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ABSTRACT 

Training Radial Basis Function (RBF) neural network with Particle Swarm 

Optimization (PSO) was considered as a major breakthrough, that overcome the 

stuck to the local minimum of Back Propagation (BP) and time consuming and 

computation expensive problems of Genetic Algorithm (GA). However, PSO proved 

some problems to achieve the goal, i.e., it converged too fast so that it stuck to the 

local optimum. Furthermore, particles may move to an invisible region. Therefore, to 

realize the enhancement of the learning process of RBF and overcome these PSO 

problems, Harmony Search Meta-Heuristic Algorithm (HSA) was employed to 

optimize the RBF network and attain the desired objectives. The study conducted a 

comparative experiments between the integrated HSA-RBF network  and the PSO-

RBF network.  The results proved that HSA increased the learning capability of RBF 

neural network in terms of accuracy and correct classification percentage, error 

convergence rate, and less time consumption with less mean squared error (MSE). 

The new HSA-RBF model provided higher performance in most cases and promising 

results with better classification proficiency compared with that of PSO-RBF 

network. 
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ABSTRAK 

Latihan Asas Fungsi Jejari jaringan saraf bersama serpihan kumpulan 

optimum telah diambil kira sebagai penemuan yang besar yang dapat mengatasi 

sekatan kepada minimum tempatan penyebaran belakang serta penggunaan masa dan 

masalah pengiraan algoritma genetic yang mahal. Walau bagaimana pun serpihan 

kumpulan optimum telah membuktikan sesetengah masalah untuk mencapai sasaran 

contohnya penumpuannya terlalu laju supaya ia tersekat pada optimum tempatan. 

Dalam pada itu serpihan mungkin beralih kepada bahagian tak dapat dilihat. Oleh itu, 

untuk memahami penambahbaikan proses pembelajaran Latihan Asas Fungsi Jejari 

dan mengatasi masalah serpihan kumpulan optimum, Pencarian Algoritma Harmoni 

Meta-Heuristik dijalankan untuk optimumkan rangkaian Latihan Asas Fungsi Jejari 

dan mencapai objektif yang disasarkan. Kajian ini di jalankan melalui perbandingan 

eksperimen di antara gabungan jaringan  Pencarian Algoritma Harmoni Meta-

Heuristik dan Latihan Asas Fungsi Jejari serta gabungan serpihan kumpulan 

optimum dan Latihan Asas Fungsi Jejari. Keputusan menunjukkan Pencarian 

Algoritma Harmoni Meta-Heuristik menambahkan keupayaan jaringan saraf Latihan 

Asas Fungsi Jejari dari segi ketepatan dan peratusan klasifikasi, kesalahan kadar 

penumpuan, dan pengurangan masa dengan pengurangan kesalahan purata persegi 

(MSE). Penghasilan gabungan Pencarian Algoritma Harmoni Meta-Heuristik dan 

Latihan Asas Fungsi Jejari ini menyediakan prestasi yang lebih tinggi di dalam 

kebanyakan kes serta menjanjikan keputusan yang lebih baik kecekapan klasifikasi 

berbanding dengan gabungan jaringan serpihan kumpulan optimum dan Latihan Asas 

Fungsi Jejari. 
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Chapter 1  

INTRODUCTION 

1.1 Introduction 

Artificial neural network’s mimicking ability to human talent and their 

similarity to the structure of the neurons of the human brains attracted the eyes of 

many researchers due to its unparalleled properties, such as adaptability, learning and  

generalization capability  (Kulluk et al., 2012).  Basically the principles of the 

Artificial Neural Networks (ANNs) were first formulated by McCulloch and Pitts in 

1943(Graupe, 2007). According to Chan et al. (1995), Neural Network  have not only 

the competence to learn a complex nonlinear dataset from massive body of given 

attributes, but can tolerate to fault and noisy condition in resemblance to human brain 

as well. 

One of the outstanding examples of neural networks is Radial Basis Function 

(RBF). According to Gan et al. (2012), RBF neural Network which was originally 

conceived by Broomhead and Lowe in 1988 has characterized with fast training 

speed, strong learning capability and simple topological  architecture. Idri et al. 

(2010) and Gan et al. (2011) described that it consists of only three different layers 

e.g. the input layer which accepts source dataset; the hidden layer that uses radial 

basis function to compute its output, and the output layer which represents the result
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of the network. According to Kurban and Beşdok (2009) an Fernández-Navarro et al. 

(2011), the activation function which is implemented is usually the Gaussian 

function, although in some situations (e.g. time series) other functional forms 

including thin-plate spline functions, multi-quadratic functions and sigmoidal 

functions are  applied. 

All neural networks are classified into two main categories of training 

algorithm, namely: supervised neural network  and unsupervised neural network. 

Bors (2001) proved that RBF usually subclasses under supervised category. The 

supervised category works with sample of datasets labeled with the training dataset. 

This dataset is presented to the inputs at the beginning of the learning process 

to determine the correct outputs. As in Kattan et al. (2010) an output value that is 

close to the desired output could be achieved through an iterative continuous process 

and adjustment of the network weights. Although back-propagation algorithms 

became one of the most popular methods used to train ANNs, however , it has two 

drawbacks: firstly differentiable transfer function is required and secondly possibility 

of trapping into the local minima is too high. Many Stochastic Global Optimization 

(SGO) techniques such as evolutionary algorithms are adopted for the training of 

ANNs in order to overcome the local minimum problems. 

Harmony Search Algorithm (HSA), a powerful music-based meta-heuristic 

SGO algorithm, not inspired by biological and physical processes is also adopted for 

the training of ANNs (Kulluk et al., 2012) and (Kattan and Abdullah, 2011). HSA 

performed better than the standard BP algorithm as reported in (Kattan et al., 2010). 

The following section depicts the background of this study. 
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1.2 Problem Background 

The emergence of radial bases function as an alternative of ANN was first 

perceived late 80’s, although their related counterpart – pattern recognition technique 

– existed long ago (Bors, 2001). RBF Neural Network was originally perceived and 

added to the ANN by Broomhead and Lowe (1988), who were inspired by the local 

response observation in the biologic neurons.  RBF Networks have been 

implemented in a wide area of engineering and science fields, because of their 

advantages over other well known networks such as: their optimized ability, simple 

topological architecture, accuracy in dynamically nonlinear approximation  and fast 

and easy learning algorithms (Gan et al., 2012). 

Bors (2001) mentioned in his paper that radial basis functions are entrenched 

in two feed-forward  neural network layers. In addition to this two visible layers, i.e. 

the input layer and the output layer, there is a third hidden layer embedded in 

between them for processing units called hidden units, in which RBF which is 

generally a Gaussian function, is applied to each of them. Qasem and Shamsuddin 

(2011) proved that the output layer of RBF has the characteristics of linear decision 

boundary, where as the hidden units of this network are indeed a composition of non-

linear mapping. 

According to Kurban et al. (2009), in various literatures, different algorithms 

were proposed for training the RBF Network. It is necessary to find appropriate 

training algorithms for the RBF Neural Network.  

One of the most popular training algorithms in the domain of RBF Neural 

Networks is the back-propagation technique, which is a gradient-descent  method to 

minimize the mean squared error between the desired outputs and the actual outputs 

for the particular inputs to the networks. However, as in Kulluk et al. (2012), BP has 

some drawbacks: the first is that it require a differentiable neuron transfer function 

and the second is the high possibility to converging into local minima. 
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To deal with this convergence problems, some researchers proposed two 

derivative based algorithms for training RBF networks, such as the gradient descent 

(GD) algorithm and Kalman filtering (KF). Kurban and Beşdok (2009) and Tuba et 

al. (2009) proved that both algorithms need a prolonged time and have convergence 

weaknesses to the local minima and procedure of discovering the optimal gradient. In 

order to overcome this drawbacks, several global optimization methods could be 

applied for training RBF networks in accordance with the various  science and 

engineering problems. Some of these algorithms are: genetic algorithms (GA), the 

particle swarm optimization (PSO) algorithm, the artificial immune system (AIS) 

algorithm and the differential evolution (DE) algorithm.  

These meta-heuristic SGO techniques are inspired by biological processes 

which has the characteristics of training algorithms that overcome the 

aforementioned inefficiencies. Besides that, Harmony Search (HS) algorithms are 

young meta-heuristic SGO methods which resemble the other SGO meta-heuristic 

techniques except that they  are inspired by music improvisation. Although HS have 

been reported that they performed better than BP in adopting Feed Forward Neural 

Networks (FFNN) as in (Kattan et al., 2010), they were not applied to RBFNNs so 

far. The following section will illustrate more on meta-heuristic algorithm.  

1.2.1 Meta-Heuristic Algorithms 

In order to deal with the local minimum problem, many global optimization 

techniques have been adopted for the training of RBF Neural Networks in this case. 

Heuristic algorithms typically intend to find a good solution to an optimization 

problem by ‘trial-and-error’ in a reasonable amount of computing time. Here 

‘heuristic’ means to ‘find’ or ‘search’ by trials and errors. Generally, local search 

methods are heuristic methods because their parameter search is focused on the local 

variations, and the optimal or best solution can be well outside this local region.  

However, a high-quality feasible solution in the local region of interest is usually 
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accepted as a good solution in many optimization problems in practice if time is the 

major constraint. 

Meta-heuristic algorithms are higher-level heuristic algorithms. The word 

‘meta-’ stands for ‘higher-level’ or ‘beyond’, so a literal meaning of meta-heuristic is 

to find the solution through high level techniques, although certain trial-and-error 

processes are still used. Broadly speaking, meta-heuristics are considered as higher-

level techniques or strategies which intend to combine   lower-level techniques and 

tactics for exploration and exploitation of the huge space for parameter search (Yang, 

2009). Yang (2009) says that the word ‘meta-heuristic’ refers to modern high level 

algorithms including Simulated Annealing (SA), Particle Swam Optimization (PSO), 

Evolutionary Algorithms such as Genetic Algorithm (GA), and, certainly Harmony 

Search Algorithm (HSA). 

However, Ren et al. (2010) mentioned that, the Genetic Algorithm usually 

spends a long time to find a solution. At the same time there may be premature and 

slow convergence problems in GA. On the other hand, according to Dian et al. 

(2011),  PSO easily suffers from the partial optimism, which is related to the 

regulation of its speed and direction. Moreover Grosan and Abraham (2011) 

summarized the pitfalls of PSO in their book of  “Intelligent Systems: A Modern 

Approach”, as follows: 

 Particles tend to cluster, i.e., converge too fast and get stuck at local 

optimum 

 Movement of particle carried it into infeasible region 

 Inappropriate mapping of particle space into solution space 

These drawbacks motivated the proposal of HS which is a new meta-heuristic 

algorithm to solve those aforesaid problems. A brief discussion about this algorithm 

will come next. 
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1.2.2 Harmony Search Algorithm 

According to Kulluk et al. (2012) Harmony Search Algorithm (HSA) is a 

meta-heuristic optimization algorithm motivated from the process of making music. 

In HS algorithm each decision variable (musical instrument) generates a value (note) 

in order to find the global optimum solution (best harmony). The method uses a 

stochastic random search based on harmony memory consideration rate and pitch 

adjustment rate instead of a gradient search. Nowadays HS algorithm has been 

applied to many diverse optimization problems such as music composition, Sudoku 

puzzle, timetabling, tour planning, logistics, web page clustering, text 

summarization, Internet routing, robotics, power system design, structural design, 

vehicle routing, heat exchanger design and so on. 

As far to our knowledge, no study has been done for optimization of RBF 

Neural Network with HSA. This attracted our attention in training RBF with HSA to 

improve the performance of the network. 

1.3 Problem Statement  

According to kulluk et al. (2011); Kattan et al. (2010) and Hamed et al. 

(2012) training RBF with BP faced some problems such as poor convergence and 

trapping at the local minima.  Genetic algorithm performed robust training without 

suffering from local minimum problem. However its output production is time 

consuming and computation expensive (Xie et al., 2011) and (Hamadneh et al., 

2012). 

Particle swarm optimization attracted the attention of many researchers after 

several experiments proved its better performance over GA. Although the 
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experiments conducted by  many researches showed a plausible achievement, Rini et 

al. (2011) mentioned that PSO easily suffers from the partial optimism, which is 

related to the regulation of its speed and direction. Moreover Grosan and Abraham 

(2011) summarized the pitfalls of PSO in their book of  “Intelligent Systems: A 

Modern Approach”, with the following three problems: firstly, particles tend to 

cluster, i.e., converge too fast and get stuck at local optimum. Secondly, movement 

of particle carried it into infeasible region and finally, inappropriate mapping of 

particle space into solution space. 

Kulluk et al. (2011) proved that HS which is a new SGO meta-heuristic 

algorithm is a good candidate and the most promising variant for training feed 

forward type NNs. More over Soltani et al. (2011) confirmed that HS is not only 

faster than PSO but has a significant convergence rate to reach the optimal solution.  

So far no study related to the optimization of RBF Neural Network with HSA 

has been done, therefore two questions that can be perceived from this research are 

stated as below: 

1. Since harmony search proved better performance compared to other 

optimizing algorithms, can HS algorithm improve the learning capability of 

RBF network? 

2. How much significance can HSA provide in optimizing the RBF neural 

network? 

1.4 The Study Aim 

In this study HSA will be employed to investigate the higher convergence 

rate and the classification performance of RBF neural network’s learning capability 

compared with PSO based RBF neural network 
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1.5 Dissertation Objectives 

The objectives of the study are as follows: 

i. To identify existing literature of Radial Basis Function (RBF) and 

Particle Swarm Optimization (PSO) algorithms and their interaction. 

ii. To enhance the training process of RBF neural network by integrating 

with the Harmony Search Algorithm (HSA). 

iii. To compare the results between HSA-RBFN and PSO-RBFN in terms of 

convergence rate and classification result. 

1.6 Dissertation Scope 

This study will be confined in the following points in order to fulfill the 

aforementioned goals. 

i. Four datasets which are XOR, Iris, Cancer and Heart disease 

classification from UCI machine learning dataset have been used for 

training and testing. 

ii. The performance of HSA learning algorithm for RBF Network are 

compared to PSO algorithm only. 

iii. While enhancing RBF Network learning by integrating HSA error 

function are minimization. 
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1.7 Dissertation Significance 

According to the process of work, there will analysis  and continuous 

experiments that will be targeted to the goals in order to improve the learning 

capabilities of RBF and make it cost effective by integrating with it this superior 

HSA which previous researches approved that it has great practical significance in 

searching for optimal value of large-scale projects problems (Ren and Kezunovic, 

2010)(Ren et al., 2010). 

Performance metrics: In order to analyze and compare the training 

capability of the HSA algorithm, four performance metrics will be taken into 

consideration. These are: overall training time, sum of squared errors, training 

accuracy and testing accuracy. Accuracy measures the ability of the classifier to 

produce accurate results. 

1.8 The Organization of the Dissertation  

This dissertation consists of five chapters. Chapter 1 presents the introduction 

of the dissertation, problems background, the problem statement, objectives, scope 

and significance of the study. In Chapter 2, the literature reviews on ANN, BP, RBF, 

PSO and HSA is discussed. Chapter 3 illustrates research methodology. Chapter 4 

displays the experimental results, finally the conclusion and suggestions for future 

work are explained in Chapter 5. 
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