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ABSTRACT 
 
 
 
 

Recently, many tall building structural systems have been innovated in order 
to reduce the building responses due to wind loading. However, there are no 
systematic study conducted on the effectiveness of the different tall building systems 
in minimizing the responses of the building due to wind load. The objective of this 
research is to study the effectiveness of five tall building structural systems: core 
wall, outrigger, belt wall, tube-in-tube and megacolumns in minimizing the building 
responses due to wind. Reinforced concrete buildings with 64 stories and the ratio of 
height to the breadth of 6:1 were analysed for their responses to wind load. The 
buildings that were analysed have five different structural systems. The natural 
frequencies and eigenvectors of the buildings in the along-wind, across-wind and 
torsional mode are computed by a structural engineering software. The along-wind 
responses are determined by employing the procedures from the ASCE 7-02 while 
the across-wind and torsional responses of the buildings are calculated based on the 
procedures and wind tunnel data available in a data base of aerodynamic load.  The 
database is comprised of high-frequency base balance measurements on a host of 
isolated tall building models. It is found that increasing the size of the core wall is 
more effective to reduce the building responses than increasing the thickness of the 
core wall. As for the outriggers, the most optimum position to construct the 
outriggers is between one quarter to two third of the height of the building. 
However, outrigger system is effective to reduce only the along-wind and across-
wind responses. The torsional responses cannot  be reduced by the addition of the 
outriggers. Interestingly, the addition of the belt walls will reduce the torsional 
response of the buildings which otherwise cannot be lessened by the outriggers. The  
belt walls also further reduce the building responses in the along-wind and across-
wind directions. Moreover, the most optimal tube-in-tube structure is achieved when 
the spacing of the exterior columns is 4 metre, while the addition of megacolumns to 
the structural systems reduces the building responses drastically in all the three 
directions. 
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ABSTRAK 
 
 
 
 

Kini banyak sistem struktur bangunan tinggi telah diperkenalkan bagi 
mengurangkan kelakunan bangunan terhadap beban angin. Namun begitu, tidak ada 
kajian yang sistematik dilakukan bagi menentukan keberkesanan sistem bangunan 
tinggi yang berbeza dalam mengurangkan kelakunan bangunan terhadap beban 
angin. Objektif penyelidikan ini adalah untuk mengkaji keberkesanan lima sistem 
struktur bangunan tinggi: dinding teras, rasuk sangga, dinding perimeter, tiub-
dalam-tiub dan tiang mega bagi mengurangkan kelakunan bangunan akibat angin. 
Bangunan-bangunan konkrit bertetulang setinggi 64 tingkat dengan nisbah tinggi 
dan lebar 6:1 dikaji bagi mendapatkan kelakunan terhadap angin. Bangunan-
bangunan yang dikaji ini mempunyai lima sistem struktur yang berbeza. Nilai 
frekuensi tabii dan eigenvektor dalam mod selari-angin, seranjang-angin dan 
puntiran bagi bangunan diperolehi dengan menggunakan perisian komputer 
kejuruteraan struktur. Kelakunan selari-angin ditentukan dengan menggunakan 
tatacara dari kod amalan ASCE 7-02, sementara kelakunan seranjang-angin dihitung 
dengan menggunakan tatacara dan data terowong angin dalam pengkalan data beban 
aerodinamik. Pengkalan data ini mengandungi bacaan alat imbangan asas 
berfrekuensi tinggi bagi model-model bangunan tinggi tunggal. Kajian menunjukkan 
penambahan saiz dinding teras adalah lebih berkesan untuk mengurangkan 
kelakunan bangunan dibandingkan dengan penambahan ketebalan dinding teras. 
Kedudukan paling optima untuk membina rasuk sangga pula ialah di antara satu 
perempat dan dua pertiga dari ketinggian bangunan. Namun begitu, rasuk sangga 
hanya berkesan untuk mengurangkan kelakunan selari-angin dan seranjang-angin. 
Kelakunan puntiran tidak boleh dikurangkan dengan penambahan rasuk sangga pada 
bangunan.  Selanjutnya, penambahan dinding perimeter boleh mengurangkan 
kelakunan puntiran yang pada asalnya tidak boleh dikurangkan apabila rasuk sangga 
ditambah kepada sistem dinding teras.  Selain itu, dinding perimeter juga boleh 
mengurangkan kelakunan bangunan selari-angin dan seranjang-angin. Struktur tiub-
dalam-tiub yang optima boleh dicapai  apabila jarak di antara tiang luaran adalah 
empat meter, manakala penambahan tiang mega  adalah sangat berkesan dalam 
mengurangkan kelakunan bangunan pada semua tiga arah.  



 vi

 
 
 
 
 

TABLE OF CONTENTS 
 
 
 
 

 
CHAPTER TITLE PAGE 

 

  DECLARATION ii 

  ABSTRACT iii 

  ABSTRAK iv 

  TABLE OF CONTENTS v 

  LIST OF TABLES viii 

  LIST OF FIGURES xii

  LIST OF SYMBOLS xviii 

  LIST OF APPENDICES xxiv 

 

 1 INTRODUCTION 1 

 1.1 Introduction 1 

 1.2 Definition of Rigid and Flexible Building 2 

 1.3 Drift Index and Acceleration Limit for Structures 3 

 1.4 Problem Statement 7 

 1.5 Objective 8 

 1.6 Scope 8 

 1.7 Methodology 10 

 1.8 Overview of the Dissertation 11 

2 BACKGROUND THEORY OF WIND ENGINEERING 12 

 2.1 Introduction 12 

 2.2 Wind Profile 13 

 2.3 Response of tall buildings 16 

  2.3.1 Along-wind response of tall buildings 17 

  2.3.2 Across-wind response of tall buildings 20 



 vii

  2.3.3 Torsional response of tall buildings 22 

 2.4 Gust Loading Factor 22 

 2.5 Full Scale Measurement 25 

 2.6 Wind Tunnel 27 

 2.7 Analysis of Tall Building in Resisting Wind Load 31 

 

3 METHODOLOGY 35 

 3.1 Introduction 35 

 3.2 General procedure 35 

 3.3 Building Studied 38 

3.4 Tall Building Systems Studied 40 

3.5 Modeling of the Building 42 

3.6 Output from GTSTRUDL 49 

3.7 Wind Speed 51 

3.8 Along Wind Response 55 

 3.9 Across Wind and Torsional Response  59 

 3.9.1 Validation of the Procedure  59 

 3.9.2 Calculation of the Across Wind and Torsional  

  Response 63 

 
 

4 RESULTS AND DISCUSSION:  
 CORE WALL, OUTRIGGER AND BELT WALL SYSTEM 67 

 4.1 Introduction 67 

 4.2 Why some data are not available? 69 

 4.3 Core wall system 70 

 4.4 Outrigger system  79 

  4.4.1 One-story deep outriggers 79 

 4.4.2 Two-floor deep outriggers 91 

 4.4.3 The Effects of Outriggers to Torsional Response 101 

 4.5 Belt wall system 103 

 4.6 Tube-in-tube system 159 

 4.7 Megacolumn system 163 

 



 viii

 

5 RESULTS AND DISCUSSION:  
 TUBE-IN-TUBE AND MEGACOLUMN SYSTEM 113 

 6.1 Introduction 113 

 6.2 Tube-in-tube system 114 

 6.3 Megacolumns 124 

 

6 CONCLUSION 139 

 6.1 Introduction 139 

 6.2 Parameters at Issue 139 

 6.3 Conclusion 140 

 6.4 Efficiency of the Tall Building System 142 

 6.5 Further Study and Recommendation 144 

REFERENCES 210 

Appendices A – G 219 -244 



 ix

 
 
 
 
 
 

LIST OF TABLES 
 
 
 
 

TABLE NO. TITLE PAGE 
 
 
1.1 Serviceability problems at various deflection or drift  

Indices 3 
 
1.2 Human perception level 5 
 
1.3 Acceleration limits for different perception level 5 
 
2.1 Values of α recommended in the reference 13 
 
2.2 Roughness lengths and surface drag coefficients for  various 
 types of terrain 15 
 
3.1 Wide flange section used as spandrel beams 39 
 
3.2 Size of columns of the building studied 39 
 
 
3.3 Comparisons of the values of frequency of a core wall  

  structure modeled by various size of isoparmetric  
  quadratic solid elements 45 

3.4 Difference of frequency and run-time for a framed  
 building with 12 m x 12m x 500 mm thickness core wall 
 having consistent mass and lumped mass definition 48 
 
3.5 Eigenvectors of the selected joints 51 
 
3.6  The conversions used to calculate one-hour averaging 
 time, 10-year return period wind speeds 54 

3.7 Comparison of calculated peak and RMS along-wind  
             accelerations from international codes and standards with  

 wind tunnel data (Kijewski and Kareem, 1998) 59 



 x

3.8 Model cross section 60 
 
4.1 Along-wind and across-wind responses for New York  
 wind environment when the outer dimension and thickness 
 of the core wall are altered 75 

4.2  The change of moment inertia of the core wall for different  
  outer dimension and thickness of core wall 76 

4.3 How the polar moment of inertia affects the natural  
 frequency in torsional direction and the torsional  
 acceleration of the building with core wall  78 
 
4.4 The values of eigenvector in the across-wind direction  
 for a building with outriggers and 12m x 12m x 350mm  
 thickness core wall 85 
 
4.5 The variation of modal mass, M* with different position of  
 outriggers of a building having an 18 x 18 size and 350  
 thickness of core wall 85 
 
4.6 The variation of modal stiffness, K* with different position  
 of outriggers of a building having an 18 x 18 size and  
 350 thickness core wall 86 
 
4.7 The values of displacement and stiffness for different  
 location of the altered section 87 
 
4.8 The reduction of the along-wind displacement and  
 acceleration when the depth of outriggers at mid-height  
 of buiding is changed from one-story deep to two-story deep 97 
 
4.9 The reduction of the across-wind displacements and  
 acceleration of the buildings when the depth of outriggers  
 at mid-height of buiding is changed from one-story deep  
 to two-story deep 98 
 
4.10 The depth and moment of inertia of the two cantilever beams  
 studied 99 
 
4.11 Comparison of the K or length to the fourth values that is  
 directly proportional to the torsional stiffness of the outriggers  
 and core wall 103 
 
4.12 The reduction of the along-wind displacement and  
 acceleration of  the buildings with outriggers and belt wall  
 compared to the values of the building with  two-story  
 deep outriggers 110 



 xi

4.13 The reduction of the across-wind displacements and  
 acceleration of the buildings with outriggers and belt wall  
 compared to the values of the building with  two-story  
 deep outriggers 110 
 
4.14 Comparison of the K or the length to the fourth values  
 of the core wall, outrigger and belt wall elements, and the  
 natural frequency in torsional mode of the building with  
 belt wall and no belt wall 112 
 
5.1 Size of the exterior columns with different spacing of 
 the exterior columns 115 
 
5.2  Reduction of the across-wind responses when the   

 spacing of the perimeter columns is reduced from 16 metres   
 to 6 metres 120 

 
5.3 Total moment of inertia and cross sectional area of   
 the perimeter columns on each floor for different  
 spacing of the perimeter columns 121 
 
5.4 Total moment of inertia that is contributed by the perimeter  
 columns for each floor level for different spacing of   
 the perimeter columns 123 
 
5.5 Variation of along-wind displacement for buildings with  
 megacolumns, outrigger and belt wall 131 
 
5.6 Variation of along-wind acceleration for buildings with  
 megacolumns, outrigger and belt wall 132 
 
5.7 Variation of across-wind displacement for buildings  
 with megacolumns, outrigger and belt wall 132 
 
5.8 Variation of across-wind acceleration for buildings with  
 megacolumns, outrigger and belt wall 133 
 
5.9 Variation of torsional acceleration for buildings with  
 mega columns, outrigger and belt wall 135 
 
5.10 Variation of natural frequency for buildings with  
 mega columns, outrigger and belt wall 138 
 
6.1 The along-wind responses for different types of tall building  
 system 142 



 xii

6.2 The across-wind responses for different types of tall building  
 system 143 
 
6.3 The torsional response for different types of tall building system 143 



 xiii

 
 
 
 
 

LIST OF FIGURES 
 
 
 
 

FIGURE NO. TITLE PAGE 
 
1.1 Design standard on peak acceleration for 10-year return period 6 
 
1.2 A flow chart showing the steps taken in the calculation of 
 the responses of the buildings due to wind 10 
 
2.1 Ratio of probable maximum speed averaged over period t to  
 averaged over one hour 16 
 
2.2 The random vibration (frequency domain) approach to  
 resonant dynamic response (Davnport, 1963) 17 
 
3.1 The procedure in the analysis of buildings in this research 37 
 
3.2 Typical plan view of the building studied 38 
 
3.3 Typical floor for building with 24 m x 24 m core wall 40 
 
3.4 Typical plan of core wall and mega column building  studied 42 
 
3.5 (a) Core wall system;  (b)  Outrigger and core wall  
 system; (c) Beltwall, outrigger and core wall system;  
 (d)  tube-in-tube system;  (e)  Mega column, outrigger and  
 core wall system.  43 
 
3.6 Mode shape of the frequency considered in (a) isometric view 
 (b) y-z plane view. 45 
 
3.7 (a) A cantilever beam with a point load, P at its tip;  (b) Mode  
 Shape of the lowest frequency 46 
 
3.8  Eigenvalue output provided by GTSTRUDL 49 
 
3.9 Deformation shape of the structure in (a) mode 1 in isometric 
 view;  (b)  mode 2 in y-z plane view (c) mode 3 in x-z plane  
 view 50 
 
3.10 Sample output of the eigenvectors values from GTSTRUDL 
 dynamic analysis 50 



 xiv

3.11 The flowchart of the FOTRAN program to calculate the 
 along-wind displacement and acceleration by using the  
 formulae provided in the ASCE7-02 57 
 
3.12 Model building used for comparison of international standard 58 
 
3.13 Balsa models tested 60 
 
3.14 Comparison of torsional load spectra utilizing pneumatic 
 averaging and force balance techniques (Kareem, 1990) 62 
 
3.15 The flowchart for the FOTRAN program written to calculate 
 the across-wind and torsional acceleration 65 
 
3.16 The flowchart for the FOTRAN program written to calculate 
 The across-wind displacement 66 
 
4.1 Deformation of building with (a) core wall; (b)   outrigger;  
 (c) belt wall and outrigger systems in the along-wind  
 across-wind and torsional mode. 68 
 
4.2 Natural frequency for different thickness and outer dimension    
 of a core wall in the (a) along-wind, (b) across-wind,  (c) torsional    
 direction 71 
 
4.3 Along-wind displacement that corresponds to different thickness    
 and outer dimension of core wall for wind environment in     
 (a) Malaysia, (b) New York, and (c) Hong Kong 72 
 
4.4 Along-wind acceleration that corresponds to different thickness    
 and outer dimension of core wall for wind environment in     
 (a) Malaysia, (b) New York, and (c) Hong Kong 72 

4.5 Across-wind displacement that corresponds to different thickness    
 and outer dimension of core wall for wind environment in     
 (a) Malaysia, (b) New York, and (c) Hong Kong 73 
 
4.6 Across-wind acceleration that corresponds to different thickness    
 and outer dimension of core wall for wind environment in     
 (a) Malaysia, (b) New York, and (c) Hong Kong 74 

4.7 Torsional acceleration that corresponds to different thickness    
 and outer dimension of core wall for wind environment in     
 (a) Malaysia, (b) New York, and (c) Hong Kong 74 

4.8 The natural frequency in (a) along-wind, (b) across-wind and    
 (c) torsional direction for different of position of 1-storey deep   
 outriggers 80 

4.9 The along-wind displacement for different of position of     
 1-storey deep outriggers that corresponds to the wind    
 environment in (a) Malaysia (b) New York (d) Hong Kong 81 



 xv

4.10 The along-wind acceleration for different of position of     
 1-storey deep outriggers that corresponds to the wind    
 environment in (a) Malaysia (b) New York (d) Hong Kong 81 

4.11 The across-wind displacement for different of position of     
 1-storey deep outriggers that corresponds to the wind    
 environment in (a) Malaysia (b) New York (d) Hong Kong 82 

4.12 The across-wind acceleration for different of position of     
 1-storey deep outriggers that corresponds to the wind    
 environment in (a) Malaysia (b) New York (d) Hong Kong 83 

4.13 The torsional acceleration for different of position of     
 1-storey deep outriggers that corresponds to the wind    
 environment in (a) Malaysia (b) New York (d) Hong Kong 83 

4.14 The properties of the beams for trial 1, 2, and 3. 87 

4.15 M/EI diagram for the cantilever beam in Trial 2 when the 
 Altered section is located at  (a) 25%; (b) 33%; (c) 50%;  
 (d) 75% ;( e) 97.9%   (f) M/EI diagram when there is no 
 altered section at all. 89 
 
4.16 Comparison of the natural frequency between 1 storey deep    
 outriggers with the one corresponds to the 2 storey deep  
 outriggers in the (a) along-wind, (b) across- wind and  
 (c) torsional direction 92 

4.17 Comparison of the along-wind displacement between  
 1 storey deep outriggers with the one corresponds to the  
 2 storey deep outriggers in (a) Malaysia (b) New York  
 (d) Hong Kong wind environment 93 

4.18 Comparison of the along-wind acceleration between  
 1 storey deep outriggers with the one corresponds to the  
  2 storey deep outriggers in (a) Malaysia (b) New York  
  (d) Hong Kong wind environment 94 

4.19 Comparison of the across-wind displacement between  
 1 storey deep outriggers with the one corresponds to the  
  2 storey deep outriggers in (a) Malaysia (b) New York  
 (d) Hong Kong wind environment 95 

4.20 Comparison of the across-wind acceleration between  
 1 storey deep outriggers with the one corresponds to the  
  2 storey deep outriggers in (a) Malaysia (b) New York  
 (d) Hong Kong wind environment 96 
 
4.21 Comparison of the torsional acceleration between 1 storey 
 Deep outriggers with the one corresponds to the 2 storey 
   deep outriggers in (a) Malaysia (b) New York  
 (d) Hong Kong wind environment 97 

 
 



 xvi

4.22 M/EI diagram without the altered section for (a) Trial 1;  
 (b) Trial 2. M/EI diagram when the altered section is at  
 position 50% for the cantilever beam (c) in Trial 1 (d) in  
 Trial 2 100 

4.23 View at the floor where outriggers are located 101 

4.24 Comparison of the value of the natural frequency in the  
 along-wind,  across-wind and torsional direction for a  

 building with two-storey deep outriggers and  a  
 building with both two-storey deep outriggers and belt walls 104 

4.25 Comparison of the value of the along-wind displacement  
 for (a) Malaysia, (b) New York and, (c) Hong Kong  
 wind environment for a building with two-storey deep  
 outriggers and  a building with both two-storey deep  
 outriggers and belt walls 105 

4.26 Comparison of the value of the along-wind acceleration 
 for (a) Malaysia, (b) New York and, (c) Hong Kong  
 wind environment for a building with two-storey deep  
 outriggers and  a building with both two-storey deep  
 outriggers and belt walls 106 

4.27 Comparison of the value of the across-wind displacement  
 for (a) Malaysia, (b) New York and, (c) Hong Kong  
 wind environment for a building with two-storey deep  
 outriggers and  a building with both two-storey deep  
 outriggers and belt walls 107 

4.28 Comparison of the value of the across-wind acceleration 
 for (a) Malaysia, (b) New York and, (c) Hong Kong  
 wind environment for a building with two-storey deep  
 outriggers and  a building with both two-storey deep  
 outriggers and belt walls 108 

4.29 Comparison of the value of the torsional displacement  
 for (a) Malaysia, (b) New York and, (c) Hong Kong  
 wind environment for a building with two-storey deep  
 outriggers and  a building with both two-storey deep  
 outriggers and belt walls 109 

 

4.30 A view of a floor where the belt wall is located 111 

 
5.1 Deformation of building with (a) tube-in-tube; (b) megacolumn 
 systems in the along-wind, across-wind and torsional mode 114 

 
5.2 The natural frequency in the (a) along-wind,  
 (b) across-wind, (c) torsional direction for different  
 spacing of the perimeter columns for tube-in-tube system 115 

 



 xvii

5.3 The along-wind displacement for different spacing of  
 the perimeter columns for tube-in-tube system in  
 (a) Malaysia, (b) New York, (c) Hong Kong wind environment 116 

5.4 The along-wind acceleration for different spacing of  
 the perimeter columns for tube-in-tube system in  
 (a) Malaysia, (b) New York, (c) Hong Kong wind environment 117 

 
5.5 The across-wind displacement for different spacing of  
 the perimeter columns for tube-in-tube system in  
 (a) Malaysia, (b) New York, (c) Hong Kong wind environment 117 

5.6 The across-wind acceleration for different spacing of  
 the perimeter columns for tube-in-tube system in  
 (a) Malaysia, (b) New York, (c) Hong Kong wind environment 118 

5.7 The torsional acceleration for different spacing of  
 the perimeter columns for tube-in-tube system in  
 (a) Malaysia, (b) New York, (c) Hong Kong wind environment 119 

5.8 Percentage of the reduction of the along-wind  
 (a) displacement (b) acceleration for different spacing of  
 the perimeter columns compared to the ones of the original  
 spacing of the perimeter columns 120 
 
5.9  Natural frequencies in the along-wind, across-wind  
 and torsional direction for different spacing of the  
 perimeter columns when the total cross sectional  
 area is kept constant 122 
 

5.10 The natural frequency in the (a) along-wind  
 (b) across-wind (c) torsional direction, for  different  
 combination of structural elements with the megacolumn 
  building 125 

5.11 The along-wind displacement for different combination  
 of structural elements with the megacolumn building in  
 (a) Malaysia, (b) New York (c) Hong Kong wind environment 126 

5.12 The along-wind acceleration for different combination  
 of structural elements with the megacolumn building in  
 (a) Malaysia, (b) New York (c) Hong Kong wind environment 127 

5.13 The across-wind displacement for different combination  
 of structural elements with the megacolumn building in  
 (a) Malaysia, (b) New York (c) Hong Kong wind environment 128 

5.14 The across-wind acceleration for different combination  
 of structural elements with the megacolumn building in  
 (a) Malaysia, (b) New York (c) Hong Kong wind environment 129 

5.15 The torsional acceleration for different combination  
 of structural elements with the megacolumn building in  
 (a) Malaysia, (b) New York (c) Hong Kong wind environment 130 



 xviii

5.16 Plan view of the mega columns and perimeter frame of the 
 Building 136 



 

 

xix

 

 

LIST OF SYMBOLS 
 
 
 

 
A - projected area of the structure loaded by the wind  

a  - length of the side of the square section  

B,b - horizontal dimension of building measured normal to wind 

direction   

C - coefficient of viscous damping  

c  - damping matrix,   

cc -  critical damping   

CD  -   drag coefficient  

fC  - mean along-wind force coefficient;   
*

ic   - generalized  damping  in the  i-th  mode of vibration.  

CM  - non-dimensional moment coefficient  

d -  height of zero-plane above the ground where the velocity is zero  
 
D  - dynamic matrix  

E  - modulus of elasticity   

E   - the load effect due to mean wind.  

ei  - error for each mode shape i   

f  - cyclic frequency   

( )tf D   - the mean parts of the drag force    

f~   - flexibility matrix  

if   - mean generalized force  

( )tfD′   - the fluctuating parts of the drag force  

G  -  modulus of rigidity;   



 

 

xx

Gf  - gust factor  

Gr  - gradient velocity  
τG   - gust factor 
τ
qG   - gust factor (GF) for wind velocity pressure.  

vzG   - gust velocity factor  

T
YG  - GLF for displacement   

g, gD   - peak factor    
gB  - background peak factor  

Rg  - resonant peak factor  
gv  - peak factor for upwind velocity fluctuations  
H, h  - average height of structure  
H(n)  - frequency response function  

( ) 2
1 fH   - structural transfer function of the first mode 

I  - moment of inertia  
I - N x N identity matrix and    

Ih  - turbulence intensity    
I(z)  - mass moment of inertia per unit height   
IH - turbulent intensity evaluated at the top of the building;   
K  -  length to the power of fourth  

K , [ ]K , k  - stiffness matrix of the structure  
K - surface drag coefficient  

*
ik   - generalized stiffness in the  i-th  mode of vibration    

kT     - torsional stiffness  
L  - horizontal dimension of a building measured parallel to the wind 

direction 
x
uL , 

y
uL , 

z
uL   - integral scale  

BM̂   - background base moment and base torque   

RM̂   - resonant base moment or base torque response   
M  - expected mean of the moment or torque response  

'M   - reference moment or torque  

M̂   - expected extreme value of the moment or torque response  
*
im   - generalized mass in the  i-th  mode of vibration.  



 

 

xxi

1m  - modal mass   

m  - mass matrix,  

meff   - effective mass,  

m  - mass per unit length along the beam  

0n , nc - natural frequency of the structure in the  across-wind direction   

in   - frequency in the i-th mode  

P  - load  

( )zPB
ˆ

    - equivalent static wind load for the background part   

( )zRP̂   - resonant component of the equivalent static wind loading   

 *P̂   - generalized force  

*
1P  - generalized load of the first mode;    
τ

P  - mean wind force with averaging time τ .  

( )zPTˆ  - peak ESWL at height z during observation time T  
*
ip  - generalized force in the  i-th  mode of vibration.  

p  - load matrix.    

Q  - non-dimensional quantities representing the normalized mean 

background responses  

q1  - deflected shape   

q(z)  - mean wind velocity pressure  

qi  - the i-th normal coordinate.  

zq̂   - peak dynamic pressure,   

R  - resonant response factor  

r̂   - resultant wind-induced response of interest  

r , Br̂ , Rr̂   - mean, peak beackground, and peak resonant response components  

r  - distance  



 

 

xxii

 S  - Strouhal number  

SM(f)  - power spectral density of force-balance-measured fluctuating base 

bending moment   

*
ip

S   - spectral density of the generalized force  

SP(z1,z2;f)  - cross spectral density of the aerodynamic load per unit height at z1, 

z2 and frequency f,   

qiS   - power spectrum of the response   

Su  - spectrum or spectral density of velocity  

Su1u2  - cross spectrum of velocity  

( )fSv
*

  - normalized wind velocity spectrum with respect to the mean-

square fluctuating wind velocity,  

T  - observation time 

T0 -  average time  

Tmax  - maximum kinetic energy    

t  - time  

U(z)  - mean wind speed at z  height  

UH   - wind speed at the building height in the urban terrain   

Umax - maximum potential energy,  

Ut  - wind speed averaged over t seconds  

U    - mean wind speed at height z above the ground    

critU   - critical wind speed  

u, v, w  - fluctuating components of the gust in  x, y, z  

*u  - shear velocity or friction velocity  

Vdes  - maximum site wind speed multiplied by the importance factor  

Vn  - reduced velocity   

zV   - mean hourly wind speed at height z   



 

 

xxiii

refV̂  - 3 s gust in exposure C at reference height  

zV̂   - peak wind velocity at height z  

WE   - virtual work of the external force  

Wi  - virtual work of the internal force  

IWδ   - virtual work of the inertial forces per unit of length  

Xmax     - maximum along-wind displacement   

maxX&&   - maximum along-wind acceleration   

x   - mean displacement  

x&&   - mean acceleration  

( )zY   - the mean deflection  
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θ  - phase angle   

ρ  - air density  

iBqσ   - non-resonating root mean square response of the i-th normal 

coordinate   

iDqσ   - resonating root mean square response of the i-th normal coordinate  

Mσ   - root mean square (RMS) of the fluctuating base moment or base 

torque response        

( )zx&&σ   - rms along-wind acceleration  

( )zyσ  - root mean square value of the fluctuating deflection   

τ  - averaging time used to evaluate the mean wind velocity  
2
1Ω   - first-cycle generalized-coordinate mode frequencies   

ω  - natural frequency of vibration.    

ωd  - damped natural frequency   

2
iω   - eigenvalues  

 ξ − damping ratio  

v  - mean up-crossing rate  

ψ  - shapes of amplitude   

ξ  - mode exponent;   

iζ  - damping ratio in the i-th mode  
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CHAPTER 1 
 
 
 
 
 

INTRODUCTION 
 
 
 
 
 
1.1 Introduction 

 

New structural systems including the composite one have allowed concrete 

high rises to reach new heights during the last four decades. There are a wide range 

of   structural systems available for tall concrete buildings such as shear walls, core 

supported structures, tube in tube  and bundled tubes. 

 

During the design process, engineers must ensure the system is not only 

capable of resisting all loads, but also efficient, economic and satisfy the basic 

serviceability requirements. The design of tall building system is primarily 

dominated by the effects of wind. A tall flexible structure which is subjected to 

lateral or torsional deflections under the action of fluctuating wind loads may have 

oscillatory movements that can induce a  wide range of responses in the building’s 

occupants, ranging from mild discomfort to acute nausea. In fact, large 

displacements of these structures can cause improper drainage and damage of the 

windows and finishes of the building.  Hence, the  motions of the building that 

produce effects which is intolerable by the occupants may result in an otherwise 

acceptable structure becoming an undesirable or even unrentable building. 

 

Therefore, it is important for engineers to compare a tall building response to 

wind forces with published data which describe on how the different values of the 

accelerations and displacements affecting  human and the building itself.  In order, 
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to use these data,  dynamic analysis is required to allow the predicted response of the 

building to be compared with the threshold limits. 

 

1.2 Definition of Rigid and Flexible Building 

 

A rigid structure is a structure which has the first few natural frequencies 

relatively high.  The structure will tend to follow any fluctuating wind forces 

without appreciable amplification or attenuation. The dynamic deflections will not 

be significant, and the main design parameter to be considered is the maximum 

loading to which the structure will be subjected during its lifetime. Such a structure 

is termed “static” and it may be analyzed under the action of static equivalent wind 

forces (Stafford and Coull, 1991). 

 

In contrast, a flexible structure has the first few natural frequencies relatively 

low. If the frequencies of the fluctuating wind  are below the first natural frequency, 

the structure will tend to follow closely the fluctuating force actions. The dynamic 

response will be attenuated at frequencies above the natural frequency, but will be 

amplified at frequencies at or near the natural frequency.  Consequently the dynamic 

deflections may be appreciably greater than the static values. The lateral deflection 

of the structure then becomes an important design parameter, and the structure is 

classified as “dynamic.” Such structures require not only the dynamic stresses but 

also the acceleration induced by wind load to be determined during the design 

process (Stafford and Coull, 1991). 

ASCE 7-02 defines flexible building or structure as slender building and 

other structures that have a fundamental natural frequency less than 1 Hz, while 

rigid building or other structures are defined as a building or other structure whose 

fundamental frequency is greater than or equal 1 Hz. The previous version of ASCE 

wind code, ASCE 7-98 also considers buildings that have a height, h, in excess of 

four times the least horizontal dimension as flexible buildings. As ASCE 7-02, both 

the Australian code (AS 1170.2) and Malaysian code (MS 1553:2002) also define a 

building as flexible or dynamic when its first fundamental natural frequency is less 

than 1 Hz 
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1.3 Drift Index and Acceleration Limit for Structures 

 

Drift index is defined as the ratio of the maximum deflection at the top of the 

building to the total height. In addition, the corresponding value for a single story 

height, the inter-story drift index, gives a measure of possible localized excessive 

deformation. Balendra (1993) describes the effects of excessive deflection on 

building component in Table 1.1. 

 

Table 1.1:  Serviceability problems at various deflection or drift indices (Balendra, 
1993) 
Deformation 
as a fraction 
of span or 

height 
 

Visibility of 
deformation Typical behaviour 

1/500 Not visible Cracking of partition walls 

1/300 Visible General architectural damage 
Cracking in reinforced walls 
Cracking in secondary members 
Damage to ceiling and flooring 
Facade damage 
Cladding leakage 
Visual annoyance 
 

1/200 – 1/300 Visible Improper drainage 

1/100 – 1/200 Visible Damage to lightweight partitions, windows, 
finishes 
Impaired operation of removable components 
such as doors, windows, sliding partition 

 

 Design drift index limits that have been used in different countries range 

from 0.001 to 0.005. Generally, lower values should be used for hotels or apartment 

buildings than for office buildings, since noise and movement tend to be more 

disturbing in the former. Sound engineering judgment is required when deciding on 

the drift index limit to be imposed. However, for conventional structures the 

preferred acceptable range is 0.0015 to 0.003 (that is, approximately 1/650 to 1/350). 

As the height of the building increases, drift index coefficients should be decreased 

to the lower end of the range to keep the top story deflection to a suitably low level. 
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The National Building Code of Canada (1990) limits the drift to 1/500 of the 

height in order to limit the cracking of the masonary and interior finishes unless 

detailed analysis is made and precautions are taken to permit larger movements. 

Malaysian code  (MS 1553:2002) also limits the total drift of wind force resisting 

system to 1/500 of the height, and the inter-story drift to 1/750 of the height.  

 

Furthermore, Clause B.1 .2 in the ASCE7-02 requires the lateral deflection 

or drift of structures and deformation of horizontal diaphragms and bracing systems 

due to wind effects not to impair the serviceability of the structure. However, Clause 

CB.1.2  in the ASCE7-02 states that the drift limits in common usage for building 

design are on the order of 1/600 to 1/400 of the building or story height (ASCE Task 

Committee on Drift Control, 1988). These limits generally are sufficient to minimize 

damage to cladding and nonstructural walls and partitions. Smaller drift limits may 

be appropriate if the cladding is brittle. Clause CB.1.2  in the ASCE7-02 also 

indicates that an absolute limit on inter-story drift may also need to be imposed in 

light of evidence that damage to nonstructural partitions, cladding and glazing may 

occur if the inter-story drift exceeds about 10 mm (3/8 in) unless special detailing 

practices are made to tolerate movement (Freeman 1977; Cooney and King 1988). 

However, many components can accept deformations that are significantly larger. 

 
There are as yet no generally accepted international standards for comfort 

criteria, although they are under active consideration. In recent years, a considerable 

amount of research has been carried out into the important physiological and 

psychological parameters that affect human perception to motion and vibration in 

the low frequency range of 0-1 Hz encountered in tall buildings. It is now generally 

agreed that acceleration is the predominant parameter in determining the nature of 

human response to vibration (Irwin, 1986).  Table 1.2 and Table 1.3 illustrate how 

human behaviour and motion perception are affected by different ranges of 

acceleration. 
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Table 1.2: Human perception level (Yamada and Goto,1975) 

Range Acceleration 
(m/sec2) 

Effect 

1 < 0.05 Humans cannot perceive motion 

2 0.05 – 0.10 Sensitive people can perceive motion; hanging objects 
may move slightly 
 

3 0.1 – 0.25 Majority of people will perceive motion; level of 
motion may affect desk work; long-term exposure may 
produce motion sickness 
 

4 0.25 – 0.4 Desk work becomes difficult or almost impossible; 
ambulation still possible 
 

5 0.4 – 0.5 People strongly perceive motion; difficult to walk 
naturally; standing people may lose balance 
 

6 0.5 – 0.6 Most people cannot tolerate motion and are unable to 
walk naturally 
 

7 0.6 –0.7 People cannot walk or tolerate motion 
 

8 > 0.85 Objects begin to fall and people may be injured 

 

 

Table 1.3: Acceleration limits for different perception level (Balendra, 1993) 

Perception Acceleration Limit 

Imperceptible a < 0.005g 

Perceptible 0.005g < a < 0.015g 

Annoying 0.015g < a < 0.05g 

Very annoying 0.05g < a < 0.15g 

Intolerable a > 0.15g 

 
 

 

In order to check the serviceability of tall buildings,  the  along wind, across 

wind and torsional responses are determined individually before combining them 

vectorally.  A reduction factor of 0.8 may be used on the combined value to account 

for the fact that in general the individual peaks do not occur simultaneously. If the 

calculated combined effect is less than any of the individual effects, then the latter 

should be considered for the designs (Balendra, 1993). 
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Since the tolerable acceleration levels increase with period of building, the 

recommended design standard for peak acceleration for 10-year wind in commercial 

and residential buildings is as depicted in Figure 1.1 (Griffis,1993). Lower 

acceleration levels are used for residential buildings for the following reasons:  

1. Residential buildings are occupied for longer hours of the day and night and 

are therefore more likely to experience the design wind storm 

2. People are less sensitive to motion when they are occupied with their work 

than when they relax at home. 

 

 
Figure 1.1:  Design standard on peak acceleration for 10-year return period (after, 
Griffis, 1993) 
 

 

The National Building Code of Canada (1990) recommends the acceleration 

limit to be 1-3% of gravity (0.09 to 0.27 m/sec2) once in every 10 years, the two 

figures being more appropriate for apartment and office blocks respectively. 

Malaysian wind code , MS 1553:2002 requires the acceleration of a building due to 

wind-induced motion not exceed 1.0% of gravity for residential structures and 1.5% 

of gravity for other structures, of the acceleration due to gravity. 

 

 Clause CB1.3 in the ASCE7-02 states that excessive structural motion is 

mitigated by measures that limit building or floor accelerations to levels that are not 

disturbing to the occupants or do not damage service equipment. Perception and 

tolerance of individuals to vibration is dependent on their expectation of building 

performance (related to building occupancy) and to their level of activity at the time 

the vibration occurs (ANSI 1983). Individuals find continuous vibrations more 

objectionable than transient vibrations. Continuous vibrations (over a period of 

minutes) with acceleration on the order of 0.005 g to 0.01 g are annoying to most 
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people engaged in quiet activities, whereas those engaged in physical activities or 

spectator events may tolerate steady-state acceleration in the order of 0.02g to 0.05g. 

Thresholds of annoyance for transient vibrations (lasting only a few seconds ) are 

considerable higher and depend on the amount of structural damping present 

(Murray, 1991). A typical finished floor will have 5% damping or more and peak 

transient accelerations of 0.05 g to 0.1 g may be tolerated.  

 

 

1.4 Problem Statement 

 

Despite the importance of analyzing the building responses (displacement 

and acceleration) as explained in Section 1.3, there are no systematic study that has 

been conducted on the effectiveness of the different tall building systems in 

minimizing the responses of the building due to wind. There are several tall building 

systems available such as outriggers, belt wall, tube-in-tube, core wall and mega 

columns. However, no study  has been performed to determine on how effective 

these tall building systems are in reducing the displacements and accelerations of tall 

buildings that are being exerted by wind forces. It is not known which tall building 

system is the most effective system to reduce the responses of the buildings due to 

wind.  

 

Research on the effect of certain parameters such as dimension and location 

of the structural systems in the effectiveness of the systems in reducing the building 

responses has also not been performed. Is increasing the thickness of the core wall or 

increasing the dimension of the core wall is better in reducing the responses of the 

building due to wind? Where is the best location to place the outriggers so that the 

responses of the building due to wind can be minimized? How effective is the belt 

wall in reducing the responses of the building due to wind compared to outrigger 

system? What is the optimum spacing of the parameter columns of the tube-in-tube 

systems in reducing the responses of the buildings due to wind? How effective is 

megacolumn system in minimizing the responses of the buildings due to wind? 
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1.5 Objective 

 

The objective of this research is to study the effectiveness of five tall 

building structural systems: core wall, outrigger, belt wall, tube-in-tube and mega 

column in minimizing the building response (displacement and acceleration) to 

wind. There are different objectives to be accomplished for each different tall 

building structural studied. The objective of studying : 

• the core wall is to determine whether increasing the thickness or 

increasing the dimensions of the core wall is more effective in reducing the 

responses of the building due to wind; 

• the outrigger is to determine the best location to construct the 

outrigger so that the responses of the building due to wind can be minimized; 

• the belt wall is to study the effectiveness of the belt wall in reducing 

the responses of the building due to wind compared to the outrigger system; 

• the tube-in-tube system is to find the optimal spacing of the perimeter 

columns in minimizing the responses of the building due to wind; 

• the megacolumn system is to study the effectiveness of this system 

and combination of megacolumn  and other structural elements such as  outriggers 

and belt wall in reducing the responses of the building due to wind. 

Another objective of this research is to determine which tall building system among 

the five systems: core wall, outriggers, belt wall, tube-in-tube and mega columns 

studied that is the most effective system in minimizing the responses of the building 

due to wind. 

 

1.6 Scope  

 
The building studied is a tall flexible building which has a square plan. A tall 

flexible building must have the ratio of height to the lateral dimension more than 1:4 

and  natural frequency less than 1 Hz as explained in Section 1.2. Thus, the 

buildings studied has the ratio of height to the lateral dimension of the building 1:6 

and their  natural frequencies will be less than 1 Hz. The reason of choosing the ratio 

of height to the lateral dimension of the building 1:6 is because the ratio 1:6 is the 

largest ratio of height to the lateral dimension of the building available in the 



 

 

9

aerodynamic data base. It is impossible to obtain the values of the across-wind and 

torsional responses for buildings if the ratio of height to the lateral dimension of the 

building is more than 1:6 as experimental data for these buildings are not available. 

Note that currently, no formula is available in calculating the across-wind responses 

and torsional responses. The formulae that are available such as from the Australian 

Code (AS 1170.80), Japanese code (RLB-AIJ-1993), Canadian code (NBC-1995), 

the aerodynamic data base of University of Notre Dame, United States of America 

and other literatures  are empirical formulae that are based on experimental 

data(Simiu and Scanlan, 1996).  

 

The lateral system of the tall building is reinforced concrete. Five types of 

tall building systems will be analyzed are: 

• Core wall 

• Outrigger 

• Outrigger with belt wall 

• Tube-in-tube 

• Megacolumn 

The manipulated variables for each system are presented in detail in Chapter 3. 

 
 

 The building will be exerted by wind loading for three different wind 

environments which are: 

• Malaysia (benign wind environment) 

• New York (aggressive wind environment) 

• Hong Kong (one of the most aggressive wind environment in the 

world) 

According to Holmes (2003), the extreme wind classification for Malaysia, New 

York and Hong Kong is I, III and IV, respectively. Holmes has developed 

classification systems to ‘grade’ any country or region in terms of its general level of 

wind speed. Level I has the lowest wind speed while Level V has the highest wind 

speed. Chapter 3 will describe further, about the values of wind speed used and the 

calculation of wind speed for different averaging time. 
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1.7 Methodology 

 

The methodology of this project is as shown in the flowchart in Figure 1.2, and 
is described in detail in Chapter 3.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2: A flow chart showing the steps taken in the calculation of responses of     

the buildings due to wind. 

Obtain the value of CM and 
σCM from the aerodynamic 
database 

Calculate the along-wind responses 
by using the FOTRAN program 
written based on the method in 
ASCE7-02. Three wind speeds 
which correspond to Malaysian, 
New York and Hong Kong wind 
environment are used. 

Extract the eigenvectors 
needed. The eigenvectors are 
the displacements in the 
across-wind direction of the 
joints located nearest to the 
longitudinal axis of the 
building. 

Model the building by using the structural finite element software,  GTSTRUDL 

Analyse the building model to obtain the eigenvalues and eigenvectors  in the along-wind, 
across-wind and torsional mode by using GTSTRUDL . 

Calculate the value of fB/U  
where f = frequency in the 
across-wind or torsional mode, 
B = breadth of building, U = 
wind speed.  
Note that fB/U  is calculated 
for the three wind speeds 
which correspond to 
Malaysian, New York and 
Hong Kong wind environment. 

Calculate the across-wind and 
torsion acceleration by using the 
FOTRAN  program written based 
on formula provided in the 
aerodynamic database of University 
of Notre Dame, U.S. A. 

Calculate across-wind displacement. 

Choose the dimension of the structural elements, such as the size and thickness of core wall. 

Repeat  for different dimension  or location of the structural element  for each different structural  
tall building system: core wall, outriggers, belt wall, tube-in-tube, and megacolumn. 
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1.8 Overview of the Thesis 

 

Chapter 2 is a literature review. It will discuss about the development of the 

research of the effects of wind to tall building. It also explains briefly about the 

important subjects in  wind engineering such as averaging wind speed, wind profile, 

along-wind, across-wind and torsional response of tall buildings.  

  

Chapter 3 will describe about the methodology used in the research in 

depth. Not only will it discuss on how the building is modeled in order to obtain 

the natural frequency and eigenvector, but it will also discuss about the problems 

in performing eigenvalue analysis by using the finite element methods. This 

chapter will also describe the procedure to determine the along-wind responses 

in ASCE  7-02 and across-wind and torsional responses in the University of 

Notre Dame aerodynamic database.   

 

Chapter 4 will present the results obtained from the study for three tall 

building systems: core wall, outriggers and belt wall systems. These results are 

discussed in detail in this chapter.  

 

Chapter 5 will provide results from the study for the other two building 

systems: tube-in-tube and megacolumns. The results are also discussed in depth in 

this chapter.  

 

Finally, Chapter 6 will draw the conclusions on this project.  Suggestions for 

further study in this area will also be proposed. 
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