
Adaptive Policy-based Approach for Static and Dynamic Policy

Conflict Detection

Abdelhamid Abdelhadi Mansor1, Wan M.N. Wan Kadir2, Toni Anwar3, Hidayah Elias4
1
Department of Computer Sciences, Faculty of Mathematical Sciences, University of Khartoum,

Sudan

2,3,4
 Software Engineering Department, Faculty of Computer Science and Information System,

Universiti Teknologi Malaysia, Malaysia

E-mail: 1abhamidhn@gmail.com, 2wnasir@cs.utm.my, 3tonianwar@utm.my, 4shahlida@gmail.com

ABSTRACT

Policy-based approach has been mostly

acknowledged as a methodology that separates

the rules governing the behavior of a system

from its functionality. It provides the ability to

(re-)configure differentiated services networks so

that desired Quality of Service (QoS) goals are

achieved, by considering administratively

specified rules. Moreover, it promises to reduce

maintenance costs of information and

communication systems while improving

flexibility and runtime adaptability. This paper

presents a brief description on the properties of

the most prominent approaches, identifying their

advantages and disadvantages. Some evaluation

criteria have been used to determine our research

direction. We strongly believe that the results

presented in this paper may provide some

foundations to develop our framework.

Furthermore, the proposed framework depends

on static and dynamic analysis to reduce

potential errors and avoid potential conflicts.

Keywords—Policy-based, Policy conflict, Static

Analysis, Dynamic Analysis, Adaptive Systems

1. INTRODUCTION

A policy [1] is represented as a means to

control when a managed object translated to

a new state. The subject of a policy specifies

the human or automated managers to which

the policies apply. The target of a policy

specifies the actions to be performed.

Domains are a means of grouping objects

and are similar to file system directories [2].

The subject or target of a policy is expressed

as a domain of objects and the policy applies

to all objects in the domain; so a single

policy can be specified for a group of

policies. This helps to cater for large-scale

systems in that it is not necessary to define

separate policies for individual objects in the

system, but rather for groups of objects.

Policies can be classified into access-

control, obligation, goal-based and meta-

policies based on their purpose. Access

control policies specify what actions entities

can or cannot perform in a system [3]. This

type is further classified into Authorization

policies, which define what activities a

member of the subject domain can perform

on the set of objects in the target domain [4].

Delegation policies, which transfer access

rights from one entity to another, and

Information filtering policies which

implement privacy by data obfuscation. For

example, the location information of a

mobile node can be reported with lesser

accuracy to prevent the exact position from

being revealed using information filtering

policies.

Obligation policies specify what actions

entities must or must not perform in a system

[3]. Moreover, they are used for fault and

configuration and file system management,

and so on. Goal-based policies are used to

specify the final system state that should be

reached from a given state, and meta-

policies, which guide the behavior of the

management system. Furthermore, they are

used to modify policies, resolve conflicts

dynamically and change various parameters

of the management system.

Human error is one obstacle to accurate

access-control policies; the policy authors

who assign and maintain these policies are

277

mailto:abhamidhn@gmail.com
mailto:2wnasir@cs.utm.my
mailto:3tonianwar@utm.my
mailto:shahlida@gmail.com

prone to making specification errors that lead

to incorrect policies. Access-control policies

consist of a set of rules that dictates the

conditions under which users will be allowed

access to resources. These rules may conflict

with each other.

This paper discusses the advantages and

disadvantages of the most prominent

approaches and presents a brief description

on the properties. Some evaluation criteria

have been used to determine our research

direction.

The rest of this paper is organized as follows.

Section 2, classifies conflict between

policies. Section 3, discusses the most

prominent approaches on policy-based

approach. Section 4 introduces explanation

on the criteria used in the evaluation. In

Section 5, we discuss the outcome of the

evaluation result. Section 6 briefly presents

the proposed framework. In Section 7, we

present our conclusions and plans for the

future work.

2. THE CONCEPT OF POLICY

CONFLICT

Conflicts may arise in the set of policies and

also may arise during the refinement process,

between the high-level goals and the

implementable policies [5]. For example an

obligation policy defines an activity a

manager must perform but there is no

authorization policy to permit the manager to

perform the activity. The system must have

to cater for conflicts such as exceptions to

normal authorization policies. For instance,

in a large distributed system there will be

multiple human administrators specifying

policies which are stored in distributed

policy servers. Conflict detection between

management policies can be performed

statically for a set of policies in a policy

server as part of the policy specification

process or at run-time [6], [7].

Conflicts between policies can be classified

into four broad categories [8]. Each category

may present itself either statically or

dynamically. First, internal policy conflict,

occurs when there is incompatibility between

policies which are assigned to single roles,

second, external policy conflict, occurs when

combining roles which in isolation of each

other present no conflict, but contain policies

which in co-existence are in conflict. Third,

policy space conflict, occurs when more than

one policy space manage the same set of

subjects and attempt to enforce various and

conflicting policies over them, and fourth

role conflict, expected when a user obtains a

set of incompatible role assignments.

Policy-based approach uses policies to

govern their behavioral choices whilst

satisfying the goals of the system, in addition

to specify and enforce QoS management in

distributed systems. Furthermore, it provides

flexibility, adaptability and support to

automatically assign network resources [9].

A policy-based management system must

provide guarantees when multiple rules need

to be enforced concurrently, so that the

system behaviour is predictable. However,

existing policy-based management systems

based on Event Condition Action (ECA)

rules do not contain specifications of actions

required for reasoning and so do not provide

guarantees which can lead to unpredictable

system states [10].

3. RELATED WORKS

Many works on policy-based approach

discussed policy conflicts using various

techniques such as static analysis to reduce

potential errors [11], [12], [13], [14], [15],

[16] and dynamic analysis to detect and

resolve potential conflicts [12], [16], [17], a

verification of a policy-conflict process in

[12], [16], and a system scalability discussed

in [13].

Shiva [12] proposed an extended model of

Event-Condition-Action (ECA) called ECA-

Post-condition to enable developers and

administrators to annotate actions with their

effects. The ECA-P model allows deducing

that action, which may conflict based on

conflicting post-condition; furthermore the

framework also uses static and dynamic

conflict detection techniques to detect failure

in policy execution by using post condition

to verify successful completion of policy

actions. However, Policy actions may not

execute to completion due to various reasons

such as changing active space configuration,

device and component failure or software

errors.

278

Wu et al [14] introduced dynamic analysis

mechanism to ensure consistency among the

policies enforce, they used Event Calculus

(EC) in the policy analysis to provide a

dynamic policy conflict analysis to detect

and control dynamic conflicts in trust

services for federations. However, their work

does not take targets constraints into account,

while some of these conflicts are caused by

overlapped elements. Davy et al. [11]

presented an efficient policy selection

process for policy conflict analysis to

improve the performance depending on the

nature of the relationships between deployed

policies. Their process targets pre-

deployment identification of potential

conflicts between a modified or newly

created policy and already deployed policies.

They use a tree based data structure to

reduce the number of comparisons and

therefore reduce runtime complexity in

subsequent iterations by maintaining a

history of previous policies comparisons.

Their conflict analysis algorithm initiates a

relationship pattern matrix between

candidate and deployed policies, and

matches these patterns against a conflict

signature. However, this approach is not

intelligent and repeats over all deployed

policies to ensure that the deployed policy

does not cause a potential conflict. Also the

algorithm is still limited to detect only

conflicts that can be represented as

relationships among policies.

In another related work [13] Davy et al.

produce a policy conflict analysis approach

makes extensive use of information models

and ontologies to make it a flexible tool to

analyze for conflict in a range of

applications. Furthermore, they introduce a

novel pre-analysis policy selection to reduce

the number of more comprehensive policy

analysis operations required. Similar like

previous work they use heuristics and

historical information from previous

comparisons to eliminate group of policies

from analysis. Moreover, they separate the

definition of a policy conflict from the

definition of the conflict analysis algorithm;

thereby the approach is extensible and

efficient. However, this algorithm needs

further improvement; because it eliminates

policies instead of refine them. Eliminating

some policies does not achieve the system

goals and reduce the scalability.

Mohan et al [15] proposed an attribute-based

authorization framework that supports

changing the rules and policy combination

algorithm dynamically based on contextual

information. The framework eliminates the

need to re-compose the policies when the

combination algorithm changes. Moreover,

it provides a method to add and remove

specialized policies dynamically, in addition

to its capability to reduce the set of potential

target matches, thus increasing the efficiency

of the evaluation mechanism. Furthermore,

to resolve the conflicts they use Policy

Combination Algorithms (PCA), these

algorithms take the authorization decision

from each policy as input. However, in a

highly dynamic environment these

algorithms will lead to reduce the

performance.

Khakpour et al. [16] presented an analysis

using Rebeca [18] which is an actor-based

language for modeling concurrent

asynchronous systems which allows to

model the system as a set of reactive objects

called rebecs, interacting by message

passing. In order to introduce this, a new

classification of conflicts may occur during

governing policies. They also proposed

Linear Temporal Language LTL [19], which

expresses each type of conflicts and enables

to automate detection of conflicts patterns to

classify conflict types, thereby to automate a

significant portion of policy analysis process.

Moreover, they introduced a number of

correctness properties of the adaptation

process in the context of their models. Then,

they used static analysis of adaptation

policies in addition to model checking

technique to verify those properties.

Whenever an event which requires

adaptation occurs, relevant managers are

informed. However, the adaptation cannot be

done immediately and when the system

reaches a safe state, the manager switches to

the new configuration. While their system

includes many different managers each

manager uses a set of policies to govern

system sensors and actors. There may be

more than an event, which require

279

adaptation, occur simultaneously, and this

will reduce the system scalability.

Ma et al. [20] proposed conflict detection

and resolution in workflow management

systems (WFMSs) approaches to help

workflow designers in constructing a

flexible, consistent workflow authorization

schema. In this work a new type of

constraint, context constraint, is proposed

since context constraints can meet the

complicated requirements of security

policies in WFMSs. Moreover, they define

an effective set of rules to detect and

resolution of static and dynamic conflict for

authorization policies in WFMSs.

Furthermore, they classify conflicts into two

broad categories i.e. (i) policy-policy

conflicts which occur when two or more

authorization policies are considered

incompatible, and (ii) policy constraint

conflicts which occur when the performance

of two or more authorization policies will

lead to situations that are prohibited by other

constraints (e.g., separation-of-duty

constraints) in the system. However, their

works do not put into account conflicts in

authorization policy itself, in addition to

policies are considered to assign by different

administrators.

Table 1 shows a simplified view of the

comparison between the presented works,

the comparison based on the criteria defined

in the following section.

4. EVALUATION CRITERIA

4.1. Dynamic Conflicts Analysis

Dynamic analysis makes use of meta-

information at runtime to detect and control

potential conflicts among different policies

which cannot be detected during the

compilation time [17].

4.2.Static Conflicts Analysis

Static analysis is used by the policy compiler

to detect specification errors and to reduce

run-time conflicts which occurs among

rules; whose event and condition parts can

be statically matched; it may not be able to

evaluate policy constraints, as conflicts may

depend on the run-time state of the system

[12].

4.3.Policy Decoupling

Decoupling of policies refers to decompose

long policies into several policy segments or

a small functional policy unit which

describes a complete behavior. Each segment

contains an object set that describes an

action's target, a subject set to identify the

action's executor, an action set which

represents a temporary binding between

subjects and objects, and an additional
related information set [17].

4.4.Policy Classification

Classification of conflicts is needed during

development time and completely depends

on the type of actions .According to the

informal definition of conflicts, the

classification of various conflicts may exist

among interacting governing policies.

Rebeca language [16] is used to introduce a

new classification of conflicts, in addition to

providing temporal specification patterns to

discover such conflicts.

4.5.Policies Combination

A combination of Policies refers to

combined several segments or units of

policies before enforcing them together.

Moreover, it is very important when there

are multiple policy authors defining policies

for a given system [11]. The combined

actions of the policies will result in the

system reaching different final states

depending on the order of execution of these

actions.

4.6.Conflict Avoidance

Avoidance is a method that deals with

conflict which attempts to avoid directly

confronting the issue at hand [21]. Such

methods can include changing the subject,

putting off a discussion until later, or simply

not bringing up the subject of contention.

However, conflict avoidance method is time

consuming and costly, thus it is better to use

as a temporary measure.

4.7.Correctness of Adaptation

Correctness refers to the verification, that a

software system meets a user’s needs, also to

ensure that we are building the product right

and the software should conform to its

280

http://en.wiktionary.org/wiki/conflict

specification. The verification system checks

if the condition of an action is true after the

action completes execution [18]. Moreover,

the verification system determines the failed

propositions and forwards them to the

exception generation system along with the

enforcement context of the failed rule. The

software inspections which concern with

analysis of the static system representation to

discover problems, is defined as dynamic

verification, and a software testing that

concerns with exercising and observing

product behaviour defined as a static

verification [12].

4.8.Check the System Scalability

Scalability is important for an adaptive

software to prevent a difficult software

evolution [22]. It refers to the capability of a

system to increase total throughput under an

increased load when resources (typically

hardware) are added. Moreover, it indicates

its ability to either handle growing amounts

of work in a graceful manner or to be

enlarged [23].

5. OUTCOME OF THE

COMPARATIVE EVALUATION

The simplified results in Table 1 shows that

all selected approaches covered dynamic

analysis to detect conflicts at runtime, while

conflicts detected dynamically, during

runtime, are resolved by resolution policies.

However, detecting conflicts statically are

resolved by the user before the enforcement

of policies. Some approaches used static

analysis to reduce the potential errors. It is

very important to use static analysis, because

after a policy is compiled, detected conflicts

are resolved by the user before generating

the policy object file. Detecting conflicts

among rules are done by matching these

rules events and conditioning statically; to

determine matching it is required to compare

event symbols and types of the rules

parameters. Furthermore, dynamic analysis

during runtime is required since all rule

conflicts cannot be detected during the static

analysis done at the compilation stage. After

that, rules must be combined to use dynamic

conflict technique to detect potential

conflicts during run time.

From the shown results in the table, it is

clear that current works leave some gaps

between the used techniques and conflict

specification. To cover these gaps, the

relation between different criteria such as:

combination and decoupling of policies,

classification of rules, scalability, correctness

and conflict avoidance must be taken into

account, since the classification of rules

occurs after decoupling long policies into

segments, to match them statically.

However, the combination of these segments

into policies is required before the final

evaluation.

Obviously there is a limitation in developing

policy-based management models that do not

provide ensuing support to detect and resolve

conflicts. While a considerable attempt at

static conflict detection has been presented in

[5], the very complex and crucial issue of

dynamic conflict detection in policy-based

management has gone largely unresolved.

Moreover, current research has revealed that

there is still a large class of policy conflict

which simply cannot be determined

statically.

Static and dynamic conflicts are considered

as two classes of conflict which need to be

understood and independently managed [8].

Furthermore, the distinction between these

two classed is important; as detecting and

resolving of conflict can be computationally

intensive, time consuming and hence, costly

and is most preferably done at compile-time.

However, a dynamic conflict is quite

unpredictable, in that it may, or may not;

proceed to a state of a realized conflict. This

class of conflict must be detected at run-

time.

Our research direction is to develop an

adaptive architectural framework to avoid

potential errors and policy conflicts. The

main effort to develop the framework

completely depends on checking system

scalability in order to improve the system

adaptability.

281

TABLE 1: A comparative of Policy-Based Approaches

Criteria

Approaches

ECA-P

Dynamic

Policy

Conflict

Analysis

Policy

Conflict

Analysis

for

Autonomic

Network

An Attribute-

based

Authorization

Automatic

Policy

Conflict

Analysis

PobSAM

Conflict

detection

and

resolution

in

WFMSs

Dynamic Conflicts
Static Conflicts
Policy Decoupling
Policy

Classification

Policies

Combination

Conflict Avoidance
Check the System

Scalability

Correctness of

Adaptation

6. THE PROPOSED FRAMEWORK

The proposed framework [24] provides

support for both, behavioral and structural

changes which cause the issue of policies to

govern the system. In administrative terms,

the framework considers five main

components of the framework are shown in

Fig. 1. below which view a high level of the

framework. Each component of the

framework has a specific responsibility;

 Policy Refinement

This component depends on the

application and is carried out by the

administrator developer. Consequently

this component is carried out during the

design and implementation of the system.

This will reduce the potential errors, but

during execution of policy, this activity

which is intended to check each type of

conflict and uses the priority of execution

rules, elimination rules or change them

according to the request, is a part of this

activity role [25].

 Dynamic Conflict Resolver
Combination and evaluation of policies

is considered as a part of this component.

Since each policy gives a single decision,

the policy combination algorithms

(PCAs) combine these decisions into a

single policy decision. PCAs use to

resolve conflicts during runtime. These

algorithms take the authorization

decision from each policy as an input and

apply some standard logics to come up

with a single decision. There is a need to

include algorithms such as these as PCAs

in authorization languages to provide

more functionality and flexibility in

defining policies.

 Policy Verification
Verification depends on decoupling of

the adaptation logic from its functional

logic (its business logic). Thus, an

adaptation layer can be verified

independently from the actor layer

provided. Moreover, policy verification

verifies the action and purpose specified

by the user; in PobMC we assume that

what is stated by the user is correct.

 Context Monitor
The monitoring of the operating

environment helps to detect structural

and behavioral changes. For instance,

sensors and actors state malfunction of

devices or new devices in addition to the

number of working sensors and the state

of non-working. Collected information

about managers and their states, which

are stored in the variable states, helps

managers to govern system changes and

coordinate their tasks. The Context

Monitor allows users to register and log

in and query the system for resources

using various APIs and receive requests.

Moreover, to check if the detected event

is allowed or denied based on the setup

time information that it has received

282

from the policy analyzer. If allowed, it

checks if there is an obligation mandated

by the relevant rule, then the Context

Monitor informs the Self-Coordinator

(which is the obligation enforcement

component in PobMC), the Self-

Coordinator marks the resource item in

the corresponding file, based on the

resource type. Subsequently, the Self-

coordinator informs the request Context

Monitor on the ‘Allow’ or ‘Deny’ ruling,

as applicable. The Context monitor then

displays the permitted results to the user.

In addition to the mentioned functions,

Context monitor observes the execution

of obligation over the runtime periods,

since some obligations could be defined

to take effect much later in time than the

time of resource access.

 Self-Coordinator Component

This component is the core of the system

which coordinates all the activities

during runtime. Each policy is checked

first by this process before triggering

execution of processing. Moreover, any

task taken by each process must be

checked in this process in order to take

the right decision.

The self-coordinator determines the

triggered rules, and uses the

ActionCondition checker to test the

action and rule condition expressions. If

a condition evaluates to be true the rule is

added to the policy live list.

Once the static conflicts have been

detected and resolved, the policy

compiler compiles the policies including

the resources constraints, then generates

a policy object file. The policy loader

loads the generated object file into the

Self-coordinator component before it is

evaluated to detect and resolve potential

dynamic conflicts.

A library of actions stored in Action

Library can be invoked from the action

part of the policy rule. When an event

occurs in a situation where condition is

true, then the action is a call to a method

in a library of actions where each action

is annotated with a post-condition by the

programmer. These post-conditions of

the actions are used for a conflict

detection. Event Receiver is responsible

for subscribing and receiving events

since they occurred and have been

detected by the Context Monitor. Then

Event Receiver verifies the types of the

parameters in the events and notifies the

self-coordinator of the event occurrence

along with the parameters.

283

Figure 1. High level view of the adaptive framework

7. CONCLUSION AND FUTURE WORK

A comparison based on important techniques

and criteria used to address the weaknesses

of policy-based approaches is presented in

this paper. The comparison outlined the main

aspects of the current research in a policy

conflict, which requires a further

investigation to address these aspects. One

of the main efforts is to identify the

opportunities for improvement based on

current approaches. The improvement will

be implemented by the proposed framework.

We showed that existing policy-based

systems do not reason about concurrent rule

enforcements and define no enforcement

ordering. Furthermore, they do not verify an

action execution and assume that a rule

enforcement was successful. In addition to

all these drawbacks most of previous works

do not thoroughly investigate the effects of

different policies. Based on these facts,

policy-based systems are still suffering from

many weaknesses such as, the scalability

which needs to be checked when policies are

assigned by different administrators, a

previous information is needed to avoid

potential conflicts, and there is a need for

effective tools to verify the adaptability of

policy-based systems before during and after

adaptation.

We have proposed an adaptive framework

based on Event-Condition-Action (ECA)

rules for policy-based management

distributed system. The proposed framework

uses appropriate mechanisms to detect

potential conflicts by decoupling and

classifying policies, in order to classify each

type of conflicts, in addition to the ability to

resolve conflicts mechanism during runtime.

Our future works will concentrate on

discussing static and dynamic analysis

approaches that make extensive use of

information models and ontologies to make

it flexible and scalable enough to be used as

a tool to analyze for a conflict in a range of

applications. We will use heuristics and

historical information from previous

comparisons to aid in the elimination of

groups of policies from analysis.

8. ACKNOWLEDGEMENT

The authors would like to express their

deepest gratitude to Universiti Teknologi

Malaysia (UTM) for their financial support

Self-Coordinator

Event receiver

Policy

Policy

Refinement

Dynamic

Resolver

Policy Compiler Policy Loader Action Library

Policy

Repository

ActionCondition

Checker

Evaluator

Policy Verification

Functional

Changes

Non-functional

Changes

Context

Monitor

284

under Research University Grant Scheme

(Vot number Q.J130000.7128.01H13).

9. REFERENCES

1. Strassner, C.J. Policy-based Network

Management, Solutions for the Next

Generation. Elsevier, Morgan Kaufmann

Publishers. ISBN: 1-55860-859-1, (2004).

2. Sloman, M. and Twidle, K. Domains. (1994). A

Framework for Structuring anagement Policy.

In Network and Distributed Systems

Management, Addison Wesley, (1994), pp.

433–453.

3. Sloman, M. Policy driven management for

distributed systems. Journal of Network and

Systems Management, (1994),pp.333–360.

4. Nicodemos, C. Damianou. A Policy Framework

for Management of Distributed Systems. PhD

dissertation, Imperial College, London, (2002).

5. Lupu, E., Sloman M. Conflicts in Policy-based

Distributed Systems Management, IEEE

Transactions on Software Engineering – Special

Issue on Inconsistency Management ,(1999).

6. Sibley, E., Wexelblat R.L., Michael J.B.,

Tanner M.C., and D.C. Littman. The Role of

Policy in Requirements Definition. In IEEE

International Symposium on Requirements

Engineering, IEEE Computer Society Press,

Los Alamitos, California, (1993), pp. 277-280.

7. Michael, J., Sibley E., and Littman D.

Integration of Formal and Heuristic Reasoning

as a Basis for Testing and Debugging Computer

Security Policy. In Proceedings of the New

Security Paradigms Workshop, IEEE Computer

Society Press, Los Alamitos, California, (1993),

pp. 69-75.

8. Dunlop, N., Jadwiga Indulska, Kerry Raymond,

Dynamic ConJlict Detection in Policy-Based

Management Svstems , IEEE Enterprise

Distributed Object Computing Conference

(EDOC'2002), Lausanne, Sept (2002).

9. Wang, G., Alice C., Haiqin W., Yichi P., Casey

F., Stephen U. A Policy-Based Approach for

QoS Specification and Enforcement in

Distributed Service-Oriented Architecture,

Proceedings of the IEEE International

Conference on Services Computing (SCC’05),

(2005).

10. Shiva, C.-S. Policy-based Pervasive Systems

management Using Specification-Enhanced

Rules, Dissertation for the degree of Doctor of

Philosophy in Computer Science, University of

Illinois at Urbana-Champaign, (2006).

11. Davy, S. Jennings, B. Strassner, J. Efficient

policy conflict analysis for autonomic network

management. 5th IEEE Workshop on

Engineering of Autonomic and Autonomous

Systems, EASe, March 31- April 4, 2008,

Belfast, Ireland, Inst. of Elec. and Elec. Eng.

Computer Society, (2008).

12. Shiva, C.-S. Anand Ranganathan and Roy

Campbell, An ECA-P Policy-based Framework

for Managing Ubiquitous Computing

Environments, Proceedings of the Second

Annual International Conference on Mobile and

Ubiquitous Systems: Networking and Services

(MobiQuitous’05), 0-7695-2375-7, IEEE,

(2005).

13. Davy, S. Jennings, B. Strassner, J. On

harnessing information models and ontologies

for policy conflict analysis. 2009 IFIP/IEEE

International Symposium on Integrated

Network Management, IM, June (1-5) 2009,

New York, NY, United states, IEEE Computer

Society, (2009).

14. Wu, Z. Liu, Y. Wang, L. Dynamic policy

conflict analysis in operational intensive trust

services for cross-domain federations. 1st

International Conference on Intensive

Applications and Services, INTENSIVE, April

(20-25) 2009, Valencia, Spain, Inst. of Elec.

and Elec. Eng. Computer Society, (2009).

15. Mohan Apurva, Douglas M. Blough, An

Attribute-based Authorization Policy

Framework with Dynamic Conflict Resolution,

Gaithersburg, MD, ACM ISBN, 978-1-60558-

895-7/10/04, (2010).

16. Khakpour, N. Khosravi, R. Sirjani, M. Jalili, S.

Formal analysis of policy-based self-adaptive

systems. 25th Annual ACM Symposium on

Applied Computing, SAC 2010, March(22- 26)

2010, Sierre, Switzerland, Association for

Computing Machinery (2010).

17. Wu, Z. and Y. Liu. Automatic policy conflict

analysis for cross-domain collaborations using

semantic temporal logic. 2009 5th International

Conference on Collaborative Computing:

Networking, Applications and Worksharing,

CollaborateCom, November (11-14) 2009,

Washington, DC, United states, IEEE Computer

Society (2009).

18. Sirjani, M., A. Movaghar, A. Shali, and F. S. de

Boer. Modeling and veri_cation of reactive

systems using Rebeca. Fundamamenta

Informaticae, (2004), pp.385-410.

19. Manna, Z. and Pnueli A. The Temporal Logic

of Reactive and Concurrent Systems:

Specification”. Springer-Verlag, (1992).

20. Ma, C. Lu, G. Qiu, J. Conflict detection and

resolution for authorization policies in

workflow systems. Journal of Zhejiang

University-Science, (2009), pp.1082-1092.

21. Bacal, Is Conflict Prevention The Same As

Conflict Avoidance,

www.work911.com/conflict/carticles/conav.

htm

22. A. Mansor and W. M. N. Wan-Kadir, A

Comparative Evaluation of State-of-the-Art

Approaches in the Design of an Adaptive

Software System. Kuala Lampur ASME Press,

(2011).

285

http://www.work911.com/conflict/carticles/conav.htm
http://www.work911.com/conflict/carticles/conav.htm

23. Bondi André B. Characteristics of scalability

and their impact on performance, Proceedings

of the 2nd international workshop on Software

and performance, Ottawa, Ontario, Canada,

ISBN 1-58113-195-X, (2000), pp. 195 – 203.

24. Mansor, A. W. M. N. Wan-Kadir, Elias, H.

Policy-based Approach for Dynamic

Architectural Adaptation: A Case Study on

Location-Based System, MySEC011, (12-14)

December (2011).

25. Mansor, A. Wan M.N. Wan Kadir, Toni Anwar

& Elias, H. Policy-based Approach to Detect

and Resolve Policy Conflict for Static and

Dynamic Architecture Journal of Theoretical

and Applied Information Technology, 31st

March (2012).

286

View publication statsView publication stats

http://en.wikipedia.org/wiki/Special:BookSources/158113195X
https://www.researchgate.net/publication/230771391

