

A SOFTWARE TRACEABILITY APPROACH TO SUPPORT REQUIREMENT

BASED TEST COVERAGE ANALYSIS

SITI FAIZAH BINTI OMAR

A thesis submitted in fulfillment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computing

Universiti Teknologi Malaysia

MARCH 2013

iii

ALHAMDULLILAH

I dedicated this thesis to

my parents,

Hj Omar Saman and Hjh Siti Rohani

My mothers Asmah Ismail,

Hjh Rosmah M.Y.

My spouse Rusdi Sembak

My children Marissa and Aaron

My sisters Fauziah, Fadilah,

Fairus, Faridah, Fatinah

My brothers Faisal, Marzuqi, Azri

My relatives

iv

ACKNOWLEDGEMENT

I would like to offer my heartiest gratitude to my supervisor, Assoc. Prof. Dr

Suhaimi Bin Ibrahim for his continuous encouragement, advice and technical know-

how; throughout three years of study. I am also indebted to the respondents from

Media Digital Alliance Sdn Bhd for their participation in this research. I would also

like to thank RMC UTM and MOSTI staff, who have contributed their time

processing and funding the research paper publication. I am grateful to the Advanced

Informatics School (AIS), UTM International Campus and Faculty of Computing

staff for guiding me on thesis completion and submission.

v

ABSTRACT

Requirement based test coverage (RBTC) is an important deliverable of a

software testing process. There are problems in the process whereby the current

RBTC analysis does not integrate with the black and white testing types nor does it

generate a multi-direction RBTC analysis report. This research aims to address the

problems by investigating RBTC analysis using software traceability and review its

usefulness and efficiency. Initially, literature review on the comparison of the

existing test coverage approaches and software was conducted followed by the

development of a prototype using Java and MySQL. The prototype took into

consideration the problems of RBTC analysis and this proposed concept which is

RBTC Analysis using software traceability approach was modeled and constructed

into a prototype called GRAYzer. Software artifacts from a bank project called ‘Fleet

Management System’ (FMS) were used and embedded into the prototype.

Questionnaires and feedback from FMS expert users of the prototype were collected.

Data collected include the usefulness rating and time taken by the FMS experts and

GRAYzer to do the RBTC analysis. A descriptive analysis of the data showed that a

majority of the FMS experts rated the prototype as “Very Useful” and indicated that

GRAYzer provided an efficient RBTC analysis. When compared to the test coverage

approaches, the prototype provided a forward and backward test coverage analysis

which can be used as analysis for any given artifact type. Besides that, it has also

integrated gray box coverage types and multi-directions for the RBTC analysis. The

research has shown that a software manager could use the prototype to quantify the

effort needed by a team member and as a means to visualize the RBTC. However,

this research did not cater for RBTC analysis after an artifact change and the source

code was not catered for the class inheritance and polymorphism, and these could be

viewed as future related works.

vi

ABSTRAK

Liputan ujian berdasarkan keperluan (RBTC) adalah hasil penting dalam

proses pengujian perisian. Antara masalah-masalah ketika dalam proses analisa

RBTC terkini ialah tiada integrasi antara jenis-jenis pengujian kotak hitam dan putih

serta tidak dapat menyediakan laporan analisa RBTC pelbagai arah. Penyelidikan ini

bertujuan untuk menyingkap permasalahan analisa RBTC menggunakan jejakan

perisian dan meninjau kebergunaan dan kecekapannya. Pada awal penyelidikan,

terbitan kajian-kajian terdahulu difahami bagi membandingkan cara-cara liputan

ujian dan perisian serta diikuti dengan pembangunan prototaip menggunakan Java

dan MySQL. Prototaip diambil kira dalam permasalahan analisa RBTC dan konsep

yang dicadangkan iaitu penganalisaan RBTC menggunakan jejakan perisian telah

dimodelkan dan dibangunkan menjadi prototaip yang dinamakan sebagai GRAYzer.

Artifak-artifak perisian dari projek bank yang dinamakan sebagai ‘Fleet Management

System’ (FMS) digunakan dan dibenamkan ke dalam prototaip. Soal selidik dan

maklum balas dari pakar FMS terhadap prototaip dikumpulkan. Data yang telah

dikumpulkan termasuk taraf kebergunaan dan masa yang diambil oleh pakar-pakar

FMS dan GRAYzer dalam menganalisa RBTC. Analisa deskriptif menunjukkan

bahawa majoriti pakar-pakar FMS menarafkan prototaip ini sebagai “Sangat

Berguna” dan menunjukkan bahawa GRAYzer dapat menyediakan analisa RBTC

yang cekap. Apabila dibandingkan dengan cara-cara liputan ujian, prototaip ini dapat

menyediakan analisa liputan ujian secara ke depan dan undur yang boleh digunakan

untuk menganalisa pelabagai jenis artifak. Disamping itu, ia dapat mengintegrasi

jenis-jenis liputan ujian kotak kelabu serta analisa RBTC pelbagai arah. Kajian

menujukkan, dengan menggunakan GRAYzer, seseorang pengurus perisian dapat

mengira usaha untuk ahli-ahli kumpulan dan sebagai cara untuk melihat RBTC

secara visual. Namun, kajian ini tidak meliputi analisa bagi perubahan artifak dan

tidak mengambil cara perwarisan dan polimorfisme, di mana kedua-duanya boleh

dilihat sebagai kajian-kajian pada masa hadapan.

vii

TABLE OF CONTENTS

CHAPTER

TITLE

PAGE

 DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENTS iv

 ABSTRACT v

 ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES xii

 LIST OF FIGURES xiv

 LIST OF ACRONYMS AND SYMBOLS xvii

1 INTRODUCTION

 1.1 Introduction 1

 1.2 Background of the Research Problem 1

 1.3 Statement of the Problem 2

 1.4 Objective of Study 3

 1.5 Importance of Study 4

 1.6 Scope of Work 6

 1.7 Thesis Outline 6

2 LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Software Testing 9

 2.2.1 Levels of Testing 10

 2.2.2 Types of Testing 10

viii

 2.2.3 Black Box, White Box and Grey Box 11

 2.3 Software Traceability 12

 2.3.1 Types of Traceability 12

 2.3.2 Recent Studies on Software Traceability 13

 2.3.3 Summary of Software Traceability Research 19

 2.4 Test Coverage 22

 2.4.1 Coverage Assessment by Quality Risk

Analysis

23

 2.4.2 Coverage Users 24

 2.4.3 Measurement 25

 2.4.4 Existing Test Coverage Approaches 28

 2.4.5 Summary of Test Coverage Approaches 36

 2.4.6 Existing Test Coverage Tools 38

 2.4.7 The Comparative Evaluation of Current Tools 46

 2.5 Summary 47

3 RESEARCH METHODOLOGY

 3.1 Introduction 48

 3.2 Overview of the Research Method 48

 3.3 Research Flowchart 49

 3.4 Operational Framework 51

 3.4.1 Research Planning and Schedule 52

 3.5 Research Design 54

 3.5.1 Phase I 55

 3.5.2 Phase I I 57

 3.5.3 Phase I II 58

 3.6 Evaluation Method 58

 3.6.1 Case Study 58

 3.6.2 Experiment 60

 3.6.3 Questionnaire 60

 3.6.4 Statistical Analysis 61

 3.7 Prepare Research Report 63

 3.6 Research Assumption 63

ix

 3.7 Summary 64

4 A REQUIREMENT BASED TEST COVERAGE

ANALYSIS MODELING

 4.1 Introduction 65

 4.2 Overview of the Model Design 66

 4.3 Description on the Model Implementation 67

 4.3.1 Requirement Traceability Matrices 67

 4.3.2 Code Instrumentation 68

 4.3.3 The Model 68

 4.3.4 Test Coverage Calculation Using Matrix Table

Technique

70

 4.3.5 Software Artifact Relation Conceptual Model 73

 4.3.6 Traceability Solution 75

 4.3.7 Data Migration and Reconstruction 76

 4.3.8 Mathematical Equation for Test Coverage 79

 4.3.9 Test Coverage Calculation Using Relational Table 81

4.4 Summary 88

5
DESIGN AND IMPLEMENTATION OF GRAYZER

 5.1 Introduction 89

 5.2 Test Coverage Analyzer Design 89

 5.2.1 GRAYzer System Architecture 90

 5.2.2 GRAYzer Use Case 92

 5.2.3 GRAYzer Class Interaction 94

 5.2.4 GRAYzer Sequence Diagram 96

 5.2.5 The Algorithm and Source Code 105

 5.3 GRAYzer Implementation and User Interface 107

 5.3.1 GRAYzer Report 109

 5.4 Other Supporting Tools 116

 5.4.1 Instrumentation Program 116

 5.4.2 Parser Program 118

 5.5 Summary 121

x

6 EVALUATION OF GRAYZER

 6.1 Introduction 122

 6.2 Case Study 122

 6.2.1 Outlines of the Case Study 123

 6.2.2 About the FMS 124

 6.2.3 FMS Functionality 125

 6.3 Controlled Experiment 127

 6.3.1 Briefing 127

 6.3.2 Subjects and Environment 128

 6.3.3 Tutorial 129

 6.3.4 Questionnaire

 6.3.5 Experimental Procedures 130

 6.3.6 Possible Threats and Validity 131

 6.4 Experimental Results 132

 6.4.1 User Evaluation 132

 6.4.2 Score Results 134

 6.4.3 Data Cleaning 136

 6.5 Finding of the Analysis 139

 6.5.1 Quantitative Evaluation 139

 6.5.2 Qualitative Evaluation 142

 6.5.3 Overall Findings and Discussion 145

 6.6 Summary 146

7 CONCLUSION AND FUTURE WORK

 7.1 Introduction 147

 7.2 Research Summary Overview and Achievements 147

 7.3 Summary of the Main Contributions 151

 7.4 Research Limitation and Future Work 152

REFERENCES 155-163

APPENDIX A – D 164-199

xi

LIST OF TABLES

TABLE NO. TITLE PAGE

2.1 Recent Studies using Software Traceability 19

2.2 Coverage Assessment by Quality Risk 23

2.3 Coverage Users 24

2.4 Types of Test Coverage Items 25

2.5 Summary of Test Coverage Approaches 37

2.6 Summary of Test Coverage Tools 46

3.1 Operational Framework 52

3.2 Research Planning and Schedule 53

3.3 Usefulness of the prototype 62

4.1 Requirement x Test Cases (RxT) 71

4.2 Test Cases X Methods (TxM) 71

4.3 Test Cases X Classes (TxC) 72

4.4 Test Cases X Packages (TxP) 72

4.5 Requirements X Methods (RxM) 74

4.6 Requirements X Methods (RxM) 74

4.7 Requirement X Test Cases (RxT) BEFORE 76

4.8 Requirement X Test Cases (RxT) AFTER 76

4.9 Artifact Relationship Basic Rules 82

4.10 Example of the SQL Statements 83

4.11 Test Coverage Types Derived From The Analysis 85

4.12 Examples Of Coverage Criteria Descriptions 86

6.1 Frequency for GRAYzer’s features 133

6.2 Mean of score for GRAYzer’s features 133

6.3 Score Result 135

6.4 Data cleaning by removing #2 136

6.5 GRAYzer’s platform specification 137

6.6 Time taken to answer the test coverage analysis (in

seconds)
 137

6.7 Scenario, Test Case and Requirement Numbers and

140

xii

Descriptions

6.8 Requirement based test coverage result (Respondents) 140

6.9 Requirement based test coverage result (GRAYzer) 141

6.10 The level of speed 142

6.11 Test Coverage Tools Comparison 143

6.12 Test Coverage Approaches Comparison 144

xiii

LIST OF ACRONYMS AND SYMBOLS

ACM - Association for Computing Machinery

ANT - Another Neat Tool (Apache)

ANTLR - Another Tool for Language Recognition

AOSD - Aspect Oriented Software Development

API - Application Program Interface

ASCII - American Standard Code for Information Interchange

ATM - Automated Teller Machine

BCEL - Byte Code Engineering Library

CFG - Control Flow Graph

CLS - Class

COSDG - Call-based Object Oriented System Dependence Graph

COV - Coverage

CRS - Company Reservation System

CTM - Concern Traceability Metamodel

CxM - Class to Method

CxR - Class to Requirement coverage

CxT - Class to Test cases coverage

CxP - Class to Package coverage

FAA - Federal Aviation Administration

FMS - Fleet Management System

GNU - GNU Not Unix (eg. Linux)

GUI - Graphical User Interface

HTML - Hypertext Markup Language

IDE - Integrated Development Environment

IEEE - Institute of Electrical and Electronics Engineering

IT - Information Technology

xiv

ISTQB - International Software Testing Qualifications Board

JDBC - Java Database Connectivity

JRE - Java Runtime Environment

JVM - Java Virtual Machine

JVMPI - Java Virtual Machine Profiler Interface

J2EE - Java 2 Enterprise Edition

LCSAJ - Line Code Sequence and Jump

LOC - Line of Code

LSI - Latent Semantic Indexing

MB - Megabytes

MCDC - Modified Condition / Decision Coverage

MSTB - Malaysian Software Testing Board

MTD - Method

MxC - Method to Class

MxP - Method to Package

MxR - Method to Requirement

N.A. - Not Available

OCL - Object Constraint Language

OS - Operating Systems

PHP - Pre-Hypertext Processing

PKG - Package

PxR - Package to Requirement

PxC - Package to Class

RBTC - Requirement Based Test Coverage

RCT - Requirement Centric Traceability

RDBMS - Relational Database Management Systems

REQ - Requirement

RMS - Room Management Systems

RTM - Requirement Traceability Matrix

RTS - Regression test selection (RTS)

RxT - Requirement to Test case

RxM - Requirement to Method

RxC - Requirement to Class

xv

RxP - Requirement to Package

SCI - Source Code Instrumentation

SDD - Software Design Document

SQL - Standard Query Language

SRS - Software Requirement Specification

STD - Software Test Document

TC - Test Case

TCM - Test Coverage Monitoring

TMG - Term-Document Matrix Generation

TxC -Test case to Class coverage

TxP -Test case to Package

TxR -Test case to Requirement

UAT - User Acceptance Test

URL - Uniform Resource Locator

XML - Extensible Markup Language

xvi

LIST OF APPENDICES

APPENDIX TITLE PAGE

A Procedures and Guidelines of the Controlled

Experiment

164

B GRAYzer Manual and Descriptions 176

C Letter from Software Manager 196

D Published Papers 199

CHAPTER 1

INTRODUCTION

 1.1 Introduction

This chapter presents the research work on requirement based test coverage

analysis using a software traceability approach. The discussion in this chapter

includes research background, problem statements, objectives and the importance of

the study. This is followed by a brief description of the scope of work and structure

of the thesis.

 1.2 Background of the Research Problem

Many people consider software development and testing as time consuming

and expensive. However, due to project resource constraint, people are trying to find

efficient and effective ways of testing simply to cut time and cost. Computer

software and systems testing services worldwide market is reaching fifty six billion

dollar industry by year 2013 (AFP, 2009). The source added that the high demand

has resulted in a skills shortage in India and led an increasing numbers of testing

services jobs going to China, Malaysia and North Africa. In Malaysia, the Malaysian

Software Testing Board (MSTB) has spent $11 million to setup a software testing lab

(The Star, 2010). Software testing labs built are meant to support research and

development activities and enhance software testing methodologies. To date, there

2

 are twenty eight techniques for regression test selection (RTS) being studied,

introduced and published, with the objective to cut down tests of a test suite in order

to save time and money. Software testing includes test coverage percentage report.

More time is needed to iterate tests and to obtain test coverage percentage.

Requirement based test coverage percentage is normally an indicator of

software quality. However, in this research, it can be proven that it can be an

indicator for other things. It can also provide judgment for critical resources during

testing. Software engineers in an online community were asking the testing experts if

requirement traceability matrix (RTM) can be used to find test coverage (Johnson,

2007). There has been similar concept of test coverage using software traceability to

the design level (Lormans et. al, 2005) using latent semantic indexing. However, the

concept of requirement based test coverage should be extended to the source code

level. There is a need to find out if it is feasible or not, using other software

traceability technique such as code instrumentation. If it is feasible, then will it be

efficient?

 1.3 Statement of the Problem

The problem to be resolved by this study is whether software traceability

approach will be able to efficiently support requirement based test coverage analysis.

The research question is, “How to produce an efficient requirement based test

coverage analysis model by using a software traceability approach?”

The sub questions of the main research question are as follow:

i. Why are current test coverage analysis models, approaches and tools still

not able to support requirement based test coverage analysis?

ii. What is the best way to capture the requirement based test coverage of

software components in the system?

3

iii. How to measure the requirement based test coverage by the proposed

approach?

iv. How to validate the efficiency of test coverage analysis using the

software traceability approach?

Sub question (i) will be answered via literature review in Chapter 2. This

chapter will provide a special attention to explore the test coverage analysis, its

models and traceability issues. From the test coverage analysis perspective, this

chapter will present a study on the detailed test coverage analysis processes, the

techniques and existing tools used. The strengths and drawbacks are drawn based on

a comparison framework in order to propose a new model and approach to support

test coverage analysis.

The above study provides some leverage to answer the sub question (ii).

Chapter 3 describes a design methodology and evaluation plan before the research is

carried out. Sub question (iii) will be counter balanced by a solution to measure the

potential effects. The sub questions (ii) and (iii) will be further explained in the

traceability modeling and implementation as describe in Chapter 4 and 5. Lastly, sub

question (iv) leads to the evaluation of the model and approach quantitatively and

qualitatively as described in Chapter 6.

 1.4 Objective of Study

The problem statement serves as a premise to establish a set of specific

objectives that will constitute major milestones of this research. The objectives of

this research are listed as follow:

4

To study and identify issues in software testing particularly related to

requirement based test coverage.

To build a new test coverage analysis model by using software

traceability approach that includes requirements, test cases and code.

To verify the concept of the proposed model by developing and using

the supporting tools.

To demonstrate and evaluate the efficiency of the requirement based

test coverage analysis model using software traceability approach.

 1.5 Importance of Study

In the year 2010 to 2012, the world is at the war of talent as it is difficult to

get software professionals. In early 2012, CIO.com has reported that Google and

Facebook are competing each other for the best brain (The Independent, 2012).

When skilled software engineers are difficult to hire, managing projects are likely to

be affected as well. On top of that, when software professionals are hired, other

companies will ask them if they want to quit the job so they can get higher pay.

This study is conducted on the motivation of saving project resources. By

identifying which part of source code map to which part of requirement, it is possible

for a manager to identify which project resource is critical. Management of a

software house will ask how much can they save on the allowance of the software

engineer for outstation tasks? ‘Which software engineer shall I bring to handle

source code for requirement X, Y and Z?’

Software managers may want to know time or effort needed to deal which

each requirement. It is not cheap to assign a software engineers to be at a client site.

A manager has to provide outstation allowances which cover travelling cost, lodging

and parking. By knowing the percentage of program sections covered for each

5

requirements, the software manager can quantitatively select which software

engineer, should come to trouble shoot for another round of pre-UAT.

The requirement based test coverage provides a way to estimate on how

many code portion will a requirement covers. For instance, a requirement such as

'Login’, an application uses six methods from a single class. Perhaps, one can say, it

takes a ten percent of the overall code sections. If there are five requirements on

'Authentication Module', how many code sections will the application run into? Will

it be ten, twenty, fifty or even sixty percent of the code portion?

Which software engineer from a team of four can help to trouble shoot the

requirement 1,4,6,9 and 15? Why a software manager should select software

engineer X to troubleshoot these five problematic requirements and not software

engineer Z?

A requirement based test coverage test coverage analysis can be very useful.

It allows tracing the relationship between requirements to source code. Testing

experts around the world have agreed on using software traceability (or commonly

known as trace matrix) to find test coverage as in (Johnson, 2007),(Copeland, 2009)

and (Crispin, 2009). However, an experiment needs to be carried out as a proof of

concept. In addition, is the test coverage extendable from requirement to code?

Executing all test cases to get test coverage can be time consuming. The optimum

solution would suggest that can we apply any approach that can support the

requirement and code coverage in a more meaningful and inexpensive manner?

A quick survey conducted using questionnaire indicated that all six

experienced Malaysian IT personnel including a project manager and software

engineers agreed that other project team members should be able to view coverage

percentage. In addition, all agreed to know which part of codes (method, functions)

are linked to the requirements. To achieve these, a requirement based test coverage

analyzer using study should be deployed.

6

A laboratory experiment by (Omar and Ibrahim, 2010) which was conducted

in software testing lab has shown that a prototype with support of software

traceability can aid user in test coverage analysis. However, it is important to know

whether this approach make sense among the IT personnel from the industry.

 1.6 Scope of Work

First, the scopes of work include verifying the concept of the RBTC analysis

model using software traceability in a single software project case study. It is

suggested that the best system to consider is to adopt and use the most recent

software development system. This research does not reach large, complex or legacy

systems. Second, the system documents encompass only to the system requirement

document, software testing document and source code. Relevant information

includes a set of functional requirements, test cases and source code. It does not

include other software artifacts such as the use case and design. Third, the research

bounds to analyzing RBTC before implementing any change requests. Prior to

change, the test coverage percentage is taken in order to verify the concept of

software traceability can support the RBTC analysis. Last, the work does not include

the procedural portion but only the object oriented codes.

 1.7 Thesis Outline

This thesis covers some discussions on the specific issue associated to

software traceability for impact analysis and understanding how this new research is

carried out. The thesis is organized in the following outline.

Chapter 2: Discusses the literature review of software testing, software traceability

and software coverage. A few areas of interest are identified from which all the

7

related issues, works and approaches are highlighted. This chapter also discusses

some techniques of test coverage method. The discussion on some existing tools that

exist in the industry is also included in this chapter. This leads to the improvement

opportunities that form a basis to develop newly proposed software of test coverage

analysis approach by software traceability method.

Chapter 3: Provides a research methodology that describes the research operation

flow from start to end. This chapter includes a research design diagram, which leads

to an overview of the data collection and analysis approaches. It is followed by

research assumptions.

Chapter 4: Explains the detailed model of the proposed test coverage analysis

approach using software traceability approach. A set of software traceability matrix

concepts, test coverage finding and calculation algorithm are described. It is followed

by some approaches and mechanisms to achieve the model specifications.

Chapter 5: Presents the design and implementation of the prototype as a proof of

concept. The design includes the prototype’s system architecture, use case, class

diagram and sequence diagram. The implementation process includes the

development aspect and the user interface. Other supporting programs are discussed

at the end of this chapter.

Chapter 6: Specifies the evaluation process of the prototype for its efficiency. The

evaluation criteria and methods are described and implemented on the model that

includes modeling validation, a case study and experiment. This research performs

evaluation based on quantitative and qualitative results. Quantitative results are

checked against the time taken by the experts to perform a set of test coverage

analysis questions, with and without the support of the prototype. Qualitative results

are obtained based on user perception on the prototype’s usefulness and comparative

study made on the existing models and approaches.

8

Chapter 7: Summarizes the research achievements, contributions and conclusion of

the thesis. This is followed by the research limitations and suggestions for future

work.

REFERENCES

AFP (2009). Software testing market resilient despite crisis: report. Singapore. Mar

10, 2009. http://www.google.com/hostednews/ afp/article/

ALeqM5hAfn1MgC5beeA3aSQRbYHHCRh0OQ

Answers.com (2009). http://www.answers.com/topic/code-coverage

Asuncion, H., Francois, F., et al. (2007). An End-To-End Industrial Software

Traceability Tool. Proceeding of the 6th Joint Meeting of the ESEC/FSE.

Dubrovnik, Crotia, Sep, 2007.

Atlassian. (2009) http://www.atlassian.com/software/clover/screenshots/

Beizer, B. (1990). Software Testing Techniques. 2nd edition, New York: Van

Nostrand Reinhold.

Berg, v.d. K., Conejero, J.M., Hernández, J. (2006). Analysis of crosscutting across

software development phases based on traceability. Proceedings of the 2006

international workshop on Early aspects at ICSE, Shanghai, EA '06. 43 - 50.

Black, R. (2004). Critical Test Processes: Plan, Prepare, Perform, Perfect. Pearson

Education. 301-304.

BS7925-2 (1997). Standard for Software Component Testing. British Computer

Society SIGIST.

Buy, U., Orso, A., Pezze, M. (2000). Automated Testing of Classes. ISSTA’00.

Portland, Oregon. ACM.

156

Chilenski, J.J and Miller, S.P. (1994). Applicability of Modified Condition/Decision

Coverage to Software Testing, Software Engineering Journal. September

1994, Vol. 9, No. 5, 193-200.

Cleland-Huang, J. (2005). Toward Improved Traceability of Non-Functional

Requirements. TEFSE, November 8, 2005, Long Beach, California, USA.

ACM 1-50503-243. 14-19.Cobertura. (2009).

http://cobertura.sourceforge.net/sample/

Copeland, L. (personal communication, August 1, 2009)

Costello, R.J. (1995). Metrics for requirements engineering. Journal of Systems and

Software. Volume 29, Issue 1, April 1995, Pages 39–63

Crispin, L. (2009) www.coderanch.com February 3, 2009

Cysneiros, G., Zisman, A. (2008). Traceability and Completeness Checking for

Agent-Oriented System. SAC’08.Brazil.71-77.

Eclemma. (2009). http://www.eclemma.org/userdoc/coverageview.html

Egyed, A. (2003). A Scenario-Driven Approach to Trace Dependency Analysis,

IEEE Transactions on Software Engineering, vol 29(2).

Emma. (2009) http://emma.sourceforge.net/coverage_sample_a/index.html

Gieszl, L.R. (1992). Traceability For Integration. Proceedings of the Second

International Conference on Systems Integration. Volume , Issue 15-18 Jun

1992, New Jersey, pp. 220 – 228.

Glass, R.L. (2009) . A Classification System for Testing, Part 2. IEEE Software.

Lane, Piscataway, NJ. 103-104

157

Grinwald, R., Harel, E., Orgad, M., Ur S., Ziv, A. (1998). IBM Research Lab, Haifa.

Dac 1998. San Francisco, CA USA. 158-163.

Gupta, R., Harrold, M.J., and Soffa, M.L. (1992). An approach to regression testing

using slicing. Proceedings in Conference on Software Maintenance 1992

(Cat.No.92CH3206-0). IEEE Comput. Soc. Press, 299-308.

Harrold, M.J., McGregor, J.D., Fitzpatrick, K.J. (1992). Incremental testing of

object-oriented class structures. Proceedings of the 14th international

conference on Software engineering, ICSE '92, Melbourne, Australia, 68 - 80.

Hayhurst, K.J., Veerhusen, D.S., Chilenski, J.J., Rierson, L.K. (2001). A Practical

Tutorial on Modified Condition/Decision Coverage. Langley Research

Center, National Aeronautics and Space Administration (NASA).

Hoffman, H.F., Lehner, F. (2001). Requirements engineering as a success factor in

software projects. Software, IEEE. Jul/Aug 2001. Volume 15. 58-66.

Hoffman, M., Kuhn, N., Weber, M., Bittner, M. (2004). Requirements for

requirements management tools. Proceedings of the Requirements

Engineering Conference, 2004.. 12th IEEE International, Kyoto, Japan, pp.

301-308.

Horgans, J. R., London, S., Lyu M.R. (1994) Achieving Software Quality with

Testing Coverage Measures. IEEE Xplore.

Huang, J.C. (1975). An Approach to Program Testing. Computing Surveys. Vol. 7,

No. 3 September.

Ibrahim, N., Wan Kadir, W.M.N., Deris, S. (2008). Comparative Evaluation of

Change Propagation Approaches towards Resilient Software Evolution.

Proceeding of The Third International Conference on Software Engineering

Advances, 2008. ICSEA '08, Sliema, Malta, 198-204.

158

Ibrahim, S. (2006). A Document-Based Software Traceability to Support Change

Impact Analysis of Object-Oriented Software. Ph.D Tesis. Universiti

Teknologi Malaysia, Skudai.

IEEE. (1998a). IEEE Standard For Software Maintenance. New York, IEEE Std.

1219-1998.

IEEE (1998) IEEE Standard for Software Verification and Validation. 1012-1998.

IEEE Press, Piscataway, N.J., 1998.

IEEE (1990), Standard Glossary of Software Engineering Terminology. 610.12 .

IEEE Press, Piscataway, N.J., 1990.

ISO/IEC 14764. (2009). http://www.iso.org/iso/ catalogue_detail.htm?

csnumber=39064

ISTQB (2007). Standard glossary of terms used in Software Testing. www.istqb.org:

International Software Testing Qualifications Board. Version 2.0, December,

2nd 2007

Jfeature. (2009). https://jfeature.dev.java.net/.

Johnson, Karen N. (2007) searchsoftwarequality.techtarget.com, February 13, 2007

Kaner, C., Brian, L. (2000). Grey box testing. Los Altos Workshop on Software

Testing #9. Sunnyvale, CA, March, 2000.

Kapfhammer, G.M., Soffa, M.L. (2008). Database-Aware Test Coverage Monitoring.

Proceedings of the 1st conference on India software engineering conference

ISEC'08. Hyderabad, India, ACM.77-86.

Kessis, M., Ledru, Y. Vandome, G. (2005). Experiences in Coverage Testing of a

Java Middleware. SEM 2005, Lisbon, Portugal. ACM. 39-45.

159

Kichenham, B.A., Travassos, G.H., Mayrhauser, A.V. and Schneidewind, N. (1999).

Towards an Ontology of Software Maintenance. Journal of Software

Maintenance: Research and Practice. 11:365-389.

Lazaro, M. and Marcos, E. (2005). Research in Software Engineering: Paradigms

and Methods. Proceedings of the 17th International Conference on Advanced

Information System (CAiSE’05), Porto, Portugal, June 2005.

Lingampally, R., Gupta, A., Jalote, P. (2007). A Multipurpose Code Coverage Tool

for Java. Proceedings of the 40th Annual Hawaii International Conference on

System Sciences, IEEE Computer Society. 261b, 2007.

Li, Y., Li, J., Yang, Y., and Li, M. (2008). Requirement-Centric Traceability for

Change Impact Analysis: A Case Study. In Change, Q. Wang, D. Pfahl, and

D. M. Raffo, eds. (Springer-Verlag), pp. 100-111.

Liu, S., Chen, Y. (2008). Model-Based Software Testing. Journal of Systems and

Software. Volume 81, Issue 2, February 2008, Pages 234–248.

Lormans, M., Deursen, A.v. (2005). Reconstructing Requirement Coverage Views

from Design and Test using Traceability Recovery via LSI. TEFSE 2005.

Long Beach, California, USA. ACM 2005.

Lyu, M.R., Bellcore, Horgan, J.R., London, S. (1994). A coverage analysis tool for

the effectiveness of software testing. Reliability, IEEE Transactions. Dec

1994. Volume: 43, Issue: 4. 527-535.

Maletic, J.I., Collard, M.L., Simoes. (2005). An XML Based Approach to Support

the Evolution of Model-to-Model Traceability Links. Proceedings of 4th

International Workshop on Traceability in Emerging Forms of Software

Engineering (TEFSE'05, Long Beach, California, November 8, 2005.

Marcus, A., Xie, X., Poshyvanyk, D. (2005). When and how to visualize traceability

links? Proceedings of the 3rd international workshop on Traceability in

160

emerging forms of software engineering, TEFSE '05, Long Beach, California,

November 8, 2005, 56 - 61.

Marick, B. (1985). The Craft of Software Testing, Subsystem testing Including

Object-Based and Object-Oriented Testing. Prentice-Hall.

Munson, E.V., Nguyen, T.N. (2005). Concordance, conformance, versions, and

traceability. Proceedings of the 3rd international workshop on Traceability in

emerging forms of software engineering, TEFSE '05. Long Beach, California,

November 8, 2005, 62 - 66.

Myers, G.J. (1979). Art of Software Testing. John Wiley & Sons, Inc., New York,

NY, 1979

Najumudheen, E. S. F., Mall, R. and Samanta, D. (2011). Test coverage analysis

based on an object-oriented program model, Journal of Software

Maintenance and Evolution: Research and Practise, 2011, 23:465–493.

Neumuller, C., Grunbacher, P., Automating software traceability in very small

companies: A case study and lessons learned, in ASE’06. IEEE CS, 2006,

145–156.

Ntafos, S. (1998). A Comparison of Some Structural Testing Strategies. IEEE

Transaction, Software Engineering, Vol.14, No.6, June 1988, 868-874.

Oliveto, R., Antoniol G., et. al. (2007). Software Artefact Traceability: The Never-

Ending Challenge. Proceeding of the the 23rd International Conference on

Software Maintenance. Paris, France. IEEE Computer Society, Paris, Oct 2-5,

2007.

Omar, S.F, Ibrahim, S. (2009). A Preliminary Study on Finding a Tool That Uses

Software Traceability Approach to Support Test Coverage. Proceeding of the

5
th

 Postgraduate Annual Research Seminar. PARS’09. UTM, Skudai,

Malaysia.

161

Omar, F. and Ibrahim, S. (2010). Designing Test Coverage for Grey Box Analysis.

Proceeding of the IEEE 2010 10th International Conference on Quality

Software (QSIC2010). Zhangjiajie, China, 14-15 July 2010. 53-356.

Omar, F and Ibrahim, S. (2011). A Requirement Based Test Coverage Analysis using

Software Traceability Approach. International Journal of Information

Technology & Computer Science (IJITCS). ISSN (Online) : 2091 – 1610.

Pierce, R.A. (1978). A Requirements Tracing Tool. ACM Software Engineering

Notes. Nov 1997, 67-71.

Prather, R.E. (1984a). An Axiomatic Theory of Software Complexity Measure. The

Computer Journal, 27(4):340-347.

Prather, R. E. (1984). Theory of Program Testing – An Overview. Bell System

Technical Journal, Vol. 62, No. 10, 1984, pp. 3073–3105.

Rapps, S. , Weyuker, E.J. (1985). Selecting software test data using data flow

information. IEEE Transactions on Software Engineering, 11:367 – 375.

Robson, C. (2002). Real world research: A resource for social scientists and

practitioner-researchers. Wiley, Oxford: Blackwell, UK.

Rochimah, S., Wan Kadir, W. M.N., Abdullah A.H. (2007). An Evaluation of

Traceability Approaches to Support Software Evolution. Proceeding of the

International Conference on Software Engineering Advances (ICSEA 2007).

IEEE.

Roper, M. (1994). Software Testing. London, McGraw-Hill Book Company.

Runeson, P., Höst, M. (2009). Guidelines for conducting and reporting case study

research in software engineering. Empir Software Eng. 14: 131-164.

162

Seaman, C. B., (1999). Qualitative Methods in Empirical Studies of Software

Engineering. IEEE Transactions on Software. 25(4):557–572.

Seo, K.I, Choi, E.M (2006). Comparison of Five Black-box Testing Methods for

Object-Oriented Software. Proceedings f the Fourth International

Conference on Software Engineering Research, Management and Application

(SERA’06).

Tekinerdogan, B., Hoffman, C., Aksit, M., (2007). Modeling traceability of concerns

in architectural views. Proceedings of the 10th international workshop on

Aspect-oriented modeling, AOM '07. 49 - 56.

Tonella, P. (2004). Evolutionary testing of classes. Proceedings of the 2004 ACM

SIGSOFT international symposium on Software testing and analysis ISSTA

'04.

The Independent. (2012). Facebook v Google: The tech tug of war. Saturday, 17

March, 2012. http://www.independent.co.uk/life-style/gadgets-and-

tech/news/facebook-v-google-the-tech-tug-of-war-7575934.html

The Star (2010). MSTB sets up RM11mil software testing lab. Steven Patrick.

Wednesday April 7, 2010. http://thestar.com.my/news/story.asp?file=

/2010/4/7/technology/20100407161544&sec=technology

Whalen, M.W, Rajan, A., Heimdahl, M.P.E, Miller, S.P. (2003). Coverage Metrics

for Requirements-Based Testing. ACM. ISSTA’06, July 17–20, 2006,

Portland, Maine, USA.

Wikipedia. (2009). http://en.wikipedia.org/wiki/Code_coverage

Woodward, M.R., Hedley, D.(1980) and Hennell, M.A., Experience with Path

Analysis and Testing of Programs. IEEE Transactions on Software

Engineering, May 1980, Vol. SE-6, No. 3, 278-286.

163

Yin, R. K. (2003). Case study research: Design and methods (3rd ed.). Thousand

Oaks,CA: Sage.

Zhou, x., Huo, Z., Huang, Y., Xu, J. (2008). Facilitating Software Traceability

Understanding with ENVISION. IBM China Research Lab

