SPECTRUM SHARING OF THE INTERNATIONAL MOBILE TELECOMMUNICATION-ADVANCED AND DIGITAL BROADCASTING IN THE DIGITAL DIVIDEND BAND

WALID A. HASSAN

UNIVERSITI TEKNOLOGI MALAYSIA

SPECTRUM SHARING OF THE INTERNATIONAL MOBILE TELECOMMUNICATION-ADVANCED AND DIGITAL BROADCASTING IN THE DIGITAL DIVIDEND BAND

WALID A. HASSAN

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy (Electrical Engineering)

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > JANUARY 2013

To my beloved mother, father, brothers and sister, and to my only love my wife and to our little princesses Wassan and Leen. Finally to my beloved Jido and dear uncle Mohanna

ACKNOWLEDGEMENT

First of all, I would like to express my deepest gratitude to ALLAH (SWT), who guided, helped, and supported me for everything I was able to achieve and for everything I tried but I was not able to achieve.

I wish to express my sincere appreciation and thankfulness to my research supervisor, Prof. Dr. Tharek Abd Rahman for encouragement, motivation, and support in academic, social, financial and technical issues. Truly, I have been overwhelmed by his patience, personal kindness, valuable comments, and advices during my study. Without his continued guidance and help, this thesis would not have been completed.

I have greatly appreciated the golden opportunity from UTM to pursue my PhD, I thank very much all UTM community including every person in (faculties, library, staff, employees, students and labourers). Special thankfulness to all members of WCC, FKE and SPS.

I would like also to thank Mr Jean Phillipe from the European Communication office for his feedback and help. Also Dr Han Shin Jo from Habant University (Korea) for his teaching and assisting and being a co-author on my papers. I would like also to thank Mr Mazer Nekovee from Britsh Telecommuncatio for his advices and notes. Finally I would like to thank Dr Leow and my colleague Mr Sami Tarboshi from Yaman, for all their assistances and advices.

Finally, I can find no words to express my thanks to my parents and all the members of my family, friends and relatives for their constant love, help and support, which motivate me to face the life difficulties.

ABSTRACT

Increasing demand for wireless services has recently led to a radio spectrum shortage. As the spectrum is a limited and scarce natural resource, it should be used as efficiently as possible. In this thesis, a spectrum sharing study is conducted between the Digital Broadcasting (DB) and International Mobile Telecommunication-Advanced (IMT-A) in the 470–862 MHz band. First, a spectrum sharing simulation model based on statistical methodology is proposed in order to identify the requirements for co-existence between IMT-A and DB systems. The results show that co-existence is possible for a limited number of adjacent channels and for a specific sharing scenario. Next, a spectrum sharing analytical model is developed based on the enhancement of a current coexistence model that has been widely used in spectrum sharing research. From this, it is seen that when the DB bandwidth is 8 MHz, a higher IMT-A bandwidth (20 MHz) can co-exist more feasibly with DB than a lower IMT-A (5 MHz) bandwidth. Moreover, in deploying these systems in urban areas, the required separation distances decrease. We then propose an analytical method for evaluating potential compatibility of cognitive radio (CR) systems. This method computes the allowed maximum in-band (PIB) and out-of-band (POOB) transmission power of a CR system based on a victim receiver interference criterion. The PIB and POOB achieved are 16.41 dB higher and 23.76 dB lower, respectively, than those achieved in the traditional method. Finally, we propose a system called Wireless Link using the Global Communication Channel (WLGCC) that enhances spectrum sharing between DB and CR systems within the licensed 470-790 MHz band. The results show that WLGCC does not degrade existing DB service while reliably transmitting information on vacant frequency bands to the CR.

ABSTRAK

Permintaan yang semakin meningkat bagi perkhidmatan wayarles baru-baru ini mengakibatkan spektrum radio tidak mencukupi. Oleh sebab spektrum adalah sumber yang terhad, penggunaannya yang efektif adalah perlu. Dalam tesis ini, satu kajian berkenaan perkongsian spektrum antara sistem Penyiaran Digital (DB) dan sistem Lanjutan-Telekomunikasi Mobile Antarabangsa (IMT-A) telah dijalankan bagi julat frekuensi 470-862 MHz. Pertama, model simulasi perkongsian spektrum menggunakan metodologi statistik dicadangkan untuk mengenal pasti syarat-syarat bagi membolehkan kewujudan bersama sistem IMT-A dan sistem DB. Hasil kajian menunjukkan bahawa kewujudan bersama boleh dijalankan untuk bilangan saluran bersebelahan yang terhad dan senario perkongsian tertentu sahaja. Seterusnya, satu model analisis perkongsian spektrum dihasilkan daripada penambahbaikan kepada model sistem kewujudan bersama sedia ada yang digunakan secara meluas dalam penyelidikan perkongsian spektrum. Daripada analisis ini, dapat diperhatikan bahawa apabila jalur lebar sistem DB adalah 8 MHz, sistem IMT-A dengan jalur lebar lebih tinggi (20 MHz) adalah lebih sesuai untuk wujud bersama dengan sistem DB dibandingkan dengan sistem IMT-A yang mempunyai jalur lebar yang lebih rendah (5 MHz). Selain itu, untuk pengoperasian kedua-dua sistem ini di kawasan bandar, didapati jarak pemisahan yang diperlukan menjadi lebih pendek. Kajian ini kemudiannya mencadangkan satu kaedah analisis untuk menilai kesesuaian sistem radio kognitif (CR). Kaedah ini mengira kuasa penyiaran dalam jalur (PIB) dan di luar jalur (POOB) maksimum berdasarkan kriteria gangguan penerima mangsa. Nilai kuasa PIB adalah 16.41 dB lebih tinggi, dan 23.76 dB pula lebih rendah bagi POOB, jika dibandingkan dengan kaedah konvensional. Akhir sekali, kajian ini mencadangkan satu sistem yang dipanggil Laluan Wayerles menggunakan Saluran Komunikasi Global (WLGCC) yang mampu meningkatkan perkongsian spektrum antara sistem DB dan sistem CR bagi julat frekuensi berlesen 470-790 MHz. Hasil kajian menunjukkan WLGCC tidak mengganggu perkhidmatan sistem DB sedia ada malahan dapat menghantar maklumat dengan baik kepada sistem CR menggunakan saluran frekuensi yang tidak dipakai.

TABLE OF CONTENTS

CHAPTER	TITI	LE	PAGE
	DEC	LARATION	ii
	DED	ICATION	iii
	ACK	NOWLEDGEMENT	iv
	ABS	TRACT	v
	ABS	TRAK	vi
	TAB	LE OF CONTENTS	vii
	LIST	F OF TABLES	XV
	LIST	FOF FIGURES	xvi
	LIST OF ABBREVIATION		XX
	LIST	FOF APPENDICES	xxiv
1	INT	RODUCTION	1
	1.1	Introduction	1
	1.2	Research Motivation	3
	1.3	Problem Statement	4
	1.4	Research Objectives	4
	1.5	Research Scope	5
	1.6	Significance and Contribution of the Research	6
		Work	
	1.7	Organization of the Thesis	7
2	THEORY AND LITERATURE REVIEW		
	2.1	Introduction	10
	2.2	Radio Frequency Spectrum	11
		2.2.1 The UHF band	13

2.3	Spectr	um Sharing	Overview	16
	2.3.1	Dimensi	ons of Spectrum Sharing	17
		2.3.1.1	The Space Dimension	18
		2.3.1.2	The Frequency	20
			Dimension	
		2.3.1.3	The Time Dimension	20
2.4	Impact	of Spectrum	m Sharing on the	21
	Spectr	um Manage	ment	
2.5	Cognit	ive Radio		23
	2.5.1	The Tele	vision White Space	23
		Frequen	cies	
	2.5.2	CR Shari	ng Method	24
		2.5.2.1	Spectrum Sensing	24
			Method	
		2.5.2.2	GLD Method	25
		2.5.2.3	Beacon Method	26
2.6	Spectr	um Sharing	Components	26
	2.6.1	Transmis	ssion	27
		2.6.1.1	Signal Bandwidth	28
		2.6.1.2	Modulation Schemes	29
		2.6.1.3	Unwanted Emission	31
		2.6.1.4	Transmitter SEM	33
		2.6.1.5	Transmission Antenna	34
	2.6.2	Channel a	and Propagation Model	34
		2.6.2.1	Radio Wave	35
			Propagation	
			and Pathloss	
		2.6.2.2	Type of Propagation	36
			Models	
		2.6.2.3	The Free Space	37
			Propagation Model	
		2.6.2.4	Modified Hata Model	38
		2.6.2.5	The Point to Multipint	39

			Propagation Model	
			(ITU-R P.1546-4)	
		2.6.2.6	Interference Prediction	39
			Model (ITU-R P.452	
			-14)	
	2.6.3	Receptio	on	41
		2.6.3.1	Receiver Sensitivity	42
			and Selectivity	
		2.6.3.2	Noise Figure and Noise	42
			Floor	
		2.6.3.3	Interference	44
		2.6.3.4	Blocking Interference	48
	2.6.4	Long Ter	rm Interference and Short	49
		Term Int	erference	
2.7	Coexis	tence and C	Compatibility Analysis	49
	2.7.1	Determi	nistic Analysis	50
	2.7.2	Statistic	al Analysis	51
2.8	The DD Spectrum Overview			52
2.9	Service	es in the 47	0-862 MHz Band	53
	2.9.1	Future M	Iobile Communication	54
		System,	IMT-A	
		2.9.1.1	IMT-A Requirement	55
	2.9.2	Televisio	on Digital	57
		Broadca	sting	
		2.9.2.1	Benefits of DB	59
2.10	Related	l Studies of	Sharing in Between	60
	Mobile	and DB Se	ervice	
2.11	Summa	ary		62
RESE	ARCH	METHOD	OLOGY	63
3.1	Introdu	iction		63
3.2	Literat	ure Review	7	64
3.3	IMT-A	and DB C	oexistence and	65
	Spectr	um sharing		

3

	3.3.1	IMT-A and DB	Coexistence	66
	3.3.2	Spectrum Sharin	Techniques	67
3.4	Summa	ſy		67
COE	XISTEN	CE AND SPECT	RUM SHARING	68
BET	WEEN I	MT-A AND DIG	ITAL	
BRO	ADCAS'	TING IN THE BA	AND 790-862 MHZ	
4.1	Introdu	ction		68
4.2	System	Parameters and S	imulation	69
	Assum	ptions		
	4.2.1	LTE-A		69
	4.2.2	The WiMAX Pa	arameters	70
	4.2.2	The DB Parame	ters	71
4.3	Spectru	m Sharing and Inte	erference	72
	Assessr	nent Methodologie	es	
4.4	Coexist	ance Model for M	obile-OFDM-	73
	Based	and DB COFDM-	Based	
	4.4.1	Proposed Metho	od	74
	4.4.2	Assumptions an	d Sharing Scenario	78
4.5	The De	veloped EC Mode	el	79
	4.5.1	The CC Model		79
		4.5.1.1 The	Limitation of the	79
		CCI	Model	
	4.5.2	The CC and EC	Model Steps	80
		4.5.2.1 The	CC Model Steps	80
		4.5.2.2 The	EC Model Steps	84
	4.5.3	Comparisopn E	Between WiMAX	85
		and LTE-A via	EC Model	
		4.5.3.1 Sha	ring Scenario	86
4.6	The Pr	posed Simulation	Model	87
	4.6.1	Frequency Plan	s for Terrestrial DB	88
		and Mobile Tele	ecommunication	
		Services in the	790–862 MHz Band	
	4.6.2	The Significant	of the Developed	89

4

	Simulation	
4.6.3	The Proposed Simulation	90
	Coexistence Model Setps	
	4.6.3.1 Interference Ass-	91
	-essment Methodology	
4.6.4	Sharing Scenarios Based on the	94
	Proposed Simulation Model	
Spectru	m Sharing and Compatibility	97
Improv	ement Between Mobile and	
Broadc	asting Services	
Summa	ary	97
COGNI	TIVE RADIO SPECTRUM	98
RING EN	NHANCING METHOD THE BAN	D
362 MHZ		
Introdu	ction	98
The EC	CC 159 CR Spectrum Sharing Methods	s 98
System	Parameters and Assumptions	100
The Sp	ectrum Sharing between the CR and	100
the DB		
5.4.1	Detection Threshold Methodology	101
5.4.2	The CR Emission Limits for the	102
	Broadcasting Protection	
	Methodology	
	5.4.2.1 The Clutter Loss	103
5.4.3	Sharing Scenario for the Protection	103
	of DB Service From the CR	
The En	hancement to the CR Sensing Model	104
The Pro	posed Spectrum Sensing Method	105
Summa	ary	106
	4.6.4 Spectru Improv Broadc Summa COGNI RING EI 362 MHZ Introdu The EC System The Sp the DB 5.4.1 5.4.2 5.4.2	Coexistence Model Setps 4.6.3.1 Interference Ass- -essment Methodology 4.6.4 Sharing Scenarios Based on the Proposed Simulation Model Spectrum Sharing and Compatibility Improvement Between Mobile and Broadcasting Services Summary COGNITIVE RADIO SPECTRUM RING ENHANCING METHOD THE BANI 362 MHZ Introduction The ECC 159 CR Spectrum Sharing Methods System Parameters and Assumptions The Spectrum Sharing between the CR and the DB 5.4.1 Detection Threshold Methodology 5.4.2 The CR Emission Limits for the Broadcasting Protection Methodology 5.4.3 Sharing Scenario for the Protection of DB Service From the CR The Enhancement to the CR Sensing Model The Proposed Spectrum Sensing Method

BETWEEN

SHARING

5

6

DIGITAL

BROADCASTING AND COGNITIVE RADIO

6.1	Introduction			
6.2	CR Spe	ctrum Sharing Problems	109	
	6.2.1	Spectrum Sensing Problems	109	
	6.2.2	GLD Spectrum Sharing Problems	110	
6.3	The W	LGCC Concept	110	
	6.3.1	The WLGCC Deployment	111	
	6.3.2	The WLGCC Workflow	111	
	6.3.3	The GCC Frequency Channel	113	
		Allocation		
6.4	Propos	ed Enhancing to the CR method	115	
6.5	Method	ology and Sharing Scenario	116	
	6.5.1	Finding the WLGCC System	117	
		Deployment Parameters		
	6.5.2	WLGCC-TX emission limits	117	
	6.5.3	Clutter Loss	118	
	6.5.4	Determining the Compatibility	119	
		Between the WLGCC and CR		
		Systems		
	6.5.5	Monte Carlo Methodology for	121	
		Determining the Compatibility		
		between the WLGCC-TX and DB		
		SS		
6.6	Summa	ary	122	
RES	ULTS AN	ND DISCUSSION	123	
7.1	Introdu	uction	123	
7.2	The OF	FDM-COFDM based Co-existence	123	
	Model	Results and Discussions		
7.3	The EC	Model Results and Discussions	125	
	7.3.1	The Attenuation due to SEM and	125	
		Blocking in EC Model		
	7.3.2	Comparison Results Between the	128	
		EC and the CC Models		

7

	7.3.3	7.3.3 The Comparative Results Between		
	WiMAX and LTE-A via EC Model			
		7.3.3.1	IMT-A Candidate as	131
			an Interferer into the	
			DB-SS	
		7.3.3.2	DB-BS as an Interferer	135
			into the LTE-A BS	
7.4	The Pr	oposed Simu	ulation Model Results and	136
	Discus	sions		
	7.4.1	LTE-A (BS, UE) Interference With	137
		DB-SS		
		7.4.1.1	LTE-A BS as an	137
			Interferer	
		7.4.1.2	LTE-A UE as an	139
			Interferer	
	7.4.2	DB-BS int	erference with LTE-A	139
		(BS, UE)		
		7.4.2.1	LTE-A BS as a Victim	139
		7.4.2.2	LTE-A UE as a Victim	141
			Receiver	
7.5	The Cl	R Method R	esults and Discussion	143
	7.5.1	Spectrun	n Sensing Detection	143
		Threshol	d (DT) Limitation	
	7.5.2	CR Emis	ssion Limits	144
7.6	The Er	nhanced Sen	sing Spectrum Sharing	146
	Model	Results and	Discussion	
7.7	The W	LGCC Prop	osed System Results and	147
	Discus	sion		
	7.7.1	WLGCC S	System Deployment	148
		Paramete	rs	
	7.7.2	Compatib	bility Between the WLGCC	150
		and the C	R-UE	
7.8	Compa	atibility betw	veen the WLGCC and the	152

DB-SS

	7.9	Summa	ry	153	
8	CONC	CLUSIO	CLUSION		
	8.1	Conclus	sion	156	
		8.1.1	Conclusions regarding the OFDM	156	
			COFDM Model		
		8.1.2	Conclusions regarding the EC	157	
			Model		
		8.1.3	Conclusions regarding the CR	158	
			Enhanced Model		
		8.1.4	Conclusions regarding the WLGCC	159	
			System		
	8.2	Future '	Works	160	
REFERENCES				161	
Appendices	A-D			174-201	

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	The RF spectrum characteristics	12
2.2	Interferer bandwidth impact on victim receiver	29
2.3	The relation between the modulation type and the C/N ratio	30
2.4	The Recommended spurious emissions limits	33
2.5	Propagation models	36
2.6	A brief summary on mobile generation andits featuers	54
2.7	LTE and LTE-A requirement compared to IMT-A	57
	requirements	
4.1	LTE-A parameters in rural and urban area deployment	69
4.2	WiMAX paramters in rural and urban area deployment	71
4.3	DB parameters in rural and urban area deployment	71
4.4	The spectrum sharing scenarios	86
5.1	The CR and DVB-T parameters in rural and urban	100
	deployment	
7.1	WLGCC deployment parameters	135
7.2	The spectrum sharing requirement for interference from	136
	DB-BS (8MHz) into LTE-A (20 MHz)	
7.3	WLGCC deployment paramters	150
7.4	WLGCC coverage	151

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	The RF spectrum	12
2.2	The congested UHF band 'sweet spot'	14
2.3	The characteristic of the UHF band	15
2.4	The difference of operating frequency properties blows	15
	and 1 above GHz	
2.5	The spectrum sharing dimensio	18
2.6	The frequency reuse based on separation distance in	19
	mobile services	
2.7	Classification of spectrum base on the application	21
2.8	Underlay (above) and overlay (below) spectrum sharing	22
	methods	
2.9	The schematics of CR	24
2.10	The basic communication blocks	27
2.11	Transmission essential components	28
2.12	Theoretical transmission mask	30
2.13	Spectral transmission using OOK and OFDM modulation	31
2.14	The effect of the unwanted emission	32
2.15	The Unwanted emission components (POOB and	32
	Spurious emissions)	
2.16	The difference between the practical and theoretical mask	34
2.17	The clutter loss parameters	41
2.18	The reception essential components	41
2.19	The reception at the receiver	42
2.20	The ACLR measurement	45
2.21	The ACS measurements	45

2.22	The in band and out of band adjacent channel interference	46
2.23	The blocking effect	48
2.24	Origin of DD band	52
2.25	Different systems and technologies are connected through	55
	the all IP networks	
2.26	The LTE-Advance targets exceed the IMT- requirement	56
	in the ITU time line	
2.27	The deployment of the DB system around the world	58
3.1	The research methodology flow chart	64
3.2	The compatibility methodologies flow chart	65
4.1	PSD $S_{\nu}(f)$ of the COFDM-based victim system	75
	overlapping with the PSD $S_s(f)$ of OFDM-based	
	interfering system	
4.2	The mask attenuation calculation based on the SEM	82
	breaking points.	
4.3	Preferred channel arrangement	88
4.4	Simulation model flowchart to determine the minimum	90
	separation distance	
4.5	Sharing of 790-862 MHz band between LTE-A (5MHz)	95
	and DB service.	
4.6	Sharing of 790–862 MHz band between LTE-A (20MHz)	95
	and DB service	
5.1	The schematic of CR operation	99
5.2	The compatibility scenario between the DB and the CR	104
5.3	Adjacent channel sharing scenario between CR and DB	104
	service	
6.1	Proposed deployment of the WLGCC system	111
6.2	WLGCC workflow for allocating the TVWS	112
6.3	TVWS in the UHF band (0–1000 MHz)	114
6.4	Allocation of WLGCC system on channel 49	114
6.5	WLGCC enhancement of CR spectrum sharing methods	115
6.6	Calculation of the coverage of the WLGCC based on C/I	120
	criterion	

6.7	Compatibility between the WLGCC-TX and DB-SS	121
7.1	Comparison of the achieved minimum separation	124
	distances between A-MCL and the proposed method	
7.2	Comparison between the attenuation due to DB SEM and	126
	LTE-A (5, 20 MHz) receiver blocking	
7.3	Comparison between the attenuation due to LTE-A (5	127
	MHz) SEM and DB-SS receiver blockin	
7.4	Comparison between the attenuation due to LTE-A (20	127
	MHz) SEM and DB-SS receiver blocking	
7.5	Comparison between the CC and EC models in the	128
	interference from 8 MHz DB into 20 MHz IMT-A	
7.6	Comparison between the CC and the EC models in the	129
	interference from 8 MHz DB into 20 MHz IMT-A	
7.7	The sharing of DB and IMT-A in adjacent channel	130
	sharing scenario	
7.8	Spectrum sharing scenario in which either LTE-A (5	131
	MHz) or WiMAX (5 MHz) is interfering with DB (8	
	MHz) in a rural environment	
7.9	Spectrum sharing scenario in which either LTE-A (5	132
	MHz) or WiMAX (5 MHz) is interfering with DB (8	
	MHz) in an urban environment	
7.10	Spectrum sharing scenario in which either LTE-A (20	133
	MHz) or WiMAX (20 MHz) is interfering with DB (8	
	MHz) in an rural environment	
7.11	Spectrum sharing scenario in which either LTE-A (20	134
	MHz) or WiMAX (20 MHz) is interfering with DB (8	
	MHz) in an urban environment	
7.12	Interference from 5 MHz LTE-A for 8 MHz DB-SS in	137
	rural and urban areas.	
7.13	Interference from 20 MHz LTE-A for 8 MHz DB-SS in	138
	rural and urban areas.	
7.14	Interference from DB-BS for 5 MHz LTE-A in rural and	140
	urban areas	

7.15	Interference from DB-BS for 20 MHz LTE-A in rural and	140
	urban areas	
7.16	Interference from DB-BS for 5 MHz LTE-A in rural and	141
	urban areas	
7.17	Interference from DB-BS for 20 MHz LTE-A in rural and	142
	urban areas.	
7.18	The sensing detection threshold as a function of operating	143
	frequency from 470MHz to 790MHz	
7.19	The CR PIB in order not to affect the DB reception as a	144
	function of distance in rural and urban areas	
7.20	The CR POOB in order not to affect the DB reception as	145
	a function of distance in rural and urban area	
7.21	POOB comparison between ECC159 and the proposed	146
	method	
7.22	PIB comparison between ECC159 and the proposed	147
	method	
7.23	PIB _{WLGCC} as a function of ACIR value for five separation	148
	distances between WLGCC-TX and DB-SS (d2)	
7.24	POOB _{WLGCC} as a function of ACLR value for two	149
	separation distances between the WLGCC-TX and DB-	
	SS	
7.25	WLGCC power received by CR-UE in rural and urban	151
	environments	
7.26	Probability of interference between the WLGCC and the	152
	DB-SS in rural environment	
7.27	Probability of interference between the WLGCC and the	153
	DB-SS in urban environment	

LIST OF ABBREVIATIONS

2G	-	Second Generation
3G	-	Third Generation
4G	-	Fourth Generation
ACIR	-	Adjacent Channel Interference Ratio
ACLR	-	Adjacent Channel Leakage Ratio
ACS	-	Adjacent Channel Selectivity
AD	-	Antenna Discrimination
A-MCL	-	Advanced Minimum Coupling Loss
APT	-	Asian Pacific Telecommunity
ASO	-	Analogue Switch Off
ATSC	-	Advance Television System Committee
BS	-	Base Stations
C/I	-	Carrier-to-Interference Ratio
C/N	-	Carrier-to-Noise Ratio
C/N+I	-	Interference-to-Interference-Pulse-Noise Ratio
CC	-	Current Coexistence
CEPT	-	Conference for Postal And Telecommunity
CL	-	Clutter Loss
COFDM	-	Coded Orthogonal Frequency Division
		Multiplexing
CR	-	Cognitive Radio
CRS	-	Cognitive Radio System
DB	-	Digital Broadcasting
dBc		Decibels relative to the carrier
DB-SS	-	DB Subscriber Station
DD	-	Digital Dividend

DL	-	Downlink
DTMB	-	Digital Terrestrial Multimedia Broadcast
DTTB	-	Digital Terrestrial Television Broadcasting
DVB-H	-	Digital Video Broadcasting – Handled
DVB-T	-	Digital Video Broadcasting – Terrestrial
EC	-	Enhance Co-existence
E-MCL	-	Enhanced Minimum Coupling Loss
EM	-	Electromagnetic Fields
ESM	-	Exclusive Spectrum Management
E-UTRA	-	Evolved-UMTS Terrestrial Radio Access
FCA	-	Frequency Channel Assignment
FCC	-	Federal Communication Commission
FDD	-	Frequency Division Duplex
FDMA	-	Frequency Division Multiple Access
FS	-	Fixed Service
FSO	-	Frequency Separation Offset
GB	-	Guard Band
GCC	-	Global Communication Channel
GE-06	-	Geneva Agreement -2006
GE-89	-	Geneva Agreement-1989
GLD	-	Geolocation Database
GPS	-	Global Positioning System
HDTV	-	High Definition Tv
HSM	-	Hierarchical Spectrum Management
I/N	-	Interference-to-Noise Ratio
IMT-A	-	International Mobile Telecommunication-
		Advanced
ISM	-	Industrial, scientific, and medical
ITU	-	International Telecommunications Union
IP	-	Internet Protocol
ISDB-T	-	Integrated Service Digital Broadcasting –
		Terrestrial
LAN	-	Local Area Network

LOS		line-of –sight
LTE	-	Long Term Evolution
LTE-A	-	Long Term Evolution – Advanced
MCL	-	Minimum Coupling Loss
MIMO	-	Multiple Input And Multiple Output
MPEG	-	Moving Picture Experts Group
NB	-	Necessary Bandwidth
OFDM	-	Orthogonal frequency division multiplexing
OFDMA	-	Orthogonal Frequency Division Multiple Access
OOK	-	On Off Shift Keying
OSA	-	Opportunistic Spectrum Access
PIB	-	Power In-Band
POOB	-	Power Out-Of-Band
PIB-5		Power In-Band for 5 km away from DB receiver
PIB-10		Power In-Band for 10 km away from DB receiver
PR	-	Protection Ratio
PSD	-	power spectral density
PSTN	-	Public Switched Telephone Network
RF	-	Radio Frequency
RN	-	Reference Network
RPC	-	Reference Planning Configures
RRC-06	-	Regional Radiocommunication Conference-2006
SC	-	Spectrum Common
SEM	-	Spectrum Emission Mask
SNF	-	Single Frequency Network
SS	-	Subscriber Station
TDD	-	Time Division Duplex
TDMA	-	Time Division Multiple Access
TVWS	-	Television White Space
UE	-	User Equipment
UHF	-	Ultra High Frequency
UL	-	Uplink
UWB	-	Ultra Wide Band

WiMAX	-	Worldwide Interoperability for Microwave
		Access
WLGCC	-	Wireless Link Based On The Global
		Communication Channel
WLGCC-TX	-	WLGCC Transmitter
WRC-07	-	World Radio Conference-2007
WRC-12	-	World Radio Conference-2012
ZGB	-	Zero Guard Band

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Related Publications	174
В	Summary of Previous Spectrum Sharing Studies	176
С	Related Coexistence and Spectrum Sharing Parameters	191
D	The Malaysian Spectrum Chart	200

CHAPTER 1

INTRODUCTION

1.1 Introduction

The use of wireless applications is growing daily. As the spectrum is a limited viable resource, with new systems needing to share licensed frequencies with existing services, spectrum sharing and compatibility studies have become emerging research topics. Results of such studies can help guarantee that, within a shared frequency band, new systems can operate without performance degradation while existing services are protected. Such outcomes are considered necessary in order to save costs by preventing expected harmful interference impacts between new and former systems.

This thesis focuses on co-existence and spectrum sharing between the upand-coming mobile communications system known as the International Mobile Telecommunication-Advanced (IMT-A) and the Digital Broadcasting (DB) services within the 790–862 MHz sub-band of the congested ultra high frequency (UHF) band. By developing various co-existence and spectrum sharing models, this study aims to develop a co-existence requirement for these two services when sharing a portion of the spectrum. Additionally, the use of cognitive radio (CR) to enhance spectrum sharing between these two services is investigated. The introduction of DB with high spectral efficiency has helped to trigger a phasing-out of analog broadcasting. By using advanced technologies such as coding and compression, DB can more efficiently use the UHF spectrum; while analog broadcasting requires 8 MHz of bandwidth per channel, DB can deliver up to 14 channels over the same 8 MHz. This efficient use of spectrum has freed up a segment of the UHF band called the digital dividend (DD) band, resulting in a previously unthinkable availability of free spectrum within the UHF band. Since implementation of the Stockholm Plan in 1961, the lower UHF band (i.e., 470–862 MHz) had been reserved for analog broadcasting [1, 2]. However, at the latest Regional Radio Communication Conference in 2006 (RRC-06), all participating countries were given a mandate to migrate from analog to DB no later than 2015. This analog switch off (ASO) is extended to 2020 for countries that cannot meet the 2015 deadline, as well as to countries not present at RRC-06 [3].

The evolution of the mobile systems from voice-only to multimedia service has led to a corresponding increase in demand on the radio spectrum. The IMT-A is the next generation of mobile telephony standard [1] that aims to provide more multimedia service at higher quality; it will be available after the next World Radio Conference-2012 (WRC-012). The two main challenges in implementing IMT-A, which exemplify the demand created on the spectrum by such new technologies, are supporting a bandwidth of up to 100 MHz per channel and accommodating a high data rate. To cope with the introduction of both IMT-A and a new terrestrial broadcasting platform (i.e., DB), the World Radio Conference-2007 (WRC-07) passed two unanimous resolutions concerning the 790-862 MHz band: the first of these (224 of WRC-07) stated the intention of the administrations to protect the existing broadcasting system from the mobile system, while the second (794 of WRC-07) allocated the 470-806/862 MHz band to both mobile and broadcasting services as co-primary basis starting in 2015. Furthermore, the resolution (794 of WRC-07) requested that studies of sharing between the two services be conducted [4]. Based on this, a wide range of research has been conducted to investigate the preferred frequency channel assignment (FCA) of mobile services within the DD band. As of this time, two FCA proposals have been submitted to the International Telecommunications Union (ITU): the European Harmonized FCA, submitted by the

European Conference of Postal and Telecommunications Administrations (CEPT) in 2008 for Region 1 (Europe and Africa) [5] and the Asia–Pacific Telecommunity (APT) FCA proposal for Region 3 (Asia and the Pacific), submitted in 2010 [6].

1.2 Research Motivation

As the ITU has assigned the 470–862 MHz band to terrestrial DB and the IMT-A service will operate in the 791–862 MHz band [7], it is evident that these two services must share a spectrum, which might lead to performance degradation. As a result, studies of interference between the two services are required in order to ensure primary service protection (i.e., DB reception) and to maintain the quality of service of the newly introduced system (i.e., IMT-A). Such studies are needed to quantify possible compatibilities between the two services and to propose practical guidelines for efficient spectrum usage and reliable services.

Until all of the ITU-participating countries switch to DB (which is expected to occur between 2012 and 2020 [3]) and the commercial deployment of IMT-A (expected in 2015 [8]), the topic of spectrum sharing will be an important and challenging one between the two services. All research opinions, recommendations, and results will be considered as input notes to the upcoming WRC-12 and WRC-15, demonstrating that studies designed to find the most efficient approaches for utilizing the shared radio spectrum still represents an open area of research. One of the challenges facing the ITU is that spectrum sharing studies are difficult to standardize globally, as each country has its own spectrum planning scheme. Thus, each country must conduct its own spectrum sharing studies.

Although several studies of spectrum sharing between IMT-A and DB have already been conducted within the DD band and other bands, as shown in Appendix B, this study motivation for research is to further develop expected spectrum sharing scenarios as well as new spectrum sharing models. In addition, this study will investigate enhancement of the existing model of spectrum sharing between the two systems.

1.3 Problem Statement

IMT-A and DB services will need to share the existing spectrum while operating in a compatible manner. Both co-channel and adjacent channel interference may occur between the two services, with co-channel interference certain to occur between two territories or countries. If, for example, country A completes the ASO phase and deploys mobile services in the 790–862 MHz sub-band, while neighboring country B is in a transition period of switching from analog to DB and still using the 790-862 MHz sub-band for broadcasting services, then co-channel interference will occur in radio communication between the two countries. Likewise, adjacent channel interference may occur in one country between two services operating within the same geographical region. For instance, if a country has deployed mobile service in the 790–862 MHz sub-band where DB service is already operational in the 470–790 MHz band, then these two systems will experience adjacent channel interference with each other even though they are separated in the frequency domain. Such interference is more challenging when both services are active and cover the same area (i.e., a co-cited situation). Thus, the development of analytical and simulation models is needed to assess possible interference between the two systems and to find their necessary compatibility requirements. Enhancement of spectrum sharing between two systems can be considered as a viable solution to interference.

1.4 Research Objectives

The objective of this study is to evaluate the performance of a primary service (i.e., DB) when a new service (i.e., IMT-A) is introduced into the 790–862 MHz subband, and vice versa. This will be done by investigating expected sharing scenarios

when both services are deployed in the same geographical area (i.e., adjacent channel sharing scenarios) as well as when they share a frequency in two different geographical locations (i.e., co-channel channel sharing scenarios). The results of these assessments will set co-existence requirements for deploying both services. This result will also help fulfill the ITU-R study request concerning the sharing of these two services, demonstrating that spectrum sharing enhancement is required to maximize utilization of the spectrum.

Based on the statement of the research problem, the objective of the study can be broken down as follows:

- To investigate the interference impact of introducing the new mobile standard IMT-A in order to ensure protection of the DB service. The results of this will set co-existence requirements, including the required minimum separation distance and the width of the frequency guard band;
- To carry out a performance measurement of the new service (IMT-A) as it is affected by the primary service in order to find the required separation distance and guard band; and
- To investigate CR as a solution for enhancing spectrum sharing between IMT-A and DB within the DD band.

1.5 Research Scope

To carry out these research objectives, the scope of the study must include an identification of the system parameters of both services, as well as recommendations as to how each service should be deployed in different areas. Statistical methodology will be utilized to assess interference and evaluate performance. The IEEE 802.16m Worldwide Interoperability for Microwave Access (WiMAX) and Long Term Evolution-Advanced (LTE-A) systems will be used to represent the IMT-A service, while Digital Video Broadcasting-Terrestrial (DVB-T) will be used as a DB service. Various CR techniques will be investigated and applied in order to optimize spectrum sharing within the 790–862 MHz band.

The scope of the study covers the following:

- Literature review of current research, technical reports, and recommendations that have been published regarding the co-existence of IMT-A and DVB-T;
- Determination of the technical parameters of both mobile and DB services, along with their propagation models, interference criteria, and future frequency sharing scenarios;
- Determination of co-existence methodologies in order to evaluate the interference effect. For this, both mathematical and simulation models are considered;
- Development of an analysis tool to assess co-existence between DB and IMT-A;
- Investigation of CR spectrum sharing methods;
- Development and modeling of a proposed novel method for enhancing spectrum sensing techniques in order to achieve optimal spectrum usage within the UHF band; and
- Proposal of a system to enhance the spectrum sharing model of CR.

1.6 Significance and Contribution of the Research Work

The main significance of this research is that it assesses ways to maximize the utilization of the limited radio spectrum resource. Furthermore, as no IMT-A system will be deployed until 2015 [8], the findings of this research will be important to member countries of the ITU, as it will allow them to predict future scenarios and the consequences of deploying both services. The results of this study will provide recommendations for deployment of IMT-A and requirements for protection of the DB service. The study also introduces new co-existence models based on mathematical and simulation modeling. Finally, it introduces a new spectrum sensing sharing model and a proposed system to enhance spectrum sharing methods in the CR. Together, these contributions will be useful for the deployment of services within the same or adjacent geographical areas in such a manner that primary service is protected and higher spectrum utilization is achieved.

The contributions of this research are as follows:

- An analytical model to evaluate interference from IMT-A orthogonal frequency division multiplexing (OFDM) based on DB broadcasting-coded OFDM (COFDM) and using statistical methodology is developed (Chapter Four, Section 4.4);
- An analytical model to evaluate the interference between mobile and broadcasting services, and vice versa, based on the spectrum emission mask (SEM) of the interferer and the interference-to-noise (I/N) ratio of the victim receiver is developed using statistical methodology (Chapter Four, Section 4.5);
- 3. A simulation model based on statistical methodology is proposed to evaluate possible interference for DB victim receivers resulting from implementation of the ITU digital plan as well as for mobile service resulting from the European FCA (Chapter Four, Section 4.6);
- 4. A CR spectrum sensing model to enhance spectrum sharing between IMT-A and DB within the DD band is developed (Chapter Five, Section 5.5); and
- 5. A new system for enhancing spectrum sensing and geo-location database (GLD) sharing methods in CR is introduced (Chapter Six, Section 6.3).

1.7 Organization of the Thesis

In compliance with the theoretical and practical aspects of the study, this thesis consists of eight chapters, each providing a detailed discussion of the respective issues.

• Chapter One provides an introduction and background to the research, in order to demonstrate the importance of the topic and shape the lines of argument in the research. Following this, the motivation for research, statement of the problem, objectives of the research, research scope, significance of the study, and, finally, the thesis outline are presented.

- The theory and the literature review are presented in Chapter Two, which provides the theory behind the relevant work as well as recommendations relating to DB and IMT-A systems, co-existence requirements, spectrum sharing methods, and related work. As co-existence between the new mobile service (IMT-A) and the new broadcasting platform DVB-T services is a currently popular topic for research, the literature review will proceed until the writing of the final draft of this thesis. The chapter also reviews the related studies in co-existence and spectrum sharing.
- In Chapter Three, the methodologies used to achieve the results of this study are provided. These are divided into five parts: a literature review, development of an analytical model of a sharing technique to evaluate the coexistence requirements between IMT and DB services, investigation of the CR as a spectrum sharing technique, enhancement of CR spectrum sharing methods, and proposal of a new system to enhance CR spectrum sharing methods.
- Chapter Four provides a detailed description of co-existence between IMT-A and DB within the DD band. This chapter represents the core of the research conducted to formulate the current problem of interference between these two systems. Statistical methodology is used to understand the conditions for compatibility between the systems, and the results of this chapter will clarify and call attention to the consequences of interference impact between the two systems when they share the 790–862 MHz spectrum.
- In Chapter Five, CR spectrum sharing techniques for enhancing the coexistence between IMT-A and DB within the DD band are investigated. The chapter provides details of current spectrum sensing methodologies and introduces a model for enhancing CR system spectrum sensing methods.
- In Chapter Six, a new system for enhancing the CR spectrum sharing model is proposed. Additionally, this chapter provides arguments and discussion pertaining to the new system. A justification of the utility of the new system and sharing scenarios to investigate its validity are provided.
- Chapter Seven provides research results and discussion. An extensive analysis of co-existence and spectrum sharing methodologies is conducted.

• Finally, Chapter Eight is devoted to the overall conclusions of the research. This is followed by a discussion of future work needed to enhance coexistence between DB and IMT-A system.

APPENDIX A

PUBLICATIONS

Journal Papers

- Walid A Hassan., *et al.* Spectrum Sharing Method for Cognitive Radio in TV White Spaces.KSII Transactions on Internet and Information Systems (TIIS). 2012. 6 (8): 1894-1912.
- Walid A. Hassan. A Spectrum Sharing Model for Compatibility between IMT-Advanced and Digital Broadcasting.KSII Transactions on Internet and Information Systems (TIIS). 2012. 6 (9): 2073-2085.

Conference Papers

- Walid A. Hassan, Tharek Abd Rahman "Compatibility between Cognitive Radio and the Terrestrial Digital Broadcasting Services in the Digital Dividend Band". *Proceedings of PIERS 2012 in Kuala Lumpur*, Malaysia. 27-30 March, 2012.)
- Walid A. Hassan, Yusuf Abdulrahman, Tharek Abd Rahman "The Digital Dividend Spectrum in Asia.". *Proceedings of PIERS 2012 in Kuala Lumpur*, Malaysia. 27-30 March, 2012.)

- Walid A. Hassan, Tharek Abd Rahman "Compatibility between the IMT-A service with digital broadcasting in the digital dividend band". ICWCA 2012, 8 10 October 2012.Kuala Lumpur, Malaysia. IEEE/IET. (Accepted, in press)
- Yassir A. Ahmad, Walid A. Hassan, Tharek Abd Rahman. Studying Different Propagation Models for LTE-A System.. *The International Conference on Computer & Communication Engineering 2012, ICCCE 12,* Kuala Lumpur, Malaysia. July 12. IEEE (Accepted) (*In Press*).
- Mastaneh Mokayef. Walid A. Hassan, Yassir A. Ahmad, Tharek Abd Rhman. Optimizing the coexistence between HAPS platform and terrestrial system in 5.7GHz band. *The International Conference on Computer & Communication Engineering 2012, ICCCE 12*, Kuala Lumpur, Malaysia. July 12. IEEE (Accepted) (*In Press*).
- Mastaneh Mokayef. Walid A. Hassan, Yassir A. Ahmad, Tharek Abd Rhman .Enhancement of Coexistence between HAPS and Terrestrial System in 5.8 GHz Band *Proceedings of PIERS 2012 in Moscow*, Russia. 19-23 August, 2012. (Accepted). (*In Press*)
- Mastaneh Mokayef. Walid A. Hassan, Yassir A. Ahmad, Tharek Abd Rhman .Utilizing ATPC Scheme to Facilitate Sharing between HAPS and Terrestrial in 5.8 GHz Band *Proceedings of PIERS 2012 in Moscow*, Russia. 19-23 August, 2012. (Accepted). (*In Press*)
- Mastaneh Mokayef. Walid A. Hassan, Yassir A. Ahmad, Tharek Abd Rhman .Applicability of DCA in HAPS-based Systems in 5850--7075 MHz Band . *Proceedings of PIERS 2012 in Moscow*, Russia. 19-23 August, 2012. (Accepted) (*In Press*)