneCOCarbon monoxideCO2Carbon dioxideCODChemical Oxygen DemandCPOCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molDihydrogen oxide(water)H2ODihydrogen proxide	μL	Microlitere
CFCChloro Fluor CarbonCH4MethaneCOCarbon monoxideCO2Carbon dioxideCODChemical Oxygen DemandCPOCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molDihydrogen/molarityH2ODihydrogen oxide(water)H2O2Hydrogen proxide	ASBR	Anaerobic Sequencing Batch Reactor
CH4MethaneCOCarbon monoxideCO2Carbon dioxideCODChemical Oxygen DemandCPOCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit BunchgrGramGHGGreen House GasJPHourH2/D0Dihydrogen oxide(water)H2O2Hydrogen proxide	BOD	Biochemical Oxygen Demand
CO Carbon monoxide CO2 Carbon dioxide COD Chemical Oxygen Demand COD Chude Palm Oil CPO Crude Palm Oil DGGE Denaturing Gradient Gel Electrophoresis DOE Department Of Environment EFB Empty Fruit Bunch FFB Fresh Fruit Bunch g. cell/L Gram. Cell/Liter GHG Green House Gas gr Hour H_mol Hydrogen/molarity H_2O1 Dihydrogen oxide(water) H_2O2 Hydrogen proxide	CFC	Chloro Fluor Carbon
CO2Carbon dioxideCODChemical Oxygen DemandCPOCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGraen Aclel/LiterGHGGreen House GasgrHourH2/molHydrogen/molarityH2O2Dihydrogen oxide(water)H2O2Hydrogen proxide	CH_4	Methane
CODChemical Oxygen DemandCPOCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molDihydrogen oxide(water)H2O2Hydrogen proxide	СО	Carbon monoxide
CPOCrude Palm OilDGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH_2/molHydrogen/molarityH_2ODihydrogen oxide(water)H_2OHydrogen proxide	CO_2	Carbon dioxide
DGGEDenaturing Gradient Gel ElectrophoresisDOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molHydrogen/molarityH2O2Hydrogen proxide	COD	Chemical Oxygen Demand
DOEDepartment Of EnvironmentEFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molHydrogen/molarityH2O2Dihydrogen oxide(water)	СРО	Crude Palm Oil
EFBEmpty Fruit BunchFFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molHydrogen/molarityH2O2Hydrogen proxide	DGGE	Denaturing Gradient Gel Electrophoresis
FFBFresh Fruit Bunchg. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molHydrogen/molarityH2O2Hydrogen proxide	DOE	Department Of Environment
g. cell/LGram. Cell/LiterGHGGreen House GasgrGramHHourH2/molHydrogen/molarityH2ODihydrogen oxide(water)H2O2Hydrogen proxide	EFB	Empty Fruit Bunch
GHGGreen House GasgrGramHHourH2/molHydrogen/molarityH2ODihydrogen oxide(water)H2O2Hydrogen proxide	FFB	Fresh Fruit Bunch
grGramHHourH2/molHydrogen/molarityH2ODihydrogen oxide(water)H2O2Hydrogen proxide	g. cell/L	Gram. Cell/Liter
HHourH2/molHydrogen/molarityH2ODihydrogen oxide(water)H2O2Hydrogen proxide	GHG	Green House Gas
H2/molHydrogen/molarityH2ODihydrogen oxide(water)H2O2Hydrogen proxide	gr	Gram
H2ODihydrogen oxide(water)H2O2Hydrogen proxide	Н	Hour
H ₂ O ₂ Hydrogen proxide	H ₂ /mol	Hydrogen/molarity
	H_2O	Dihydrogen oxide(water)
	H_2O_2	Hydrogen proxide
H ₂ S Treated sugarcane samples with nitric acid	H_2S	Treated sugarcane samples with nitric acid
HRT Hydrolic Retention Time	HRT	Hydrolic Retention Time
Kg Kilogram	Kg	Kilogram

mg	Milligram
mg/L	Milligram/Liter
mg/L	Milligram/Liter
min	minute
ml	Milliliter
mm	Millimetre
mmol	Millimol
Mmol/gr	Millimole/ gram
mol/mol	Molarity/molarity
Mol\L	Moll/litre
NA	Nutrient Agar
NB	Nutrient Broth
O ₂	Oxygen
PCR	Polymerase Chain Reaction
POME	Palm Oil Mill Effluent
RGA	Residue Gas Analysis
RT	Room Temperature
sec	second
SEM	Scanning Electron Microscopy
TSB	Triptic Soy Broth
TSI	Triple Sugar Iron

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Gram staining for facultative anaerobic isolated bacteria	75
В	Gram staining for anaerobic isolated bacteria	82
С	Residue gas analysis results	86

CHAPTER 1

INTRODUCTION

1.1 Background of Study

Nowadays, through the rapid growth of world energy consumption, the focus of carbon and sustainable neutral energy sources has attracted more attention for future needs. One of the most important alternatives in existing petroleum-based fuels is biofuels that can be used as transportation fuels. It is capable to advance sustainability and decrease the greenhouse gas emissions by little change to current technologies. Organic materials such as oilseeds, starch, cellulose and animal fats can be used as biofuel sources and are divided into gaseous or liquid biofuels [1].

Over the past few decades, the hydrogen gas and its usage in electricity generation and transportation has attracted more attention because it possesses highenergy yields (122 kJ.g^{-1}) , it is a renewable energy source, and does not contribute to the green house effect. Moreover, it easy to achieved, it means that it can be produced by various methods, through fermentation of biomass using microorganism, coal gasification, reforming of hydrocarbons, photochemical process, electrolysis, and biological routes. In order to generating the hydrogen, a wide variety of methods are presented in biological systems that comprises photo fermentations, direct bio photolysis, indirect bio photolysis, and dark fermentations. Among them the light fermentation has been considered by many investigators because of its economic viability and high profit [2].

Acidogenic waste treatment process produces biohydrogen in nature where acid forming bacteria yields hydrogen, organic acid compound and carbon dioxide [3]. Dark fermentation or light driven photosynthesis can produce biohydrogen [4,5], and compared to photosynthetic routes, it is achieved by dark fermentation of organic waste materials [6]. Dark fermentation has many advantages such as no light energy required, high rate of cell growth, no oxygen limitation problems and it is able to work on low capital cost [6,7,8].

Nowadays, many researches focus on the possibility of hydrogen production from different industries by applying wastewater treatment strategy with the organic wastes [9]. For instance, 15.2 million tons of wastewater is generated annually by the palm oil industry in Malaysia, which is known as Palm Oil Mill Effluent (POME) with high lignocellulose and cellulose material. To degrade the organic substances, it is very time consuming. The previous studies have reported on utilizing the POME sludge as an inoculum, and has reported a promising level of hydrogen production [10].

Palm oil is actually one of the most multipurpose crops in the tropical countries such as Indonesia and Malaysia. For processing 1 tonne of fresh fruit bunches (FFB), approximately 1.5 m³ water are used, and about half of this would be considered as POME. Because of its high chemical and biological oxygen demands, it is a great threat for nature. The incomplete and raw treated POME contains high content of degradable organic materials. Therefore, due to oxygen depletion, this causes serious pollution of waterways. At present, in Malaysia 265 active palm oil

mills exist with annual Crude Palm Oil (CPO) production capacity of 13 million tones. To treat POME, several techniques have been proposed, such as flotation, crop irrigation, ultra filtration adsorption, and various biodegradation processes [11].

Palm oil industry generate residues or wastes in two forms. The first one is liquid waste, mainly Palm Oil Mill Effluent (POME), which is highly polluting at an average of 50,000 mg/L chemical oxygen demand (COD) and 25,000 mg/L biochemical oxygen demand (BOD). The second waste comprises of Empty Fruit Bunch (EFB), trunks, shell, and fronds in the solid form. The cheapest technologies, open digester pond and tanks or lagoon systems are used to treat the POME. POME should be treated first before it is disposed to appropriate places based on the rules of wastewater disposal amendment of the Department of Environment (DOE) Malaysia. In general, the operations of these systems require wide spaces that uncontrollably releases GHG particularly CH_4 and CO_2 to the atmosphere [12].

1.2 Statement of Problem

Currently, fossil fuels are the basis of the global energy requirements which lead to the foreseeable depletion of limited fossil energy resources. Because of the production of pollutants like NO_x , SO_x , CO_x , C_xH_x , ash, soot, and the droplets of tars, the use of fossil fuels causes the change of global climate. Furthermore, based on the growth of urbanization and industrialization, environmental pollution is a very important issue to be tackled. Therefore, the search for clean energy alternatives to satisfy growing energy demand is crucial [13]. Environment become increasingly unhealthy and polluted for living organisms since the global industrial revolution that include deforestation, release the pollutants into lands, rivers and air. Greenhouse gases (GHG) contains some dangerous combinations such as nitrous oxide, carbon dioxide (CO_2), chlorofluorocarbon (CFC), carbon monoxide (CO) and methane (CH₄) that trap a majority of the thermal radiation emitted from the earth's surface and have strong electromagnetic absorption capacity. These cause negative effects to the world such as global warming, depletion of ozone layer and significant raise of ocean level [12].

On the other hand, fossil fuels hydrogen that are from fuel cells or burned directly is a clean energy with zero carbon emissions. One of the main methods of producing hydrogen is the steam reforming of methane that leads to the release of large amounts of greenhouse gases. In addition, in spite of the wide adoption of hydrogen and accounts for around 2% of world consumption of energy as a fuel, it is still limited by several challenges [14,15,16].

These challenges can be overcome by the production of hydrogen from plant or waste material in a biological process [17,18,19]. Therefore, many studies have been done on the investigation of new sustainable energy sources to substitute fossil fuels. In conclusion, hydrogen is a viable alternative fuel and "energy carrier" of future due to the cleanness with no CO_2 emissions and its ease of use in electricity generation [20]. The procedure of the hydrogen production and its application has been shown in Figure 1.1.

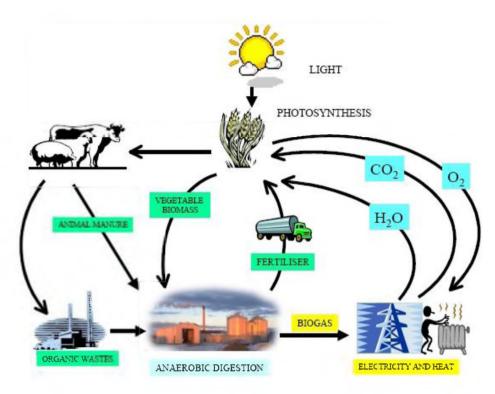


Figure 1.1 Hydrogen production and its applications (http://teenbiotechchallenge.ucdavis.edu)

1.3 Significance of Study

Hydrogen is one of the most powerful and clean and energy carriers that can be converted to electricity by using a fuel cell, which in the developed countries is modified as a main energy carrier [21]. This study aims to generate hydrogen as a final product by evaluating the possibilities of the bacteria as a biofuel producer. Additionally, biogas can be made in a huge amount by identifying the bacteria and culture them to use in industrial units.

1.4 **Objectives of study**

The objectives of this study are as follows:

- 1. To perform isolation of bacteria from waste of palm oil.
- 2. To conduct bacterial characterization (microbiology and biochemical tests).
- 3. To perform hydrogen production assay.

1.5 Scope of study

The goal of the current study is to produce hydrogen from the residue of palm oil (POME). Residue of palm oil is contained strict anaerobic and facultative anaerobic bacteria, which are responsible for the manufacture of hydrogen. To obtain single colonies the bacteria must be isolated and identified, after that biochemical and microbial tests direction of characterization of bacteria. Finally, isolated bacteria from fermentation media will be investigated in order to estimate the biogasses. The amount of biogasses will be assayed by RGA (residue gas analysis).

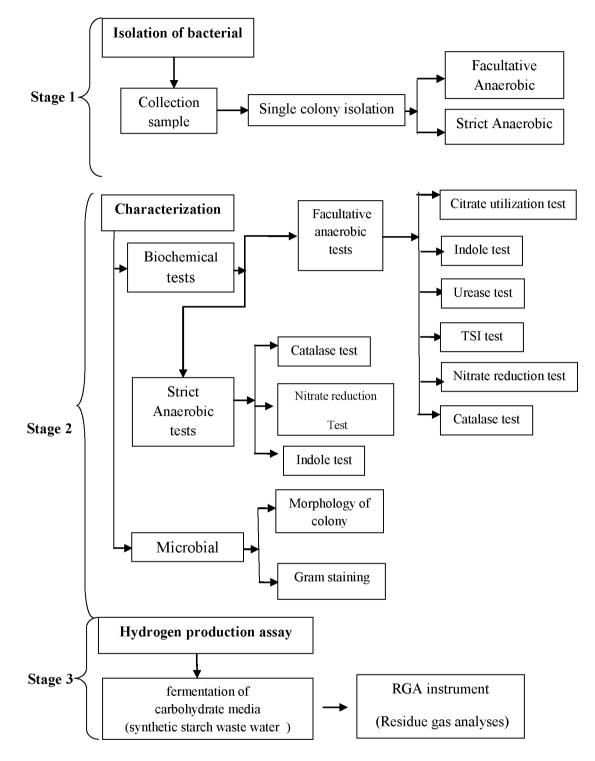


Figure 1.2 Research methodology flow

REFERENCES

- Carere, C. R., Sparling, R., Cicek, N., & Levin, D. B. (2008). Third generation biofuels via direct cellulose fermentation. *International Journal of Molecular Sciences*, 9(7), 1342-1360.
- Agrawal, P., Hema, R., & Mahesh Kumar, S. (2012). Experimental investigation on biological hydrogen production using different biomass. *Jurnal Teknologi*, 47, 13–24.
- Angenent, L. T., Karim, K., Al-Dahhan, M. H., Wrenn, B. A., & Domíguez-Espinosa, R. (2004). Production of bioenergy and biochemicals from industrial and agricultural wastewater. *TRENDS in Biotechnology*, 22(9), 477-485.
- 4. Manish, S., & Banerjee, R. (2008). Comparison of biohydrogen production processes. *International Journal of Hydrogen Energy*, *33*(1), 279-286.
- Tao, Y., Chen, Y., Wu, Y., He, Y., & Zhou, Z. (2007). High hydrogen yield from a two-step process of dark-and photo-fermentation of sucrose. *International Journal of Hydrogen Energy*, 32(2), 200-206.
- Levin, D. B., Pitt, L., & Love, M. (2004). Biohydrogen production: prospects and limitations to practical application. *International Journal of Hydrogen Energy*, 29(2), 173-185.

- Nath, K., & Das, D. (2004). Improvement of fermentative hydrogen production: various approaches. *Applied Microbiology and Biotechnology*, 65(5), 520-529.
- Hallenbeck, P. C., & Benemann, J. R. (2002). Biological hydrogen production; fundamentals and limiting processes. *International Journal of Hydrogen Energy*, 27(11), 1185-1193.
- Yu, H., Zhu, Z., Hu, W., & Zhang, H. (2002). Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. *International Journal of Hydrogen Energy*, 27(11), 1359-1365.
- Atif, A., Fakhru'l-Razi, A., Ngan, M., Morimoto, M., Iyuke, S., & Veziroglu, N. (2005). Fed batch production of hydrogen from palm oil mill effluent using anaerobic microflora. *International Journal of Hydrogen Energy*, 30(13), 1393-1397.
- Rasdi, Z. (2009). Optimization of Biohydrogen Production from Palm Oil Mill Effluent by Natural Microflora. Universiti Putra Malaysia.
- 12. Zakaria, M. R. (2007). Biogass production and determination of metanogens from digester-treated palm oil mill effluent University Putra Malaysia.
- Das, D., & Veziroğlu, T. N. (2001). Hydrogen production by biological processes: a survey of literature. *International Journal of Hydrogen Energy*, 26(1), 13-28.
- 14. Lens, P. N. L. (2005). Biofuels for fuel cells: renewable energy from biomass fermentation: *International Water Assn.*
- 15. Balat, M. (2008). Possible methods for hydrogen production. *Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 31*(1), 39-50.

- 16. Moriarty, P., & Honnery, D. (2009). Hydrogen's role in an uncertain energy future. *International Journal of Hydrogen Energy*, *34*(1), 31-39.
- Weiland, P. (2003). Production and energetic use of biogas from energy crops and wastes in Germany. *Applied Biochemistry and Biotechnology*, 109(1), 263-274.
- Angelidaki, I., & Ellegaard, L. (2003). Codigestion of manure and organic wastes in centralized biogas plants. *Applied Biochemistry and Biotechnology*, 109(1), 95-105.
- Schlüter, A., Bekel, T., Diaz, N. N., Dondrup, M., Eichenlaub, R., Gartemann, K.-H., et al. (2008). The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. *Journal of Biotechnology*, *136*(1–2), 77-90.
- 20. Kapdan, I. K., & Kargi, F. (2006). Bio-hydrogen production from waste materials. *Enzyme and Microbial Technology*, *38*(5), 569-582.
- Nakada, E., Nishikata, S., Asada, Y., & Miyake, J. (1999). Photosynthetic bacterial hydrogen production combined with a fuel cell. *International Journal of Hydrogen Energy*, 24(11), 1053-1057.
- Kamal, S. A., Jahim, J. M., Anuar, N., Hassan, O., Daud, W. R. W., Mansor, M. F., et al. (2011). Pre-Treatment Effect of Palm Oil Mill Effluent (POME) during Hydrogen Production by a Local Isolate Clostridium butyricum. *International Journal on Advanced Science, Engineering and Information Technology*, 2(4), 54-60.

- Rabah, A., Baki, A., Hassan, L., Musa, M., & Ibrahim, A. (2010). Production of biogas using abattoir waste at different retention time. *Science World Journal*, 5(4), 23-26.
- Cassidy, D., Hirl, P., & Belia, E. (2008). Methane production from ethanol co-products in anaerobic SBRs. *Water Science and Technology*, 58(4), 789-793.
- Latif Ahmad, A., Ismail, S., & Bhatia, S. (2003). Water recycling from palm oil mill effluent (POME) using membrane technology. *Desalination*, 157(1), 87-95.
- Suwandi, M. S., & Mohamed, A. A. (1984). Growth of Penicillium chrysogenum in palm oil mill effluent concentrate. Paper presented at the *The Regional Seminar-Workshop on Biotechnology in Industrial Development*, Serdang, Selangor (Malaysia), 27-30 Mar 1984.
- Church, B. D., Erickson, E., & Widmer, C. M. (1973). Fungal digestion of food processing wastes. *Food Technology*, 27(2), 36-42.
- Abdul Karim, M. I., & Ahmad Kamil, A. Q. (1989). Biological treatment of palm oil mill effluent using Trichoderma viride. *Biological Wastes*, 27(2), 143-152.
- Thompson, L. J., Gray, V. M., Kalala, B., Lindsay, D., Reynolds, K., & von Holy, A. (2008). Biohydrogen production by Enterobacter cloacae and Citrobacter freundii in carrier induced granules. *Biotechnology Letters*, 30(2), 271-274.
- Ismail, I., & Soon, C. (2011). Effect of retention time on biohydrogen production by microbial consortia immobilised in polydimethylsiloxane. *African Journal of Biotechnology*, 10(4), 601-609.

- 31. APHA, A. (1998). Standard methods for the examination of water and wastewater American Public Health Association. *Inc., Washington. DC*.
- Kumazawa, S., & Mitsui, A. (1981). Characterization and optimization of hydrogen photoproduction by a saltwater blue-green alga, Oscillatoria sp. Miami BG7. I. Enhancement through limiting the supply of nitrogen nutrients. *International Journal of Hydrogen Energy*, 6(4), 339-348.
- Miyake, J., & Kawamura, S. (1987). Efficiency of light energy conversion to hydrogen by the photosynthetic bacterium Rhodobacter sphaeroides. *International Journal of Hydrogen Energy*, 12(3), 147-149.
- Taguchi, F., Takiguchi, S., & Morimoto, M. (1992). Efficient hydrogen production from starch by a bacterium isolated from termites. *Journal of Fermentation and Bioengineering*, 73(3), 244-245.
- 35. Oh, Y. K., Seol, E. H., Lee, E. Y., & Park, S. (2002). Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas Palustris P4. *International Journal of Hydrogen Energy*, *27*(11), 1373-1379.
- Koskinen, P. E. P., Beck, S. R., Örlygsson, J., & Puhakka, J. A. (2008). Ethanol and hydrogen production by two thermophilic, anaerobic bacteria isolated from Icelandic geothermal areas. *Biotechnology and Bioengineering*, *101*(4), 679-690.
- Yokoyama, H., Moriya, N., Ohmori, H., Waki, M., Ogino, A., & Tanaka, Y. (2007). Community analysis of hydrogen-producing extreme thermophilic anaerobic microflora enriched from cow manure with five substrates. *Applied Microbiology and Biotechnology*, 77(1), 213-222.

- 38. Badiei, M., Jahim, J. M., Anuar, N., Sheikh Abdullah, S. R., Su, L. S., & Kamaruzzaman, M. A. (2011). Microbial community analysis of mixed anaerobic microflora in suspended sludge of ASBR producing hydrogen from palm oil mill effluent. *International Journal of Hydrogen Energy*.
- Kelly-Yong, T. L., Lee, K. T., Mohamed, A. R., & Bhatia, S. (2007).
 Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. *Energy Policy*, 35(11), 5692-5701.
- O-Thong, S., Prasertsan, P., Intrasungkha, N., Dhamwichukorn, S., & Birkeland, N. K. Å. (2008). Optimization of simultaneous thermophilic fermentative hydrogen production and COD reduction from palm oil mill effluent by Thermoanaerobacterium-rich sludge. *International Journal of Hydrogen Energy*, 33(4), 1221-1231.
- Klatt, C. G., & LaPara, T. M. (2003). Aerobic biological treatment of synthetic municipal wastewater in membrane-coupled bioreactors. *Biotechnology and Bioengineering*, 82(3), 313-320.
- 42. Hong, C. (2000). ATPase an indicator of biomass activity in thermophilic upflow anaerobic sludge blanket reactor. *Environmental Science*, *12(3)*, 380-384.
- Mathews, J., & Wang, G. (2009). Metabolic pathway engineering for enhanced biohydrogen production. *International Journal of Hydrogen Energy*, 34(17), 7404-7416.
- Abo-Hashesh, M., Wang, R., & Hallenbeck, P. C. (2011). Metabolic engineering in dark fermentative hydrogen production; theory and practice. *Bioresource Technology*, 102(18), 8414-8422.