THE MECHANISM OF FAILURE OF STRUCTURAL LIGHTWEIGHT CONCRETE INFILL OF IBS BLOCKS SUBJECTED TO FLEXURAL

MUGAHED YAHYA HUSSEIN AMRAN

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Engineering (Civil & Structure)

> Faculty of Civil Engineering Universiti Teknologi Malayisia

> > JANUARY 2013

To my parents and all my beloved family members

ACKNOWLEGEDMENT

In the beginning, I would love to express my greatest and sincere appreciation to my final master project supervisor and con-supervisor; Ir. Azhar Bin Ahmad and PM. Dr. Abdul Kadir Marsono respectively, for their guidance, critics, encouragement, and advises throughout the process of this research. I am indebted to them for their valuable instructions and guidance along the time of the research. I am truly grateful to them also in the confidence and trust on me from the beginning of the project until the stage of research accomplishment.

I am very grateful to have my friends with me during the period of research preparation whenever I face any obstacles and problems; they always give their moral support and encouragement to me throughout the process of research and greatly indebted to all my beloved family members for their consistent encouragement me and support every moment.

Last but not least, I also would like to thank to my friends who always accompany me and give their moral support when in need especially those involved directly or indirectly in my preparation of research. Their opinions and views are useful indeed. May our friendship last forever and I will keep always praying that may ALLAH guide them and me to the right path and help us to serve and develop our nations.

ABSTRACT

Currently there is a strong inclination of the Malaysian construction industry to utilize industrialized building system (IBS) of lightweight concrete material. The use of lightweight material has the potential to offset the high cost of production and transportation of IBS components of normal dense concrete material. This research presents an experimental contacted testing on the mechanism of failure of structural lightweight concrete infill of IBS block-works subjected to flexural. Full-scale experimental push-out test frames were erected to investigate the ultimate behavior of lightweight concrete beams and blocks. The setup frame consists of lightweight beams supported at both ends with IBS lightweight infill blocks. Numerous dimensions and shapes of the lightweight IBS blocks were tested. Each lightweight IBS blocks were designed based on readily available steel formwork and proper means of fixing and assembling each IBS blocks to form a complete a full height lightweight panel. Push-out load (flexural load) is then applied up to failure to determine the behavior of the IBS panel due to incremental loading. The deflection, crack pattern, splitting strength, tensile strength and ultimate compressive strengths of the IBS blocks are recorded and compared with the results obtained with a similar panel of normal concrete in-fill.

ABSTRAK

Sekarang ini, terdapat kecenderongan dikalangan industri pembinaan di Malaysia untuk menggunakan Sistem Binaan Berindustri (IBS) yang menggunakan bahan konkrit ringan. Tidak seperti konkrit biasa, penggunaan konkrit ringan mempunyai potensi untuk menjimat kos yang tinggi bagi pengeluaran dan pengangkutan komponen IBS ini. Kajian ini membentangkan ujian eksperimen dihubungi mengenai mekanisme kegagalan struktur konkrit ringan blok IBS tertakluk kepada lenturan. Suatu kerangka tolak-keluar yang berskala penuh telah didirikan untuk meninjau tingkah laku muktamad rasuk dan blok konkrit ringan. Kerangka yang dibina ini terdiri daripada rasuk ringan yang disokong pada kedua-dua hujungnya dengan infill blok konkrit ringan IBS. Pelbagai dimensi dan bentuk blok IBS ringan telah diuji. Setiap blok ringan IBS telah direka bentuk berdasarkan acuan keluli yang sedia ada dan menggunakan kaedah pemasangan yang betul bagi setiap blok IBS untuk membentuk panel ringan yang lengkap dengan ketinggian penuh. Suatu beban sisi kemudian dikenakan sehingga tahap kegagalan untuk menentukan tingkah laku panel IBS semasa penambahan bebanan. Bacaan pesongan, corak retak, kekuatan pemisahan, kekuatan tegangan dan kekuatan mampatan muktamad blok IBS direkod dan perbandingan dibuat dengan keputusan yang diperolehi daripada panel infill konkrit biasa yang serupa.

TABLE OF CONTENTS

СНАР	TER TITLE	PAGES
	TITLE	i
	DECLARATION	iv
	ACKNOWLEDGEMENT	vi
	ABSTRACT	vii
	ABSTRAK	viii
	TABLE OF CONTENT	ix
	LIST OF TABLES	xiv
	LIST OF FIGURES	XV
	LIST OF ABBREVIATION	xvii
	LIST OF APPENDIX	xix
1	INTRODUCTION	1
1.1	Background	1
1.2	Problem statements	4
1.3	Objectives of research	5
1.4	Significance of study	5
1.5	Scope of study	6

2		LITERATURE REVIEW	7
	2.1	Introduction	7
	2.2	Background of aerated aggregates (Pumice aggregate)	9
	2.3	Classification of lightweight concrete materials	10
	2.3.	1 Low density concrete	10
	2.3.	2 Moderate strength concrete	10
	2.3.	3 Structural concrete	11
	2.4	Comparison between the three types of lightweight aggregate	13
	2.5	Application of lightweight concrete	14
	2.6	Advantages and disadvantages of lightweight Concrete	15
	2.7	IBS concrete block production methods	16
	2.7.	1 Fully Prefabricated Construction Method	17
	2.8	Characteristics of Precast Concrete beams and blocks	18
	2.8.	1 Aerated Concrete Blocks	19
	2.8.	2 Stability of IBS pre-cast beams	20
	2.9	Basic Beam behavior	20
	2.9.	1 Beam tension behavior	21
	2.9.	2 Beam compression behavior	22
	2.9.	3 Beam behavior with two different forces direction.	23
	2.10	Micro-structural behavior for aerated concrete aggregate beam and block	24
	2.10	0.1 Compressive strength	24
	2.10	0.2 Modulus of elasticity (E)	25
	2.10	0.3 Splitting tensile strength	26
	2.10	0.4 Tensile and Flexural tensile strength	27
	2.10	0.5 Deflections	27
	2.10	0.6 Density	28
	2.11	Structural Lightweight concrete mix design mechanisms	29

х

	2.11.	1	Ordinary Portland cement content	29
	2.11.	2	Water content	30
	2.11.	3	Sand	30
	2.11.	4	Admixture	31
	2.11.	5	Super-plasticizers	31
2.	12 /	Aera	ated structural lightweight aggregate concrete related tests	32
	2.12.	1	At fresh state	32
	2.12.	2	At hardened state	33
2.	13 I	Beh	avior of reinforced concrete blocks and beams with lightweight infill	34
2.	14 I	Role	e of infill walls in response of moment-frame buildings	35
2.	15 \$	Stru	ctural lightweight concrete behavior	36
	2.15.	1	Fire Resistance and spall Defect to L.W.C	36
	2.15.	2	Freezing and thawing	36
	2.15.	3	Abrasion resistance	37
	2.15.4	4	Chemical attack	37
	2.15.	5	Acid resistance	38
	2.15.	6	Alkali aggregate resistance	38
	2.15.	7	Carbonation and corrosion	39

3		RE	SEARCH METHODOLOGY AND PROCEDURE	40
	3.1	Intro	oduction	40
	3.2	Exp	perimental procedures (Program)	42
	3.3	Exp	perimental materials used	44
	3.3	.1	OPC Cement	44
	3.3	.2	Sand	45
	3.3	.3	Aerated aggregates	45
	3.3	.4	Water	47

	3.3.5	Plasticizers	48
	3.4 E	xperimental specimens preparation	49
	3.4.1	Mix composition (concrete mix)	49
	3.4.2	Mould & ready formwork	49
	3.4.3	Lightweight concrete mix design mixer	51
	3.4.4	Concrete transportation and placing processes	51
	3.4.5	Concrete vibrating	52
	3.4.6	Curing samples	55
	3.4.7	Test methods	56
4	R	ESULTS, DISCUSSION AND ANALYSIS	65
	4.1 In	troduction	65
	4.2 C	ompression test	66
	4.3 E	xperimental tests analysis	67
	4.3.1	Splitting test	67
	4.3.2	E-value test	69
	4.4 Fi	ame analysis	73
	4.4.1	Load versus Deflection Relationship	73
	4.4.2	Load and deflection relationship at cycle 1	74
	4.4.3	The maximum load verse deflection at first cycle 1	75
	4.4.4	Load and deflection relationship at cycle 2	75
	4.4.5	The maximum load verse deflection at second cycle 2	76
	4.4.6	Load and deflection relationship at cycle 3	77
	4.4.7	The maximum load verse deflection at the three cycles	78
	4.4.8	The maximum load verse deflection at the cycle 3	79
	4.4.9	Load verse deflection at point load 1	80
	4.4.10	Load verse deflection at point load 2	81

	4.5	Comparison between lightweight concrete and a normal concrete in-fills	
	results	8	82
	4.6	Mode of failure and cracking outline	85
	4.6.	1 Cracking outline	86
	4.6.	2 Mode of failure	90
	4.7	Manufacturing Problems	94
	4.8	Assembly and erection problems	95
_			07

5	CONCLUSION AND RECOMMENDATIONS	97
5.1	Conclusion	97
5.2	Recommendations	99

REFERENCES

APPENDIXS A - D	102 - 111

100

LIST OF TABLES

CHAPTER

TITLE

PAGE

2.1	Pumice aggregate properties	9
2.2	Chemical analysis of pumice aggregates	10
2.3	Comparisons between the three types of lightweight aggregate	13
2.4	Advantages and disadvantages of lightweight Concrete	15
4.1	Load verse deflection at point load 1	81
4.2	Load verse deflection at point load 2	82
4.3	Frame Load verse deflection measure at point load 1	83
4.4	Frame Load verse deflection measure at point load2	84
4.5	Frame Load verse deflection measure at point load 3	84

LIST OF FIGURES

CHAPTER

TITLE

PAGE

1.1	IBS lightweight concrete block	6
2.1	Aerated aggregate	12
2.2	Connection of beam and block-work	12
2.3	Compressive Strength	15
2.4	IBS block production methods	17
2.5	Fully prefabricated construction method	18
2.6	General beam action behavior	21
2.7	Beam tension behavior	22
2.8	Beam compression behavior	22
2.9	The forces behavior on beam	23
2.10	Beam shear force and bending moment	24
2.11	Splitting tensile strength vs tested compressive strength	26
2.12	Deflection graph for frame load	28
2.13	Lightweight concrete infill wall	35
2.14	Schematic representation of carbonation process	39
3.1	Laboratory work flow	42
3.2	OPC cement	44
3.3	Sand	45
3.4	Aerated aggregates	46
3.5	Water	48
3.6	Plasticizers	48

3.7	Cylinder cube mould	50
3.8	Beam ready formwork	50
3.9	Electric motor powered reverse concrete mixer	51
3.10	concrete transportation and placing process	52
3.11	concrete vibration process	53
3.12	Fresh Concrete after Casting	54
3.13	fresh cylinder cube samples	54
3.14	curing process of IBS blocks & beam	55
3.15	curing process of cylinder cubes	56
3.16	The compression test machine	57
3.17	splitting test	58
3.18	E-value test	59
3.19	The flexural test (push-off test) setup	60
3.20	The test specified point loads	61
3.21	Test hydraulic jack and portable data logger	62
3.22	The deflection gauges	63
3.23	Frame failure and deflection base	63
3.24	5-Gauges of Deflection reading	64
3.25	Crack marking, reading and recording	64
4.1	Cylinder cube extension fracture in the loaded diametral plane	68
4.2	30% of expected load	69
4.3	100% of expected load (Failure mode)	70
4.4	100% Load verse time (failure)	72
4.5	load verse deflection with 5-gauges at cycle 1	74
4.6	Maximum deflection at Cycle 1	75
4.7	Load verse deflection with 5-gauges at cycle 2	75
4.8	Maximum deflection at Cycle 2	76
4.9	Load verse deflection with 5-gauges at cycle 3	77
4.10	Maximum deflection at the three cycles	78
4.11	Maximum deflection at cycle 3	79
4.12	Load verse deflection at point load 1	80
4.13	Load verse deflection at point load 2	81
4.14	Frame Load verse deflection measure at point load 1	82
4.15	Frame Load verse deflection measure at point load2	83

4.16	Frame Load verse deflection measure at point load 3	84
4.17	First crack pattern appearance	86
4.18	The cracks pattern appearance on connection B	87
4.19	The cracks pattern appearance on connection A	87
4.20	The cracks pattern appearance mid-span	88
4.21	Crack reading and marking	88
4.22	Frame after mode of failure from other side	89
4.23	Crushing mode	89
4.24	Spalling mode	90
4.25	Mode of the beam failure	91
4.26	Failure of a right-side the beam anchorage connection	92
4.27	Overall failure of the system	92
4.28	View of point failure	93
4.29	Cut-off links and resist of anchorage re-bars	93
4.30	Aerated lightweight concrete blocks production defect	94
4.31	compaction difficulties and errors	95
4.32	Erected testing frame	96

LIST OF ABBREVIATIONS

IBS	-	Industrial Building System
AAC	-	Autoclaved Aerated Concrete
OPC	-	Ordinary Portland Cement
ALC	-	Autoclaved Lightweight Concrete
MOR	-	Modulus Of Rupture
PA	-	Pumice Aggregate
CA	-	Crush Aggregate
SCC	-	Self-Consolidating Concrete
LWRC	-	Lightweight Reinforced Concrete
RC	-	Reinforced Concrete
L.W.C	-	Lightweight Concrete
RTD	-	Regional Transportation District

APPENDIX

ABritish mix design form calculation102BExperimental test procedures captured photos107CExperimental results of the three cycles109DExperimental results of point 1 and point 2111

TITLE

CHAPTER

PAGE

CHAPTER 1

INTRODUCTION

1.1 Background

Lightweight concrete (LWC) has been successfully used since the ancient Roman times and it has gained its popularity due to its lower density and superior thermal insulation properties ^[1]. Compared with normal weight concrete (NWC), LWC can significantly reduce the dead load of structural elements, which makes it especially attractive in multi-storey buildings. Yet, most studies on LWC concern "semi-lightweight" concretes, i.e. concrete made with lightweight coarse aggregate and natural sand. Although commercially available lightweight fine aggregate has been used in investigations in place of natural sand to manufacture the "total-lightweight" concrete (Chandra, S. and Berntsson L. 2002, Berra, M. And Ferrara, G 1990), more environmental and economic benefits can be achieved if waste materials can be used to replace the fine lightweight aggregate.

The use of lightweight concrete in reinforced concrete structures has several advantages when compared with ordinary concrete or normal concrete such as crossing of larger spans, high earthquake resistance, , heat conductivity property, and fire strength etc. (Hüsem, 1995; Neville, 1975; Durmuş, 1988; Karaca, 1996)^[6,7]. Because of the advantages cited above lightweight concrete is being used in many industrial countries. Although lightweight concrete has so many advantages and superiorities over ordinary concrete, thus, the usage of this type of concrete is not as common as ordinary concrete. The reasons for low usage of lightweight concrete are the high prices of aggregates in countries whose lightweight aggregate resources are poor, lack of experience, and knowledge of workers about lightweight concrete (Karaca, 1996).

Lightweight concrete may also contain normal or lightweight, fine and/or coarse aggregates. The rigid foam air cell system differs from conventional aggregate concrete in the methods of production and in the more extensive range of end uses. Lightweight concrete may be either cast-in-place or pre-cast. Lightweight concrete mix designs in general are designed to create a product with a low density and resultant relatively lower compressive strength (when compared to plain concrete) (J.L.Clarke, 1993). When higher compressive strengths are required, the addition of fine and/or course aggregate will result in a stronger lightweight concrete with resultant higher densities. We should note that most lightweight concrete applications call for a lightweight material. When considering the addition of course aggregate, one must consider how appropriate this heavy aggregate will be to a project, which typically calls for lightweight material. The inclusion of aerated aggregate, particularly course aggregate may be counter-productive to the materials intended performance (J.L.Clarke, 1993).

Structural lightweight concrete has an in-place density (unit weight) on the order of 90 to 115 lb/ ft³ (1440 to 1840 kg/m³) compared to normal-weight concrete with a density in the range of 140 to 150 lb/ ft (2240 to 2400 kg/m³). For structural applications the concrete strength should be greater than 2500 psi (17.0 MPa). The concrete mixture is made with a lightweight coarse aggregate or in some cases the engineers can use a portion or the entire may be a lightweight product. Lightweight aggregates used in structural lightweight concrete are naturally expanded shale, clay or slate materials that have been fired in a rotary kiln to develop a porous structure. Other products such as air-cooled blast furnace slag are also used. There are other classes of non-structural lightweight concretes with lower density made with other aggregate materials and higher air voids in the cement paste matrix, such as in cellular concrete (AC1213R).

In this study, the aerated rock (Pumice) is the type of aggregate used, in order to produce industrial building block with structural lightweight concrete forms. Pumice (aerated aggregate) aggregate is a low density highly vesicular, volcanic glass consisting mainly of silica SiO2. The high silica content (70% per g/100g) positively affects the quality of pumice increasing the hardness of the material and its resistance to chemical attack. Pumice Aggregate (aerated aggregate) is highly recommended in lightweight concrete blocks either blended or as an all in pumice mix. In cast stone as a lightweight backing mix and chimney flue liners. Lightweight precast structures including IBS concrete block. In continuation, this project presents the performance of aerated concrete aggregate which is used to produce structural lightweight concrete block, in function to inspire the construction industries to use it and design such structural IBS elements, for instance, the industry building system (IBS) platform can use this type of light aggregate to make the IBS system with satisfy and high structural compressive strength and low density which is less 20%-25% than the use of conventional crashed aggregate.

1.2 Problem statements

There are many beneficial use of a structural lightweight concrete such as to reduce the dead load of a concrete block, which then allows the structural designer to produce a such size of IBS concrete block (with high strength and low density), to reduce the size of block and other load bearing elements in case to let them to stand up to carry the structure loads imposed upon them from various partitions of structural load. However, structural lightweight concrete provides a more efficient strength-to-weight ratio in structural elements. In most cases, the marginally higher cost of the lightweight concrete is offset by size reduction of structural elements, less reinforcing steel and reduced volume of concrete, resulting in lower overall cost, For instance, in this study it has been planning to produce such samples of IBS block with structural lightweight concrete mix design with Ordinary Portland cement (OPC), a full replacement of conventional crashed aggregate by lightweight aggregate (aerated aggregate) and to check the failure of the samples under flexural.

In continuation, some of the reasons of using aerated aggregate are to produce lightweight concrete IBS interlocking wall block of size of 900mm in length, 700mm in height and 200mm in width and wall rectangular beam with size is 2100mm in length, 500mm in height and 200mm in width. These sizes are considered too suitable to comply with RTD rule and placement on transport cargo. Due to this successful function, it will lead to customer convincing attitude as they need to provide not more transportation for assembly of the components due to the reduction in weight is followed by savings in transport and greater ease of operation on the site; there is less human fatigue and lead to faster speed of erection and hence to a reduction of funding costs, also a powerful way to put new buildings to useful and profitable employment as early as possible. In this study, the component is divided into smaller transportable 'lego' sizes shaped block. The component will be made into two or four cuts of component and analysis for best design for assembly and disassembly with similar predecessor.

1.3 Objectives of research

The objectives of this research are:

- To study the properties and behavior of aerated aggregate and use it as structural lightweight concrete block-works aggregate on accordance to BS1881: part 125-102 and BS 5328.
- 2- To investigate the flexural capacity of structural lightweight concrete of IBS block-works and beam with a full replacement of conventional crashed aggregate by aerated aggregate with Ordinary Portland cement (OPC).
- 3- To check the deflection, cracks, splitting strength, tensile strength and ultimate compressive strengths of the IBS blocks and beam samples under ultimate loads @ 28 days on accordance to BS1881: part 120 and compare the results with a normal concrete in-fill.

1.4 Significance of study

The significance of this research and its findings will inspire the develop a suitable mix design of lightweight concrete with aerated aggregate, in order to produce a new approach of structural lightweight concrete block.

- 1- To develop a new potential technique to produce structural lightweight concrete block, with an above average of structural compressive strength and a lower density.
- 2- To produce a sample of structural lightweight concrete block with different shape of IBS, in function to encourage the construction industry to made it as a new approach for future use in IBS building and construction sectors.
- 3- To encourage of solving the problem of low and middle income earners to purchase it.

1.5 Scope of study

The study was almost experimental in natural and it consists of three-phase study scheme. **First phase** was focusing on the research of development based on the existed studies and preparing the calculation of the structural lightweight mix design. **The second** phase is preparing the reinforcements, the casting moulds and testing the casted blocks @ 28days for the IBS blocks which are showing below in figure 1.1. **The third** phase was concerning about the analysis and discussion of the results of the IBS blocks samples.

The attempt of this study is to check the ultimate strength behavior of IBS interlocking block system. The performance of this specimen will be estimated through the capacity test. The crack at frame faces and its deflection will be monitored during the test in order to get the expected results and fulfill the aims, significant, objectives and scope of this study. The component consists of lightweight infill's that have been use for wall, and a frame which including beams and blocks.

The size of the IBS block is $800 \text{ mm} \times 700 \text{mm} \times 200 \text{mm}$ and the size of the IBS rectangular beam is $2100 \text{mm} \times 450 \text{mm} \times 200 \text{mm}$ with length, height and width respectively.

Figure 1.1: IBS lightweight concrete block

REFERENCES

- Badir, Y., Kadir, M., and Hashim, A. (2002). "Industrialized Building Systems Construction in Malaysia" J. Archit. Eng., 8(1), 19–23.doi: 10.1061/ (ASCE),1076-0431(2002)8:1(19).
- Berra, M. And Ferrara, G, (1990). "Normal Weight and Total-Lightweight High-Strength Concretes": A Comparative Experimental Study", Noyes Publications.
- Chandra, S. And Berntsson, L, (2002). "Lightweight Aggregate Concrete, Science, Technology and Applications". Noyes Publications. William Andrew.
- Dr J. L. Clarke, (1993). "Structural Lightweight Aggregate Concrete", Blackie

Academic & Professional, an Imprint of Chapman & Hall Wester Cleddens Road, Bishopbrigges, Glasgow G64 2NZ.

Harun Tanyildizi, Ahmet Coskun, (2008). "Performance of lightweight concrete with silica fume after high temperature", Construction and Building Materials, Firat University, Turkey, October 2008.

Kayali, O.A. and Haque, M.N, (1997). "A New Generation of Structural Lightweight Concrete" ACI, China, Water and Electricity, Publishing House. Karaca Z, (1996). "Investigation of Behavior of Lightweight and Ordinary

Reinforced Concrete Beams With Deformed Bars By Comparing With Each Other In The Light Of Synthesis Work", Ms Thesis, Karadeniz Technical University, Trabzon, Turkey.

- Legatski LA, (2006). "Cellular concrete, significance of tests and proper-ties of concrete and concrete making materials". In: Klieger PK,Lamond JF, editors.
 ASTM Special Technical Publication.Philadelphia, No. 169C. p. 533-9
- McSaveney, L.G. (2000) The Wellington stadium: "New Zealand's first use of high Strength lightweight precast concrete, in Second international symposium on structural lightweight aggregate concrete". Helli Grafisk, Oslo, Norvege: Kristiansand.
- Mohd Roji Samidi, (1997). "First report research project on lightweight Concrete" Universiti Teknologi Malaysia, Skudai, Johor Bahru.
- Shan Somayuji (1995), "Civil Engineering Materials", N.J Prentice Hall Inc, USA, 3rd Edition, Englewood Cliff.
- S.A. Khedr, M.N. Abou-Zeid, (1994). "Characteristics of silica-fume concrete", J. Mater. Civil Engineering. ASCE.
- S. Aroni, G. J. de Groot (Editor), M. J. Robinson, (1993). "Autoclaved aerated concrete -Properties, testing and design", London; New York: E &FN Spon.
- Valore, R.C., (1954). "Cellular Concrete Composition and Methods of Preparation and Celluler Concrete-Physical Properties". J Am concrt Inst. 25, pp. 773-95.