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ABSTRAK 

 

 

 

Transformasi hujan kepada kadaralir melibatkan banyak komponen hidrologi 

yang kompleks dan pelbagai data hidrologi serta maklumat topografi. Data-data ini 

adalah sukar diperolehi dan tidak konsisten.  Oleh itu, model tangki hidrologi dan 

artificial neural networks yang hanya memerlukan data hujan dan kadaralir telah 

dikemukakan. Kawasan kajian terpilih adalah Bedup Basin, Sarawak, Malaysia, satu 

tadahan luar bandar di dalam kawasan lembap. Kaedah global optimization terbaru 

yang dinamakan particle swarm optimization (PSO) telah dicadangkan dan 

dibandingkan dengan shuffle complex evolution dan genetic algorithm untuk 

mengkalibrasi parameter model tangki secara automatik.  PSO juga dihibridkan 

dengan neural networks untuk membentuk particle swarm optimization feedforward 

neural network (PSONN) demi mengatasi masalah kadar penumpuan yang lambat 

dan masalah pemerangkapan pada local minima. Prestasi PSONN kemudiannya 

dibandingkan dengan multilayer perceptron dan recurrent networks yang 

menggunakan backpropagation algorithm. Prestasi model-model ini diukur dengan 

pekali korelasi (R) dan pekali Nash-Sutcliffe (E2).  Umumnya, prestasi artificial 

neural networks adalah lebih baik daripada model tangki. Keputusan kalibrasi model 

tangki mencerminkan kaedah PSO adalah yang terbaik berdasarkan keteguhannya, 

kebolehpercayaan, kecekapan, ketepatan dan kebolehubahan paling kecil dalam 

boxplots. Shuffle complex evolution merupakan kedua terbaik dan ketiga terbaik 

adalah genetic algorithm untuk simulasi kadaralir secara harian dan menurut jam. 

Antara multilayer perceptron, recurrent dan PSONN, recurrent network 

meramalkan kadaralir secara harian dan menurut jam dengan ketepatan paling 

tinggi, diikuti kedua terbaik oleh multilayer perceptron dan akhirnya PSONN. 

PSONN telah membuktikan keupayaannya untuk mensimulasikan kadaralir harian 

dan menurut jam dengan ketepatan yang boleh diterima.  Kajian ini membuktikan 

kaedah kecerdikan buatan terutamanya PSO telah menawarkan satu kaedah yang 

lebih berkesan, mudah, murah, fleksibel dan sesuai untuk memodelkan proses 

ramalan banjir.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1    Background of Study 

 

 

Rainfall-runoff relationships are widely reported by many hydrologists as the 

most complex hydrologic phenomena to comprehend due to the tremendous spatial 

and temporal variability of watershed characteristics and rainfall patterns (Tokar and 

Markus, 2000). The transformation of rainfall to runoff for streamflow forecasting 

remain important to the hydrologists for the purpose of water supply, flood control, 

irrigation, drainage, water quality, power generation, recreation, aquatic and wildlife 

propagation. Such transformation involves many highly complex components 

including interception, depression storage, infiltration, overland flow, interflow, 

percolation, evaporation and transpiration.  

 

 

In general, various types of methods have been used in runoff estimation 

including conceptual and statistical models. Most of the research studies found that 

none of these methods can be considered as a single superior model (Irwan et al., 

2007). Owing to the complexity of the hydrological process, the accurate runoff is 

difficult to be predicted using the linear recurrence relations or physically based 

watershed model. The linear recurrence relation model does not attempt to take into 
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account the nonlinear dynamic of hydrological process. The physically based 

watershed model also ignores the stochastic behavior underlying any hydrosystem.  

Besides, despite the application of deterministic models include all physical and 

chemical processes, the successful employment is restricted by a need for 

catchment-specific data and simplifications involved in solving the governing 

equations. It has been recognized that the application of time series methods may be 

complicated by non-stationary and non-linearity in the data, requiring experience 

and expertise from the modeller.  

 

 

Besides, the conventional models require a great detailed data such as 

topographical map, river networks and characteristics, soil characteristics, rainfall, 

runoff, temperature, interception, depression storage, overland flow, interflow, 

evapotranspiration, infiltration, percolation, antecedent moisture content for 

simulating runoff accurately (Imrie et al., 2000). Concurrently, runoff also depends 

on catchment topography, river network, river cross-sections, soil characteristics and 

antecedent moisture (Gautam et al., 2000). Moreover, the antecedent moisture is 

changing frequently and depends upon immediate hydrological and meteorological 

condition of the catchment. Often, these data are hard to obtain and not all the time 

available. The database may suffer from the problem of missing data due to the 

failure of gauging equipment. All these non-stationary and non-linearity of 

meteorological phenomena make the accurate estimation of runoff become very 

complex and difficult.  

 

 

Furthermore, the newly developed watershed hydrologic model required 

various types of data including hydrometeorologic, geomorphologic, agricultural, 

pedologic, geologic and hydrologic (Vijay and David, 2002).  . Some of these data 

can only obtained through latest technology such as remote sensing and space 

technology, digital terrain and elevation models, chemical tracers, and it is 

expensive to obtain these data through the latest technology. 
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This study is therefore, an attempt to develop rainfall-runoff using only 

rainfall and runoff data. Two hydrologic models are proposed, named as Hydrologic 

Tank model and Artificial Neural Networks (ANNs) model.  

 

 

The proposed hydrologic tank, one of the world famous surface water runoff 

analysis models, was developed by Sugawara and Funiyuki (1956).  Many 

hydrologists are using this model due to its simplicity of concept and computation 

while achieving forecasting accuracy comparable with more sophisticated models. 

Tank model is mainly applied to forecast flood levels (Huang et al., 2006; Sothea et 

al., 2006).  

 

 

Meanwhile, the proposed ANNs models are widely used as an efficient tool 

in different areas of water related activities. The natural behavior of hydrological 

processes is complex, non-linear and dynamic systems for which there are large 

amount of noisy data is appropriate for the application of ANNs method. ANNs had 

successfully applied in hydrologic modeling, such as for modeling of rainfall-runoff 

relationship (Hsu et al., 1995; Mins and Hall, 1996; Dawson and Wilby, 1998; 

Harun, 1999); water demand forecasting; rainfall forecasting; assessment of stream’s 

hydrologic and ecologic response to climate change (Roger and Dowla, 1994); 

sediment transport prediction (Poff et al., 1996); pier scour estimation (Tokar, 

1996); groundwater remediation (Markus, 1997) and stage-discharge relationship. 

The ANNs was also applied for prediction of carbon monoxide as one of primary air 

pollutants (Abbaspour et al., 2005), forecasting the mean monthly total ozone 

concentration (Bandyopadhyay and Chattopadhyay, 2007) and evaluating 

performance of immobilized cell biofilter treating hydrogen sulphide vapors (Rene 

et al., 2008). 
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1.2    Statement of the Problem 

 

 

A major difficulty in the application of tank model is related issue mainly 

faced by many researchers is the model calibration since most of these models 

involve a large number of parameters. These parameters usually obtained by 

calibration, not directly measured in field. The only method for tank model 

calibration in early days is using manual trial and error method. This method 

required much time and effort to obtain better results owing to the need of 

calibrating a large number of parameters in the model. The success of it depends on 

the expertise of the modeler with prior knowledge of the watershed being modeled. 

This tedious nonlinear structure calibration process sometime may produce 

uncertainty results due to the subjective factors involved. Therefore, there is a need 

to develop an effective and efficient automatic calibration procedure.  

 

 

Automatic calibration involves the use of a search algorithm to determine 

best-fit parameters. It is highly desirable as it is faster, less subjective and due to 

extensive search of parameter possibilities. Two important stages of calibration are 

parameter specification and parameter estimation. In parameter specification stage, 

the parameters that need to be adjusted are selected. In the parameter estimation 

stage, the optimal or near optimal values for the parameters are found (Sorooshian 

and Gupta, 1995). In this study, a new approach named as Particle Swarm 

Optimization (PSO) is applied to automatically search for optimal parameters in tank 

model. The results obtained is then compared with the one calibrated with famous 

Shuffle Complex Evolution (SCE) and Genetic Algorithm (GA) methods. 

 

 

Meanwhile, ANNs offer a relatively fast and flexible means of hydrologic 

modeling. When reviewed the application of ANNs in hydrology over the years, 

Coulibay et al. (2000) reported that 90% of the researches are using multilayer 

feedforward neural network (MLP) trained by standard backpropagation algorithmn  

(BPNN). However, according to Baldi and Hornik (1989), Mulenbein (1990), Sima 
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(1989) and Zweiri et al. (2003), although BPNN proved to be efficient in some 

applications, its convergence rate is relatively slow and often trap at local minima. 

 

 

BPNN learning basically is a hill climbing technique. The weights and biases 

for BPNN networks are trained using backpropagation technique, which involves 

performing computations backwards through the network. BPNN networks update 

weights and biases in the direction of the negative gradient.  Therefore, there is a 

risk of being trapped in local minima, where the network is stuck and another set of 

synaptic weight were exist for which the cost function is smaller than the local 

minimum in the weight space. This caused BPNN unable to terminate the learning 

process at a local minimum.  

 

 

Thus, neural network was proposed to couple with Particle Swarm 

Optimization (PSO) to form Particle Swarm Optimization Feedforward Neural 

Network (PSONN). PSONN was selected since the input pattern is propagated from 

the network input to the network output through feedforward pass. Weight and bias 

in PSONN that are represented by particles position, are updated using movement 

equation and velocity update equation for searching “pbest” and “gbest” values. The 

‘gbestparticle’ that represent the best set of weights and biases will be recorded. 

Thus, the feedforward pass in PSONN will ensure that the network will not stuck at 

local minima and only global minima will be obtained. The result obtained is then 

compared with Multilayer Perceptron Network (MLP) and Recurrent Network 

(REC). 
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1.3    Study Objectives 

 

 

The main aim is to explore and establish the methodology of daily and 

hourly rainfall-runoff modeling in a rural catachment using various artificial 

intelligence (AI) methods. The probabilistic automatic optimization techniques are 

applied. The specific objectives are outlined as follows: 

a) To investigate the feasibility and accuracy of the hydrologic tank model and 

ANNs model using only rainfall and runoff data. 

b) To develop the probabilistic automatic calibration method of the hydrologic 

tank models based on PSO, SCE and GA algorithms. 

c) To develop a rainfall-runoff model based on hybrid of PSO and ANNs 

algorithms. 

d) To evaluate and compare the performance of the proposed models applied in 

a rural catchment in humid region.  

 

 

 

 

1.4    Research Approach and Scope of Work 

 

 

The scope of this thesis is divided into two parts. The first part is to 

determine the best number of tanks to simulate runoff accurately for both daily and 

hourly simulation. Then the parameters for best number of tank determined 

previously were calibrated automatically using three GOMs named as PSO, SCE 

and GA techniques. These three GOMs techniques will evaluate the feasibility and 

accuracy of optimizing the 10 parameters in tank model automatically.  

 

 

The second part of work is developing the rainfall-runoff model using ANNs 

methods. Three types of ANNs network architecture were selected namely MLP, 
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REC and PSONN.  The feasibility and accuracy of the proposed MLP, REC and 

PSONN were tested and compared.  

 

 

The selected study area that can represent a rural catchment in humid  region 

is Bedup Basin, Sub-basin of Sadong Basin, Sarawak, Malaysia. At the end of the 

thesis, comparison and conclusion were conducted to determine the most suitable 

model, between tank model and ANNs model for modeling daily and hourly runoff 

on a rural catchment in humid region. The models performance are compared in the 

aspect of robustness, accuracy, complexity, computation time, flexibility, 

adaptability, efficiency and reliability. The best algorithm for calibrating tank model 

parameters for both daily and hourly runoff simulation was evaluated and 

determined. Finally, the capability of three ANNs investigated named as MLP, REC 

and PSONN to model daily and hourly runoff simulation were analyzed.     

 

 

 

 

1.5    Significance of the Study 

 

 

This study is important to develop a most suitable and appropriate rainfall-

runoff model using only rainfall and runoff data for rural catchment in humid region. 

It is a study related to prediction of runoff is definitely significant in Malaysia, 

where floods and droughts have great economic impacts. The data used is only 

rainfall and runoff as most of the hydrological stations in Sarawak are recording 

rainfall and water level only. The current numbers of rainfall stations throughout 

Sarawak are 283, and 58 for water level stations.  

 

 

The Sarawak government is planning to construct twelve mini hydro dams 

for supplying electricity power particularly in remote area, apart from the Bakun 

hydro dam, which is the biggest in Malaysia. The flood event occurs quite frequently 
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in several areas in Sarawak and it is believed that this is due to rapid development 

and climate change. Currently, the Hydrology and Water Resources Branch, 

Department of Irrigation and Drainage (DID), Sarawak is looking for a more 

accurate and reliable flood forecasting model. Therefore, there is an urgent need to 

develop a reliable and suitable daily and hourly rainfall-runoff model in Sarawak.  

 

 

Recognizing the role of DID in meeting its customer’s satisfaction in line 

with the Government’s directive, these newly developed rainfall-runoff models are 

able to forecast the daily and hourly runoff accurately in all the river basins. The 

accuracy of the hourly forecasting results are very important since it provides an 

early warning signal to the authorities to take the necessary flood preventive 

measures before the flood is occurring. Meanwhile, daily runoff simulation is 

important for designing water resources and reservoir projects. 

 

 

Generally, this research is part of the pro-active approaches that can be 

adopted by hydrologists and researchers to model rainfall runoff relationship using 

only rainfall and runoff data, particularly in humid region.  

 

 

 

 

1.6    Structure of the Thesis 

 

 

This thesis consists of six chapters. The first chapter presents the background 

of study, statement of problem, study objectives, research approach and scope of 

work, significance of study and structure of the thesis. Review of the runoff process 

for rural catchment, various types of hydrologic component models that developed 

throughout the years, review of the proposed rainfall-runoff model in this study 

named as hydrologic tank model and ANNs model, relevant past studies of 
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automatic calibration of tank model’s parameters and calibration of ANNs model are 

presented in Chapter 2. 

 

Chapter 3 presents the research methodology for this study. The selected 

study area, methodology for selecting best number of tanks, sensitivity analysis for 

parameters investigated, model development and validation for optimizing tank 

model’s parameters using PSO, SCE, GA approaches, model development and 

learning mechanism for MLP, REC and PSONN networks for both daily and hourly 

runoff simulation are discussed in Chapter 3.  

 

 

Results and discussion for daily runoff simulation for determining best 

number of tanks, sensitivity analysis for calibrated parameters, the calibration 

process and optimal results obtained for PSO, SCE, GA approaches, calibration 

process and optimal configuration for MLP, REC and PSONN networks for daily 

runoff simulation are presented in Chapter 4. A similar results and discussion for 

hourly runoff simulation are presented in Chapter 5. Finally, conclusions from the 

present study on the proposed models are summarized and recommendations for 

future studies are outlined in Chapter 6. 
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