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ABSTRACT 

Requirement based test coverage (RBTC) is an important deliverable of a 

software testing process. There are problems in the process whereby the current 

RBTC analysis does not integrate with the black and white testing types nor does it 

generate a multi-direction RBTC analysis report. This research aims to address the 

problems by investigating RBTC analysis using software traceability and review its 

usefulness and efficiency. Initially, literature review on the comparison of the 

existing test coverage approaches and software was conducted followed by the 

development of a prototype using Java and MySQL. The prototype took into 

consideration the problems of RBTC analysis and this proposed concept which is 

RBTC Analysis using software traceability approach was modeled and constructed 

into a prototype called GRAYzer. Software artifacts from a bank project called ‘Fleet 

Management System’ (FMS) were used and embedded into the prototype. 

Questionnaires and feedback from FMS expert users of the prototype were collected. 

Data collected include the usefulness rating and time taken by the FMS experts and 

GRAYzer to do the RBTC analysis. A descriptive analysis of the data showed that a 

majority of the FMS experts rated the prototype as “Very Useful” and indicated that 

GRAYzer provided an efficient RBTC analysis. When compared to the test coverage 

approaches, the prototype provided a forward and backward test coverage analysis 

which can be used as analysis for any given artifact type. Besides that, it has also 

integrated gray box coverage types and multi-directions for the RBTC analysis. The 

research has shown that a software manager could use the prototype to quantify the 

effort needed by a team member and as a means to visualize the RBTC. However, 

this research did not cater for RBTC analysis after an artifact change and the source 

code was not catered for the class inheritance and polymorphism, and these could be 

viewed as future related works. 
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ABSTRAK 

Liputan ujian berdasarkan keperluan (RBTC) adalah hasil penting dalam 

proses pengujian perisian. Antara masalah-masalah ketika dalam proses analisa 

RBTC terkini ialah tiada integrasi antara  jenis-jenis pengujian kotak hitam dan putih 

serta tidak dapat menyediakan laporan analisa RBTC pelbagai arah. Penyelidikan ini 

bertujuan untuk menyingkap permasalahan analisa RBTC menggunakan jejakan 

perisian dan meninjau kebergunaan dan kecekapannya. Pada awal penyelidikan, 

terbitan kajian-kajian terdahulu difahami bagi membandingkan cara-cara liputan 

ujian dan perisian serta diikuti dengan pembangunan prototaip menggunakan Java 

dan MySQL. Prototaip diambil kira dalam permasalahan analisa RBTC dan konsep 

yang dicadangkan iaitu penganalisaan RBTC menggunakan jejakan perisian telah 

dimodelkan dan dibangunkan menjadi prototaip yang dinamakan sebagai GRAYzer. 

Artifak-artifak perisian dari projek bank yang dinamakan sebagai ‘Fleet Management 

System’ (FMS) digunakan dan dibenamkan ke dalam prototaip. Soal selidik dan 

maklum balas dari pakar FMS terhadap prototaip dikumpulkan. Data yang telah 

dikumpulkan termasuk taraf kebergunaan dan masa yang diambil oleh pakar-pakar 

FMS dan GRAYzer dalam menganalisa RBTC. Analisa deskriptif menunjukkan 

bahawa majoriti  pakar-pakar FMS menarafkan prototaip ini sebagai “Sangat 

Berguna” dan menunjukkan bahawa GRAYzer dapat menyediakan analisa RBTC 

yang cekap. Apabila dibandingkan dengan cara-cara liputan ujian, prototaip ini dapat 

menyediakan analisa liputan ujian secara ke depan dan undur yang boleh digunakan 

untuk menganalisa pelabagai jenis artifak. Disamping itu, ia dapat mengintegrasi 

jenis-jenis liputan  ujian kotak kelabu serta analisa RBTC pelbagai arah. Kajian 

menujukkan, dengan menggunakan GRAYzer, seseorang pengurus perisian dapat 

mengira usaha untuk ahli-ahli kumpulan dan sebagai cara untuk melihat RBTC 

secara visual. Namun, kajian ini tidak meliputi analisa bagi perubahan artifak dan 

tidak mengambil cara perwarisan dan polimorfisme, di mana kedua-duanya boleh 

dilihat sebagai kajian-kajian pada masa hadapan. 
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CHAPTER 1 

INTRODUCTION 

 1.1  Introduction 

This chapter presents the research work on requirement based test coverage 

analysis using a software traceability approach. The discussion in this chapter 

includes research background, problem statements, objectives and the importance of 

the study. This is followed by a brief description of the scope of work and structure 

of the thesis. 

 1.2  Background of the Research Problem 

Many people consider software development and testing as time consuming 

and expensive.  However, due to project resource constraint, people are trying to find 

efficient and effective ways of testing simply to cut time and cost.  Computer 

software and systems testing services worldwide market is reaching fifty six billion 

dollar industry by year 2013 (AFP, 2009). The source added that the high demand 

has resulted in a skills shortage in India and led an increasing numbers of testing 

services jobs going to China, Malaysia and North Africa. In Malaysia, the Malaysian 

Software Testing Board (MSTB) has spent $11 million to setup a software testing lab 

(The Star, 2010). Software testing labs built are meant to support research and 

development activities and enhance software testing methodologies. To date, there
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 are twenty eight techniques for regression test selection (RTS) being studied, 

introduced and published, with the objective to cut down tests of a test suite in order 

to save time and money. Software testing includes test coverage percentage report. 

More time is needed to iterate tests and to obtain test coverage percentage.  

Requirement based test coverage percentage is normally an indicator of 

software quality. However, in this research, it can be proven that it can be an 

indicator for other things. It can also provide judgment for critical resources during 

testing. Software engineers in an online community were asking the testing experts if 

requirement traceability matrix (RTM) can be used to find test coverage (Johnson, 

2007). There has been similar concept of test coverage using software traceability to 

the design level (Lormans et. al, 2005) using latent semantic indexing. However, the 

concept of requirement based test coverage should be extended to the source code 

level.  There is a need to find out if it is feasible or not, using other software 

traceability technique such as code instrumentation. If it is feasible, then will it be 

efficient? 

 1.3  Statement of the Problem 

The problem to be resolved by this study is whether software traceability 

approach will be able to efficiently support requirement based test coverage analysis.  

The research question is, “How to produce an efficient requirement based test 

coverage analysis model by using a software traceability approach?” 

The sub questions of the main research question are as follow:  

i. Why are current test coverage analysis models, approaches and tools still 

not able to support requirement based test coverage analysis? 

ii. What is the best way to capture the requirement based test coverage of 

software components in the system? 



3 

 

iii. How to measure the requirement based test coverage by the proposed 

approach? 

iv. How to validate the efficiency of test coverage analysis using the 

software traceability approach? 

 

Sub question (i) will be answered via literature review in Chapter 2. This 

chapter will provide a special attention to explore the test coverage analysis, its 

models and traceability issues. From the test coverage analysis perspective, this 

chapter will present a study on the detailed test coverage analysis processes, the 

techniques and existing tools used. The strengths and drawbacks are drawn based on 

a comparison framework in order to propose a new model and approach to support 

test coverage analysis. 

The above study provides some leverage to answer the sub question (ii). 

Chapter 3 describes a design methodology and evaluation plan before the research is 

carried out. Sub question (iii) will be counter balanced by a solution to measure the 

potential effects. The sub questions (ii) and (iii) will be further explained in the 

traceability modeling and implementation as describe in Chapter 4 and 5. Lastly, sub 

question (iv) leads to the evaluation of the model and approach quantitatively and 

qualitatively as described in Chapter 6. 

 1.4  Objective of Study  

The problem statement serves as a premise to establish a set of specific 

objectives that will constitute major milestones of this research. The objectives of 

this research are listed as follow:  
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To study and identify issues in software testing particularly related to 

requirement based test coverage. 

To build a new test coverage analysis model by using software 

traceability approach that includes requirements, test cases and code. 

To verify the concept of the proposed model by developing and using 

the supporting tools.  

To demonstrate and evaluate the efficiency of the requirement based 

test coverage analysis model using software traceability approach. 

 1.5  Importance of Study 

In the year 2010 to 2012, the world is at the war of talent as it is difficult to 

get software professionals. In early 2012, CIO.com has reported that Google and 

Facebook are competing each other for the best brain (The Independent, 2012). 

When skilled software engineers are difficult to hire, managing projects are likely to 

be affected as well. On top of that, when software professionals are hired, other 

companies will ask them if they want to quit the job so they can get higher pay.  

This study is conducted on the motivation of saving project resources. By 

identifying which part of source code map to which part of requirement, it is possible 

for a manager to identify which project resource is critical. Management of a 

software house will ask how much can they save on the allowance of the software 

engineer for outstation tasks? ‘Which software engineer shall I bring to handle 

source code for requirement X, Y and Z?’  

Software managers may want to know time or effort needed to deal which 

each requirement. It is not cheap to assign a software engineers to be at a client site. 

A manager has to provide outstation allowances which cover travelling cost, lodging 

and parking. By knowing the percentage of program sections covered for each 
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requirements, the software manager can quantitatively select which software 

engineer, should come to trouble shoot for another round of pre-UAT. 

The requirement based test coverage provides a way to estimate on how 

many code portion will a requirement covers. For instance, a requirement such as 

'Login’, an application uses six methods from a single class. Perhaps, one can say, it 

takes a ten percent of the overall code sections. If there are five requirements on 

'Authentication Module', how many code sections will the application run into? Will 

it be ten, twenty, fifty or even sixty percent of the code portion? 

Which software engineer from a team of four can help to trouble shoot the 

requirement 1,4,6,9 and 15? Why a software manager should select software 

engineer X to troubleshoot these five problematic requirements and not software 

engineer Z? 

A requirement based test coverage test coverage analysis can be very useful. 

It allows tracing the relationship between requirements to source code. Testing 

experts around the world have agreed on using software traceability (or commonly 

known as trace matrix) to find test coverage as in (Johnson, 2007),(Copeland, 2009) 

and (Crispin, 2009). However, an experiment needs to be carried out as a proof of 

concept. In addition, is the test coverage extendable from requirement to code? 

Executing all test cases to get test coverage can be time consuming. The optimum 

solution would suggest that can we apply any approach that can support the 

requirement and code coverage in a more meaningful and inexpensive manner? 

A quick survey conducted using questionnaire indicated that all six 

experienced Malaysian IT personnel including a project manager and software 

engineers agreed that other project team members should be able to view coverage 

percentage. In addition, all agreed to know which part of codes (method, functions) 

are linked to the requirements. To achieve these, a requirement based test coverage 

analyzer using study should be deployed.  
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A laboratory experiment by (Omar and Ibrahim, 2010) which was conducted 

in software testing lab has shown that a prototype with support of software 

traceability can aid user in test coverage analysis. However, it is important to know 

whether this approach make sense among the IT personnel from the industry. 

 1.6  Scope of Work  

First, the scopes of work include verifying the concept of the RBTC analysis 

model using software traceability in a single software project case study.  It is 

suggested that the best system to consider is to adopt and use the most recent 

software development system. This research does not reach large, complex or legacy 

systems. Second, the system documents encompass only to the system requirement 

document, software testing document and source code.  Relevant information 

includes a set of functional requirements, test cases and source code. It does not 

include other software artifacts such as the use case and design. Third, the research 

bounds to analyzing RBTC before implementing any change requests. Prior to 

change, the test coverage percentage is taken in order to verify the concept of 

software traceability can support the RBTC analysis.  Last, the work does not include 

the procedural portion but only the object oriented codes. 

 1.7  Thesis Outline  

This thesis covers some discussions on the specific issue associated to 

software traceability for impact analysis and understanding how this new research is 

carried out. The thesis is organized in the following outline. 

Chapter 2: Discusses the literature review of software testing, software traceability 

and software coverage. A few areas of interest are identified from which all the 
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related issues, works and approaches are highlighted. This chapter also discusses 

some techniques of test coverage method. The discussion on some existing tools that 

exist in the industry is also included in this chapter. This leads to the improvement 

opportunities that form a basis to develop newly proposed software of test coverage 

analysis approach by software traceability method.  

Chapter 3: Provides a research methodology that describes the research operation 

flow from start to end. This chapter includes a research design diagram, which leads 

to an overview of the data collection and analysis approaches. It is followed by 

research assumptions.  

Chapter 4: Explains the detailed model of the proposed test coverage analysis 

approach using software traceability approach. A set of software traceability matrix 

concepts, test coverage finding and calculation algorithm are described. It is followed 

by some approaches and mechanisms to achieve the model specifications.  

Chapter 5: Presents the design and implementation of the prototype as a proof of 

concept. The design includes the prototype’s system architecture, use case, class 

diagram and sequence diagram. The implementation process includes the 

development aspect and the user interface. Other supporting programs are discussed 

at the end of this chapter. 

Chapter 6: Specifies the evaluation process of the prototype for its efficiency. The 

evaluation criteria and methods are described and implemented on the model that 

includes modeling validation, a case study and experiment. This research performs 

evaluation based on quantitative and qualitative results. Quantitative results are 

checked against the time taken by the experts to perform a set of test coverage 

analysis questions, with and without the support of the prototype. Qualitative results 

are obtained based on user perception on the prototype’s usefulness and comparative 

study made on the existing models and approaches. 
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Chapter 7: Summarizes the research achievements, contributions and conclusion of 

the thesis. This is followed by the research limitations and suggestions for future 

work.  
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