MODELING AND PERFORMANCE EVALUATION OF SELF-SIMILAR BEHAVIOR OF MPEG-4 VIDEO TRAFFIC GENERATORS

IZZELDIN IBRAHIM MOHAMED ABDELAZIZ

UNIVERSITI TEKNOLOGI MALAYSIA

MODELING AND PERFORMANCE EVALUATION OF SELF-SIMILAR BEHAVIOR OF MPEG-4 VIDEO TRAFFIC GENERATORS

IZZELDIN IBRAHIM MOHAMED ABDELAZIZ

A thesis submitted in fulfilment of the requirements for the award of the degree of Doctor of Philosophy

> Faculty of Electrical Engineering Universiti Teknologi Malaysia

> > APRIL 2006

TO MY PARENTS, MY LOVELY WIFE, MY BROTHERS AND SISTERS,

MY BROTHERS AND SISTERS IN LAW.

ACKNOWLEDGEMENT

First and foremost, I would like to praise and thanks the almighty God for giving me the motivation, determination, patience and paving my path to achieve my goals.

A number of people have directly or indirectly contributed to this thesis. To all these people I express my deepest gratitude. Without them this thesis would not exist. Most of all I would like to express my deepest and warmest appreciation to my supervisor, Assoc. Prof. Dr. Sulaiman Bin Mohd Nor for the inspiration and guidance he has given me during good as well as difficult times. He has continually introduced me to many interesting problems and guided me in their solutions. Throughout he has been most valuable, helpful and understanding; he has let me enjoy my academic freedom yet has skillfully guided me to a successful completion of this thesis. I would also like to acknowledge my co-supervisor, Assoc. Prof. Dr. Ali Bin AbdRahman for providing me the right environment for research, being supportive, understanding and it was under his guidance that I (firmed) up my basics in self-similar and chaotic processes.

My colleague and friend Dr. Elfadil Abdallah Mohamed deserves special thanks for all the help he has provided along the way. He has been instrumental in my understanding of C programming and was always available for me. I would like to express my sincere thanks to the Universiti Teknologi Malaysia that awarded the fellowship (Project Vote No. 72392) for this PhD. Degree program. A special thank is extended to Sudan government for their financial support and paid study leave. I have also benefited my many fruitful discussions on many different subjects with my dear friends and colleagues. In particular, to ECAD postgraduate students: Avinash, Hau, Arul and Cheow. Furthermore, Technicians En. Zul and En. Din.

Last but not least, especial thanks are due my family. I thank my wife for bearing with my many temperaments during this period. Without her support and encouragement, I would not have been able to complete this work. My parents, brothers and sisters have from the very beginning encouraged me all the way. Without them behind me, I would have given up a long time ago.

ABSTRACT

Variable bit rate (VBR) Moving Pictures Expert Group (MPEG) video is one of the major applications used on networks. Effective design and performance analysis of such networks thus depends on accurate modeling of MPEG video traffic. Recent studies of real traffic data in modern computer networks have shown that traffic exhibits long-range dependence (LRD) properties over a wide range of time scales. The predominant way to quantify the long-range dependence is the value of the Hurst parameter, which shapes the autocorrelations of LRD processes, and it is needed for determining variance of such a process. Thus, correct and efficient estimation of the Hurst parameter is important in traffic analysis. There are several different methods to estimate the Hurst parameter, we have evaluated the most commonly used methods for estimating the self-similarity parameter H using appropriately long sequences of data. Estimators considered include, wavelet-based, R/S-statistic, variance-time, absolute-based and Periodogram-based. Our results have pointed to the wavelet-based estimator and R/S-based estimator as the most efficient estimators of the Hurst parameter. There is still a considerable debate about how to model the VBR video traffic. Many models have been proposed for the modeling of traffic sources. However, further work is required to verify their accuracy for modeling the MPEG video traffic. This thesis evaluates three different traffic source models, namely the Hosking-based model, the RMD-based model and chaotic mapbased model in terms of their statistical characteristics and to compare their outputs with the empirical traces to validate their effectiveness for modeling the MPEG-4 video traces. A comparison of the packet loss rate, queuing delay and throughput performance of RMD-based generator and chaotic-based generator with the performance of the real trace is used in validation of the models. Our simulation results show that the chaotic-based model capture the statistical characteristic of empirical traces better than Hosking-based and RMD-based models.

ABSTRAK

Video Kumpulan Pakar Gambar Bergerak Kadar Bit Boleh Ubah (MPEG VBR) merupakan salah satu aplikasi utama digunakan dalam rangkaian. Analisa prestasi dan rekabentuk berkesan rangkaian sebegini bergantung pada pemodelan trafik video yang tepat. Kajian terkini data trafik nyata pada rangkaian komputer moden mendapati trafik menunjukkan ciri pergantungan jarak panjang (PJP) "serupa diri" pada skala masa jarak lebar. Kaedah utama menentu nilai pergantungan jarak panjang adalah dengan menggunakan nilai parameter Hurst, yang membentuk autokorelasi proses PJP. Nilai Hurst diperlukan untuk menentukan varians proses PJP. Oleh itu, anggaran parameter Hurst yang tepat dan efisyen amat penting dalam analisa trafik. Terdapat beberapa kaedah untuk menganggar nilai Hurst. Kami telah menggunakan kaedah lazim untuk menganggar parameter H menggunakan data berurutan panjang. Penganggar yang digunakan termasuk asas-wavelet, statistik R/S, masa-varians, asas absolut dan asas Periodogram. Keputusan yang kami perolehi: menunjukkan penganggar berasas wavelet dan berasas R/S sebagai penganggar paling efisyen. Masih terdapat perdebatan bagaimana memodel trafik video VBR. Banyak model yang telah dicadangkan bagi memodel sumber trafik. Walau bagaimanapun, kajian lanjut diperlukan untuk mengesah ketepatan trafik video MPEG. Dalam tesis ini, kami menilai tiga jenis model trafik MPEG VBR iaitu model berasas Hosking, model berasas RMD dan model berasas chaotic dari sudut ciri-ciri statistik dan membandingkan keluaran setiap satu dengan kesan empirikal sebagai pengesahan keberkesanan memodel kesan video MPEG-4. Perbandingan kadar hilang sel, lengah beratur, dan prestasi truput penjana asas RMD dan asas chaotic dibuat dengan prestasi trafik sebenar untuk mengesah model-model. Hasil simulasi, menunjukkan model berasas chaotic menghampiri ciri-ciri statistik kesan empirikal berbanding model berasaskan RMD dan Hosking

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	DECL	ARATION	ii
	DEDIC	CATION	iii
	ACKN	IOWLEDEGEMENT	iv
	ABST	RACT	v
	ABST	RAK	vi
	TABL	E OF CONTENTS	vii
	LIST (OF TABLES	xii
	LIST (OF FIGURES	XV
	LIST (OF SYMBOLS	xviii
	LIST (OF ABBREVIATIONS	XX
	LIST (OF APPENDICES	xxiii
1	INT	RODUCTION	1
	1.1	Prelude	1
	1.2	Problem Formulation	3
	1.3	Objectives	4
	1.4	Scope of Study	5
	1.5	Importance of the Study	7
	1.6	Original Research Contributions	7

1.7Organization of this Thesis8

SOU	RCE TH	RAFFIC MODELING	1			
2.1	Mode	ling: Context and Motivation	1			
2.2	MPEC	G Video Compression	1			
2.3	Source	e Traffic Modeling Approaches	1			
	2.3.1	Stochastic Source Models	1			
		2.3.1.1 Stochastic Short-Range Dependent				
		Source Traffic Models	1			
		2.3.1.2 Stochastic Long-Range Dependent				
		Source Traffic Models	1			
	2.3.2	Deterministic Models	2			
2.4	Mathe	ematical Analysis of Fractional Brownian				
	Mode	Model				
	2.4.1	Fractional Brownian Motion: Definitions				
		and Basic Properties	2			
	2.4.2	Fractional Brownian Motion: Simulation				
		Method	3			
		2.4.2.1 Hosking Method	3			
		2.4.2.2 Random Midpoint Displacement				
		Method	3			
2.5	Chaot	ic Maps Model	3			
	2.5.1	Chaotic Maps as Models of Packet Traffic	3			
	2.5.2	Fixed Point Double Intermittency Map				
		(FPDI)	2			
		2.5.2.1 Bernoulli-Shift Map – Light OFF				
		and ON	2			
		2.5.2.2 Non-Linear Map of Erramilli &				
		Singh – Heavy OFF, Light ON	2			
		2.5.2.3 Double Intermittency Map (DI) –				
		Heavy OFF and ON	4			
		2.5.2.4 Fixed Point Intermittency Map (FPI)				
		– Heavy OFF, Light ON	4			
2.6	Concl	usion	4			

2

3	MAT	ГНЕМА	TICAL PRELIMINARIES AND HURST				
	PAR	PARAMETER ESTIMATION TECHNIQUES					
	3.1	The N	lathematics of the Self-Similarity	45			
	3.2	Self-S	Similarity Definitions	48			
		3.2.1	Cox's Definitions of Self-Similarity: Long-	_			
			Range Dependence	48			
		3.2.2	Equivalent Definitions of Self-Similarity	52			
	3.3	Deter	ministic Chaos	57			
		3.3.1	Sensitive Dependence on Initial Condition				
			(SIC)	62			
		3.3.2	Lyapunov Exponent	64			
		3.3.3	Logistic Map: Self-Similarity	65			
	3.4	Hurst	Parameter Estimation Techniques	65			
		3.4.1	Wavelet-Bases Estimator	67			
		3.4.2	R/S Analysis Estimator	69			
		3.4.3	Variance-Time Estimator	71			
		3.4.4	Absolute-Moments Estimator	73			
		3.4.5	Periodogram-Based Estimator	73			
4	ANA	LYSIS:	HURST ESTIMATORS, CHAOTIC				
	MAF	PS AND	MPEG-4 VIDEO TRACES	77			
	4.1	Introd	uction	77			
	4.2	Critic	al Review of Hurst Parameter Estimation				
		Techn	iques	78			
		4.2.1	Hurst Estimation: Minimum Sample Sizes	78			
			4.2.1.1 H Analysis: Wavelet-Based				
			Technique	79			
			4.2.1.2 H Analysis: R/S-Based Technique	81			
			4.2.1.3 H Analysis: Variance-Time Technique	00			
			4.2.1.4 H Analysis: Absolute Moments	82			

Technique

84

		4.2.1.5 H Analysis: Periodogram-Based	
		Technique	85
	4.2.2	Hurst Parameter Estimators: Numerical	
		Comparison	87
	4.2.3	Discussion: Hurst Estimators	89
4.3	Effects	s of Non-Stationary in Long-Range	
	Depen	dent Tests	89
	4.3.1	Types of Non-Stationary Effects	89
	4.3.2	Analytical Investigations	90
		4.3.2.1 Variance-Time Plot of LRD Data	
		with Level Shift	90
		4.3.2.2 R/S Plot of LRD Data with Level	
		Shift	93
		4.3.2.3 Discussion: Effects of Level Shift	95
4.4	Mathe	matical Analysis of Fixed Point	
	Interm	ittency Chaotic Map	96
	4.4.1	Spectrum Analysis and Hurst Parameter	
		Estimation	96
	4.4.2	Generation of fBm: Sources Aggregation	99
4.5	Synthe	etic Generators: RMD vs. Chaotic Map	
	(Intern	nittency)	102
	4.5.1	Accuracy of the Generated Sequences	102
	4.5.2	Synthetic Traces: Speed of Generation	105
4.6	Statisti	ical Analysis of MPEG-4 Video Traces	107
	4.6.1	Autocorrelation of MPEG-4 Video Traces	109
	4.6.2	Aggregation of MPEG-4 Video Traces	114
	4.6.3	Hurst Parameter of MPEG-4 Video Traces	115
4.7	Conclu	ision	118
VID	EO TRA	FFIC: ANALYSIS AND SIMULATION	
RES	ULTS		119

	5.2	Statist	ical Analysis Results	119
		5.2.1	Frame-Level Analysis for Die Hard III	120
		5.2.2	GoP-Level Analysis for Die Hard III	129
		5.2.3	Discussion: Die Hard III	133
		5.2.4	Frame-Level Analysis for News ARD	
			R&TV	133
		5.2.5	GoP-Level Analysis for News ARD R&TV	141
		5.2.6	Discussion: News ARD R&TV	145
	5.3	Simul	ation Evaluation of the Synthetic Generated	
		Traces	5	145
		5.3.1	Network Simulator NS-2	146
		5.3.2	Simulation Configuration and Parameters	146
		5.3.3	Results and Analysis for the Packet Loss	
			Rate	147
		5.3.4	Results and Analysis for the Queuing Delay	150
		5.3.5	Results and Analysis for the Throughput	151
	5.4	Concl	usion	153
6	CON	CLUSI	ONS AND FUTURE WORK	155
	6.1	Concl	usions	155
	6.2	Limita	ations of the Work and Suggested Future	
		Work		158
REFERENCES				160
APPENDIX A				182-220

LIST OF TABLES

TABLE NO

TITLE

PAGE

3.1	Chaos and Fractals	58
3.2	Tent Map: Periodic orbit	61
3.3	Baker's function 10 th iterations of 1/3 and 0.333	63
3.4	Algorithm for R/S analysis plot	70
3.5	Algorithm for variance-time plot	72
3.6	Algorithm for Periodogram-based method	76
4.1	Relative Inaccuracy ΔH of \hat{H} using wavelet-based	
	estimator	80
4.2	Relative Inaccuracy ΔH of \hat{H} using R/S estimator	82
4.3	Relative Inaccuracy ΔH of \hat{H} using variance-time plot	
	estimator	83
4.4	Relative Inaccuracy ΔH of \hat{H} using absolute moment's	
	estimator	84
4.5	Relative Inaccuracy ΔH of \hat{H} using Periodogram-based	
	estimator	86
4.6	Relative Inaccuracy ΔH of H estimators	
	$(n=32,768=2^{15})$	88
4.7	Relative Inaccuracy ΔH of $H = 0.6, 0.7, 0.8$ and 0.9	103
4.8	The running times of the generators "in seconds"	106
4.9	Overview of encoded video sequences	107
4.10	First entries on Die Hard III video sequence	108
4.11	Simple statistics of encoded sequences	108

4.12	Hurst estimates of I, B and P frames for the video the	
	sequences	115
4.13	Frame: Hurst estimates for the video sequences	116
4.14	GoP: Hurst estimates for the video sequences	116
4.15	Hurst parameter estimated as a function of the	
	aggregation level m	116
5.1	I, B and P frames statistical features: Die Hard III real &	
	synthetics	121
5.2	Frame-level statistical features: Die Hard III real &	
	synthetic traces	122
5.3	SK coefficients for Die Hard III traces real & synthetics	124
5.4	K-S Statistics: Die Hard III real & synthetics	125
5.5	Relative Inaccuracy: Die Hard III I, B and P frames	
	synthetic traces	128
5.6	Relative Inaccuracy: Frame-level Die Hard III synthetic	
	traces	128
5.7	GoP statistical features: Die Hard III real & synthetic	
	traces	129
5.8	SK coefficients for Die Hard III GoP traces real &	
	synthetic	130
5.9	K-S Statistics: GoP Die Hard III real & synthetics	131
5.10	Relative Inaccuracy: GoP Die Hard III synthetic traces	132
5.11	I, B and P frames statistical features: News ARD real &	
	synthetics	134
5.12	Frame statistical features: News ARD real Y synthetic	
	traces	135
5.13	SK coefficients for frame-level News ARD real &	
	synthetic traces	136
5.14	K-S Statistics: Frame-level News ARD real & synthetic	
	traces	136
5.15	Relative Inaccuracy: News ARD I, B and P frames	
	synthetic traces	140
5.16	Relative Inaccuracy: Frame-level News ARD synthetic traces	140

5.17	GoP statistical features: News ARD real & synthetic	
	traces	141
5.18	SK coefficients: GoP level News ARD real & synthetic	
	traces	142
5.19	K-S Statistics: GoP News ARD real & synthetic traces	143
5.20	Relative Inaccuracy: GoP News ARD synthetic traces	145
5.21	Packet Loss Rate for Die Hard III: Real & synthetic	
	traces	149
5.22	Queuing Delay for Die Hard III: Real & synthetic traces	151
5.23	Throughput for Die Hard III: Real & synthetic traces	152

LIST OF FIGURES

FIGURE NO

TITLE

PAGE

1.1	Research methodology system architecture	5
1.2	Detailed methodology system architecture	6
2.1	Example of MPEG-4 GoP pattern and dependency	14
2.2	Traffic modeling approaches	18
2.3	Discovery of burstiness	20
2.4	The relation between $Z((a + b)/2)$, $Z(a)$, $Z(b)$ and Z_{RMD}	34
2.5	RMD method	35
2.6	The first three steps in the RMD method	36
2.7	A Simple nonlinear map as packet generator	39
2.8	Packet arrival generated by Bernoulli-Shift map	41
2.9	Packet arrival generated by Non-Linear map of Erramilli	
	& Singh	42
2.10	Packet arrival generated by Double Intermittency map	43
2.11	Packet arrival generated by Fixed Point Intermittency	
	map	43
3.1	Simple example of a deterministic self-similar object	46
3.2	Block diagram of the definition of self-similarity	46
3.3	Mathematical representation of packet traffic flow	48
3.4	Chaos and fractal relationship	58
3.5	Fixed points	59
3.6	Attraction and repletion points	60
3.7	Tent map: Periodic orbit	61
3.8	Logistic map 500 th iterations of 0.299999 and 0.3	63
3.9	Lyapunov exponent of logistic map	64

3.10	Logistic map: Self-similarity	65
4.1	Estimate of H obtained using the wavelet-based estimator	80
4.2	Estimate of H obtained using the R/S estimator	81
4.3	Estimate of H obtained using the variance-time plot	
	estimator	83
4.4	Estimate of H using the absolute moment's estimator	85
4.5	Estimate of H obtained using Periodogram-based	
	estimator	86
4.6	Bias performance of H estimators ($n=32,768=2^{15}$)	88
4.7	Types of non-stationary effect	90
4.8	Packet arrival generated by aggregating 50 sources of the	
	FPI map	101
4.9	Wavelet-based H estimator plots for the RMD method	103
4.10	Wavelet-based H estimator plots for chaotic map method	104
4.11	Sequences plots for the RMD method (H = $0.6, 0.7, 0.8$	
	and 0.9)	104
4.12	Sequences plots for the chaotic method (H = $0.6, 0.7, 0.8$	
	and 0.9)	105
4.13	Running times of the RMD and chaotic generators	106
4.14	MPEG-4 video trace (Die Hard III)	107
4.15	Autocorrelation: Die Hard III video trace	109
4.16	Autocorrelation: Star Wars IV video trace	110
4.17	Autocorrelation: Silence of the Lambs video trace	110
4.18	Autocorrelation: From Dusk Till Dawn video trace	111
4.19	Autocorrelation: Mr. Bean video trace	111
4.20	Autocorrelation: Robin Hood video trace	112
4.21	Autocorrelation: Formula 1 video trace	112
4.22	Autocorrelation: Soccer EURO96 video trace	113
4.23	Autocorrelation: News ARD R&TV video trace	113
4.24	Aggregated Die Hard III video trace	114
5.1	Flow chart for the generation of synthetic video	
	sequences	120
5.2	Histogram plots: Frame level Die Hard III traces real & synthetics	124

CDFs and QQ plots: Frame level Die Hard III real &	
synthetics	125
Autocorrelations: Die Hard III frames, real & synthetics	127
Histogram plots: GoP Die Hard III traces real &	
synthetic	130
CDFs and QQ plots: GoP Die Hard III traces real &	
synthetic	131
Autocorrelations: GoP Die Hard III real & synthetics	132
Histogram plots: Frame level News ARD real &	
synthetic traces	137
CDFs and QQ plots: Frame level News ARD real &	
synthetic traces	137
Autocorrelations: News ARD frames real & synthetics	138
Histogram plots: GoP News ARD real & synthetic traces	142
CDFs and QQ plots: GoP News ARD real & synthetic	
traces	143
Autocorrelations: GoP News ARD real & synthetic	
traces	144
Packetization MPEG traces	146
Simulation network configuration	147
Packet Loss Rate for Die Hard III: Real & synthetic	
traces	148
Queuing Delay for Die Hard III: Real & synthetic traces	150
Throughput for Die Hard III: Real & synthetic traces	153
	CDFs and QQ plots: Frame level Die Hard III real & synthetics Autocorrelations: Die Hard III frames, real & synthetics Histogram plots: GoP Die Hard III traces real & synthetic CDFs and QQ plots: GoP Die Hard III traces real & synthetic Autocorrelations: GoP Die Hard III real & synthetics Histogram plots: Frame level News ARD real & synthetic traces CDFs and QQ plots: Frame level News ARD real & synthetic traces Autocorrelations: News ARD frames real & synthetics Histogram plots: GoP News ARD real & synthetic traces CDFs and QQ plots: GoP News ARD real & synthetic traces Autocorrelations: GoP News ARD real & synthetic traces Autocorrelations: GoP News ARD real & synthetic traces Packetization MPEG traces Simulation network configuration Packet Loss Rate for Die Hard III: Real & synthetic traces Queuing Delay for Die Hard III: Real & synthetic traces Throughput for Die Hard III: Real & synthetic traces

LIST OF SYMBOLS

d		
\Rightarrow	-	Convergence of all finite-dimensional distributions
δ^2	-	Central second difference operator
\xrightarrow{d}	-	Convergence in law of random variables
$\gamma(ullet)$	-	Covariance
<i>d</i> ∼	-	Equality in law
$\stackrel{d}{=}$	-	Equivalent in distribution
\hat{H}	-	Estimated Hurst parameter
Γ	-	Gamma function
$\Lambda(X)$	-	Law of random variable X
$\overline{X}(n)$	-	Sample mean
σ^2	-	Variance
$\varDelta H$	-	Relative inaccuracy
[<i>z</i> .]	-	The greatest integer smaller than or equal to z
a	-	Peakedness factor
$B_{H}\left(t ight)$	-	Ordinary Gaussian process with zero mean and unit variance
Ε	-	Expectation
Н	-	Hurst parameter
I (•)	-	Periodogram
K_L	-	Maximum value of the linear trend
K_{LS}	-	Maximum value of the level shift trend
K_P	-	Maximum value of the Parabolic trtend
m	-	Mean traffic rate
r (k)	-	Autocorrelation function
S (•)	-	Power spectrum

$S^{2}(n)$	-	Sample variance
t	-	Time
$X\left(t ight)$	-	Amount of traffic arrived in $(0, t)$
Y_n	-	Discrete sample
Z(t)	-	Normalized fractional Brownian motion characterized by H

LIST OF ABBREVIATIONS

ACF	-	Autocorrelation Function
AR	-	Autoregressive
ARD	-	Abbreviation for "Arbeitsgemeinschaft der offentlich
		rechtlichen Rundfunkanstalten der Bundesrepublik
		Deutschland". This translates as the "Association of Public
		Broadcasting Corporations in the Federal Republic of
		Germany".
ARIMA	-	Autoregressive Integrated Moving Average
ARMA	-	Autoregressive Moving Average
ATM	-	Asynchronous Transfer Mode
Bell Lab	-	Bellcore Laboratory
B-Frame	-	Bi-directional-Frame
B-ISDN	-	Broadband-Integrated Service Digital Network
BMAP	-	Batch Markovian Arrival Process
CBR	-	Constant Bit Rate
CDF	-	Cumulative Distribution Function
CDMA	-	Code Division Multiple Access
CD-ROM	-	Compact Disc-Read Only Memory
D-BMAP	-	Discrete-Time Batch Markovian Arrival Process
DCA	-	Dynamic Channel Allocation
DI	-	Double Intermittency
DVD	-	Digital Video Disc –or – Digital Versatile Disc
E-Commerce	-	Electric Commerce
FARIMA	-	Fractional Autoregressive Integrated Moving Average
FGN	-	Fractional Gaussian Noise
FIR	-	Finite Impulse Response

FPDI	-	Fixed Point Double Intermittency
FPI	-	Fixed Point Intermittency
FTP	-	File Transfer Protocol
GoP	-	Group of Pictures
GRN	-	Gaussian Random Number
GSPP	-	Generalized Switched Poisson Process
HDTV	-	High Definition Television
IEC	-	International Electrotechnical Commission
I-Frame	-	Intra-Frame
IIR	-	Infinite Impulse Response
IP	-	Internet Protocol
IPP	-	Interrupted Poisson Process
ISO	-	International Organization of Standardization
K-S Statistic	-	Kolmogorov-Smirnov Statistic
LAN	-	Local Area Network
LFSM	-	Linear Fractional Stable Motion
LFSN	-	Linear Fractional Stable Noise
LRD	-	Long-Range Dependent
MAP	-	Markovian Arrival Process
Mbps	-	Megabytes per second
MLE	-	Maximum Likelihood Estimation
MMPP	-	Markov Modulated Poisson Process
MPEG	-	Moving Picture Experts Group
MTU	-	Maximum Transfer Unit
MWM	-	Multifractal Wavelet Model
NCSA	-	National Centre for Super-computing Applications
OTcl	-	Object Tool Command Language
PARC	-	Palo Ato Research Center
PDF	-	Probability Density Function
P-Frame	-	Predicted-Frame
PLR	-	Packet Loss Rate
QoS	-	Quality of Service
QQ	-	Quantile-Quantile

R&TV ARD	-	Radio and Television ARD
R/S	-	Rescaled-Adjusted Range
RFC	-	Request For Comments
RMD	-	Random Midpoint Displacement
RNG	-	Random Number Generator
RTCP	-	Real-Time Control Protocol
RTP	-	Real-Time Transport Protocol
SIC	-	Sensitive Dependence on Initial Conditions
SK	-	Pearsonian Coefficient of Skewness
SPP	-	Switched Poisson Process
SRD	-	Short-Range Dependent
SS7	-	Signaling System Number 7 Protocol
SSQ	-	Switched Scalar Quantizer
Tcl	-	Tool Command Language
TCP	-	Transmission Control Protocol
TDMA	-	Time Division Multiple Access
TES	-	Transform Expand Sample
TKN	-	Telecommunication Networks Group
TV	-	Television
UDP	-	User Datagram Protocol
VBR	-	Variable Bit Rate
VHS	-	Video Home System
VINT	-	Virtual InterNet Testbed
WAN	-	Wide Area Network
WWW	-	World Wide Web

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Statistical analysis: Seven video traces	182
A.1	I, B and P Frames Statistical Analysis.	183
A.2	Frame-Level and GoP-Level Statistical Analysis.	187
A.3	Histogram Plots: Frame-Level and GoP-Level.	190
A.4	SK Coefficients: Frame-Level and GoP-Level.	197
A.5	CDFs and QQ Plots: Frame-Level and GoP-Level.	199
A.6	K-S Statistics: Frame-Level and GoP-Level.	206
A.7	Autocorrelations: Frame-Level and GoP-Level.	208
A.8	Hurst Parameter Relative Inaccuracy: I, B and P	
	Frames.	215
A.9	Hurst Parameter Relative Inaccuracy: Frame-Level	
	and GoP-Level.	218

CHAPTER 1

INTRODUCTION

1.1 Prelude

Variable Bit Rate Moving Pictures Expert Group (VBR MPEG) video is one of the major applications used on current networks. Video traffic can range form relatively low bandwidth applications like video phone and video conference, to high bandwidth applications like full-motion entertainment video. In order to design networks that can meet the demands of these applications, a solid understanding of video traffic behavior is required.

Effective design and performance analysis of such networks thus depends on accurate modeling of video traffic. Among bursty traffic types, MPEG-4 video traffic flows are the most important and demanding to model, due to their bandwidth requirements, their complex correlation structures, and the difficulties in obtaining, storing and analyzing empirical video data.

MPEG-4 is the one that is most suitable for the Internet. It is targeted for low bit rates. It allows real images to co-exist with computer-generated counterparts and also allows their separation and their receiving different treatment due to interaction with the user. The main feature of importance to the network is MPEG-4's capability of real-time adaptive encoding. This enhances network utilization and enables MPEG-4 senders to be more responsive to changes in network conditions. It generates video in three different frame types (I, P, and B) that serve to encode different portions of the video signal in different levels of quality. Traditional (conventional) models have been used for VBR video traffic [135, 147, 151, 154]. These models exhibit short-range dependence (SRD), i.e., have an autocorrelation function that decays exponentially. Various studies [25, 60, 85, 86, 96] have shown that network traffic exhibit ubiquitous properties of self-similarity and long-range dependence (LRD). Intuitively, self-similar means the traffic has similar statistical properties at a range of time scales: milliseconds, second, minutes, and even hours. In other words, network traffic exhibits correlation across many time scales. LRD is characterizes by a slowly decaying autocorrelation function (i.e., it decays less than exponentially fast).

These observations of self-similarity in network traffic apply to both data traffic and to video traffic. Leland and his colleagues [191] analyzed an extensive set of Ethernet LAN (Local Area Network) traffic. The result indicated that Ethernet LAN traffic is long-range dependent. A paper by Paxson [193] shows that WAN (Wide Area Network) traffic cannot be modeled by Poisson processes and instead need long-range dependent models. Also measurement based on video traffic shows that VBR video traffic possesses self-similar characteristics [10].

An important feature of video traffic at the packet level that has a significant impact on performance is traffic correlation. Specially, (bursty) traffic patterns generated by VBR compressed video and audio tend to exhibit certain degrees of correlation between arrivals, and how long-range dependence in time (self-similar traffic) [19, 22].

As the network traffic is expected to carry more and more video streams, the correct characterization of this type of sources is increasing its importance. The MPEG family of video coding standards achieves high compression ratios by exploiting the reduction of both spatial correlation in intra-frame coding, using spatial transforms, and reduction of temporal correlation in intra-frame coding by means of motion compensation. This produces a high variability in the offered load as Intra frames usually need from 2 to 5 times the number of bits necessary for inter frame coded frame (P and B frames in MPEG terminology). Video distribution is furthermore to be seen as an aggregate of video streams coming out of a single server for multicasting over network and a high quality of service (QoS) must be

maintained for such services as video on demand since the user expecting to receive the same quality signal he is used to receive from broadcaster or conventional cable.

1.2 Problem Formulation

Modeling the sources traffic is as important as modeling the network which carries the traffic source. Thus, it is important to carefully characterize any traffic under study to ensure that the models used do lead to useful network performance results. Measurement-based traffic characterization has come to acquire a great deal of importance in networks. This is particularly so when dealing with relatively new sources such as video, imaging, and multimedia traffic. Traffic characterization is not only important when designing buffers for multiplexers, for example, but also in studying admission, access, and network control. In all these areas and others related to network performance management, the main objective is to ensure all traffic types receive the appropriate QoS. One can then use these models to study traffic control into, and across, the network.

Traditional Markovian traffic models [135] have played a significant role in the design and engineering of networks. In particular, Poisson arrival [116, 129] and exponential holding time statistics have served as earlier models in carrying out both the engineering and performance evaluation of networks, because they are mathematically tractable. However, it has become increasingly clear that these models are not adequate for carrying out the design and evaluation of modern networks. The integration of packetized voice, video and imaging, and file transfer data traffic, each with its own multiobjective QoS, requires the development of improved traffic models, in order to carry out accurate design and performance evaluation.

In the current research, the underlying assumption in existing traffic models is that of self-similarity. In very simple terms, self-similarity means the object appears the same regardless of the time scale at which it is viewed. One of the implications of the self-similarity finding for traffic modeling is that it suggests an appealing alternative to the popular belief that since actual network traffic is extremely complex in nature, only complicated and highly parameterized models are likely to result in an accurate approximation of reality. By accepting the selfsimilarity hypothesis, the principle of parsimony can be applied and results in simple models that exhibit the same features as the actual network traffic.

1.3 Objectives

Due to the growing complexity of modern telecommunication networks, simulation has become the only feasible paradigm for their performance evaluation. In order to study the performance either by means of analysis or simulation, there is a need for video traffic models. Statistical video traffic models are required for generating synthetic video streams for network performance studies. With synthetic video streams, performance study can be carried out without requiring the actual traces. Furthermore, a video traffic model can generate many realizations which represent "structurally similar", but not identical synthetic streams. Moreover, with video traffic models there is a more controllability of video traffic characteristics e.g., on the autocorrelation of frame sizes and on the mean frame sizes.

Motivated by the above discussion, the objectives of the thesis are:

- To evaluate three video source traffic generators in terms of their statistical characteristics and to compare the output of these models with the empirical traces to validate the effectiveness of the models (Hurst parameter, frequency histogram and probability density function PDF). The Hosking's model, the random midpoint displacement model and the chaotic model are the three video traffic generators that will be evaluated in this thesis.
- To evaluate the quality of the synthetic video traces generated using the random midpoint displacement method and chaotic-based method. The quality of a video synthetic trace is measured by how well the results of simulations using the synthetic trace as input agree with those of simulations using the actual video trace.

1.4 Scope of Study

In this thesis we mostly concentrate on analytical modeling and simulation, based on measured network traffic. This project is broken into four phases; data collection and representation; data analysis, network traffic modeling and models validation. Figure 1.1 depicts the proposed modular methodology that use bottom up design to simplify the system.

Figure 1.1 Research methodology system architecture

Understanding the problem is gained through literature review. Chaos theory and the probability theory of self-similarity and long-range dependence are discussed. Traditional modeling approaches are also surveyed. The tools of system implementation such as C, and MATLAB have been used. The scope and objective of the study is then defined to solve the critical part of the research problem. Detailed system architecture is shown in Figure 1.2.

Figure 1.2 Detailed methodology system architecture

1.5 Importance of the Study

The knowledge of the characteristics of the traffic flowing in the network plays one of the most important roles in the design of communication/computer networks. It enables us:

- 1. To simulate, analyze, and predict the behavior of the networks under different conditions and to take appropriate measures in case of undesirable problem.
- 2. To optimize the performance of the network, to guarantee a specific quality of services to user.
- 3. To avoid congestion in network components and links resulting from variation of the rate flow of information.

1.6 Original Research Contributions

There is still a considerable debate about how to model the VBR video traffic and about its impact on network performance. The objective of this thesis is to evaluate three self-similar video traffic models, Hosking-based model, RMD-based model and chaotic maps and compare their output with the empirical traces to validate their effectiveness. The following is the list of main contributions of this thesis to the field of the modeling of self-similar traffic for simulation.

- A comparative study is conducted to determine the minimal length of a sequence used as a sample for estimating the Hurst parameter using the H-based estimators. The estimators considered include the wavelet-based H estimator, R/S statistic analysis, variance-time analysis, absolute-based analysis and Periodogram-based estimator
- Comparative analysis and evaluation of estimators of self-similarity parameter H. Their properties were assessed on the basis of estimates and

other statistical tests to statistically prove which of the estimators should be recommended in practice.

- We analytically investigate the effect and implication of non-stationary in the LRD estimators, namely the R/S statistic analysis and variance-time analysis.
- Evaluate and compare the operational properties of the random midpoint RMD self-similar generator and the chaotic map one. The statistical accuracy and time required to produce long sequence are studied experimentally. The evaluation of the generators concentrated on two aspects: (i) how accurately self-similar process can be generated (assuming a given mean, variance and self-similarity parameter), and (ii) how quickly the generators can generate long self-similar sequence.
- We present a detailed statistical analysis of three video traffic models namely, Hosking-based model, RMD-based model and chaotic model in terms of how well synthetically generated traces match the characteristics of the empirical traces.
- To justify the validation of our models, we valuate the quality of the synthetic video traces generated using the random midpoint displacement method and chaotic-based method. The quality of a video synthetic trace is measured by how well the results of simulations using the synthetic trace as input agree with those of simulations using the actual video trace.

1.7 Organization of this Thesis

This thesis is organized into six chapters. In this chapter, the problem formulation and objectives of this research thesis are clearly defined. Firstly, a prelude of self-similar traffic modeling in network is presented. This is followed by a brief discussion of the research problem formulation. Subsequently, the thesis objectives are stated. The scope of work and the importance of this study are defined. The main contributions of this thesis to the field of the modeling of self-similar traffic for simulation are stated, and at the end of the chapter the thesis organization is outlined.

In Chapter Two, the first part of this chapter mainly covers a literature review of network traffic modeling. This part contains an extensive literature review of current traffic modeling approaches for video traffic, reviews the recent measurements studies, and motivates the application of self-similar to describe and analyze the traffic flow in networks. The second of the chapter presents a detailed survey of self-similar generators proposed for generating a self-similar sequence. Two approaches were proposed to deal with self-similar properties of packet traffic; (1) stochastic models related to self-similar processes and (2) deterministic models using nonlinear chaotic maps. Note that the motivation for both approaches is the desire for a relatively simple description of the complex packet traffic generation process. Three different modeling techniques are examined in more detail. The first one is based on exactly self-similar stochastic fractional Brownian motion process called Hosking method. The second approach based on approximation self-similar stochastic fractional Brownian motion process called random midpoint displacement, and the final method is based on deterministic chaotic maps.

Chapter Three gives the mathematical background of self-similar stochastic process. First, the mathematical definitions for the notion of self-similarity, long-range dependence, and some mathematical concepts associated with chaos which are relevant to our study are given. The second part of this chapter summarizes the properties of self-similar process. Finally, the third part to gives an overview of the statistical method used for testing and estimating the degree of self-similarity. Four different graphical statistical tests are discussed, the so-called wavelet estimator, R/S statistic, the variance-time plot, the absolute method, and an analysis based on Periodogram.

In Chapter Four, the first part of this chapter exhaustively evaluates the most commonly used methods for estimating the self-similarity Parameter H. The RMDbased algorithm is used to generate self-similar sequences. Values of estimated H were used to statistically prove which of the Hurst parameter estimators is more accurate than the other. In the second part the implications of some typical nonstationary effects, which can be observed in measured network traffic, were investigated in R/S-based H estimator and variance-time H estimator. Mathematical analysis of the Fixed Point Intermittency map and operational properties comparison of the Random Midpoint Displacement generator and chaotic generator are presented in the third part of the chapter. Finally, the third part presents statistical analysis of MPEG4 video traces encoding over 9 sequences of 60 minutes length each since they are used as a benchmark sequences to validate our synthetic traffic generators.

In Chapter Five, the first part of this chapter detailed statistical analysis of two empirical MPEG video traces, as well as an assessment of the three video traffic models in terms of how well synthetically generated video traces match the characteristics of empirical video traces. The second part of the chapter presented how simulation supports model selection processes. This part described the experimental methodology for simulation evaluation of two video traffic generators, chaotic-based and RMD-based models, and presented their simulation results.

The final chapter summarizes the research findings and suggests the direction of the future work. In particular, summary of the main contributions achieved and the research limitation that suggests the direction for future work are stated.

REFERENCES

- Min Dai and Dmitri Loguinov (2005). Analysis and Modeling of MPEG-4 and H.264 Multi-Layer Video Traffic. *IEEE INFCOM 2005*. March 13-17. Miami, FL, USA.
- Hayder Radha, Min Dai and Dmitri Loguinov (2004). A hybrid Wavelet
 Framework for Modeling VBR Video Traffic. *IEEE ICIP*. October 24-27.
 Singapore.
- Girish V. Varatkar and Radu Marculescu (2004). On-Chip Traffic Modeling and Synthesis for MPEG-2 Video Applications. *IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS.* 12 (1). January 2004.
- 4 Min Dai and Dmitri Loguinov (2004). Wavelet and Time-Domain Modeling of Multi-Layer VBR Video Traffic. *Proceedings of the 14th International Packet Video Workshop (PV2004)*. December 13-14. University of California, Irvine, CA, USA.
- 5 F. Fitzek, M. Zorzi, P. Seeling and M. Reisslein (2004). Video and Audio Trace Files of Pre-encoded Video Content for Network Performance Measurements. *Proceedings of IEEE Consumer Communications and Networking Conference (CCNC2004)*, January 5-8, Las Vegas, Nevada, USA, 245-250.

- 6 Aninda Bhattacharya and Alexnader G. Parlos (2003). Prediction of MPEG-Coded Video Source Traffic Using Recurrent Neural Networks. *IEEE TRANSACTION ON SIGNAL PROCESSING*. (15) 8: 2177-2190.
- 7 Nirwan Ansari, Hai Liu and Yun Q. Shi (2002). On Modeling MPEG Video Traffics. *IEEE TRANSACTIONS ON BROADCASTING*. (48) 4: 337-347.
- 8 Dogu Arifler and Brian L. Evans (2002). Modeling the Self-Similar Behavior of Packetized MPEG-4 Video Using Wavelet-Based Methods. *Proceedings of* 2003 IEEE Conference on Image Processing. September 22-25, Rochester, NY, USA, 848-851.
- 9 Agnieszka Chodorek (2002). A fast and Efficient Model of an MPEG-4 Video Traffic Based on Phase Space Linearised Decomposition. 14th EUROPEAN SIMULATION SYMPOSIUM AND EXHIBITION, October 23-26, Dresden, Germany.
- 10 J. C. Lopez, C. L. Garcia, A. S. Gonzalez, M. F. Veiga and R. R. Rubio (2000). On the Use of Self-Similar Processes in Network Simulation. ACM Transactions on Modeling and Computer Simulation. (10) 2: 125-151.
- Martino Barenco. *Packet Traffic in Computer Networks*. Ph.D. Thesis. Queen Mary, University of London, 2002.
- 12 H. Elbiaze, O. Cherkaoui, B. McGibbon and M. Blais (2005). A Structure-Preserving Method of Sampling Self-Similar Traffic. 13th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOT2005). 161-168.
- 13 Mohammed El Houssain Ech-Cherif El Kettani. A Novel Approach to the Estimation of the Long-Range Dependence Parameter. Ph.D. Thesis. University of Wisconsin. 2002.

- Erramilli A., Sigh R. P. and Parag Pruthi (1995). An Application of Deterministic Chaotic Maps to Model Packet Traffic. *Queueing Systems*. 20: 171-206.
- M. Çaglar, and O. Ozkasap (2004). Multicast Transport Protocol Analysis:
 Self-Similar Sources. *Lecture Notes in Computer Science*, (3042), 1294-1299
- 16 M. Çaglar (2004) A Long-Range Dependent Workload Model for Packet Data Traffic. *Mathematics of Operations Research*, (29), 92-105
- X. Bai, A. Shami, *Modeling Self-Similar Traffic for Network Simulation* Technical report. Electrical and Computer Engineering Department. University of Western Ontario. April 2005.
- 18 Guanghui He, Yuan Gao, Jennifer C. Hou and Kihong Park (2004). Exploitation of Self-Similarity of Network Traffic in TCP Congestion Control. *Computer Networks*, 45 (6).
- 19 Bruce Chen. Simulation and Analysis of Quality of Service Parameters in IP Networks with Video Traffic. Bachelor Degree Thesis. Simon Fraser University. 2002.
- Kai-Lung Hua. On Generator of Network Arrivals with Self-Similar Nature.
 Master Thesis. National Chiao Tung University. 2002.
- 21 Jin-Yuan Chen. *Self-Similarity of A Reverse-Filter Traffic Generator*. Master Thesis. National Chiao Tung University. 2003.
- Wang, Hsu-Hui. Self-Similarity On Network Systems With Finite Resources.Master Thesis. National Chiao Tung University. 2003.
- 23 Mathieu Robin. *Modelling and Planning the Migration for Next Generation Networks*. Master Thesis. University of Dublin. 2002.

- 24 Michal Vyoral (2005). Kolmogorov equation and large-time behaviour for fractional Brownian motion driven linear SDE's. *Applications of Mathematics*. 50 (1): 63-81.
- 25 I. Norros (1995). On the use of Fractional Brownian Motion in the Theory of Connectionless Networks. *IEEE Journal on Selected Areas in Communications*. 13 (6): 953-962.
- 26 I. Norros (1994). A Storage Model with Self-Similar Input. *Queueing Systems*. 16:387-396.
- 27 Erramilli, A., Narayan, O. and Willinger, W. Experimental Queuing Analysis with Long-Range Dependent Packet Traffic. *IEEE ACM Transactions on Networking*. 4 (2): 209-223.
- 28 Willinger, W., Taqqu, M., Leland, W. and Wilson, D. (1995). Self-Similarity in High-Speed Packet Traffic: Analysis and Modeling of Ethernet Traffic Measurements. *Statistical Science* 10 (1): 67-85.
- J. Beran (1992). Statistical Methods for Data with Long-Range Dependence.
 Statistical Science 7 (4): 404-427.
- 30 Park, K., G. T. Kim and M. Crovella (1996). The Relationship Between File Sizes, Transport, and Self-Similar Network Traffic. *Proceedings of IEEE International Conference on Network Protocols*. 171-180.
- Microsoft Press (1997). *Microsoft Press Computer Dictionary*. 3rd Edition.
 Redmond, Washington. Microsoft Press.
- 32 Park K., Kim J. and Crovella M. (1997). On the Effect of Traffic Self-Similarity on Network Performance. *Proceedings of SPIE International Conference on Performance and Control of Network Systems*. 296-310.

- 33 Neidhardt A. and Wang J. (1998). The Concept of Relevant Time Scales and its Application to Queueing Analysis of Self-Similar Traffic (or Is Hurst Naughty or Nice?). *Performance Evaluation Review, Proceedings of ACM SIGMERTICS*'98: 222-232.Madison, Wisconsin, USA.
- Addie R., Zukerman M. and Neame T. (1995). Fractal Traffic: Measurements, Modeling and Performance Evaluation. Proceedings of *IEEE INFOCOM*'95. 977-984. Boston Massachusetts, USA.
- 35 C. Huang, M. Devetsikiots, I. Lambadaris, and A. R. Kaye (1999). Fast simulation of queues with long-range dependence traffic. *Communication Statistic-Stochastic Models*. 15: 429-460.
- 36 Crovella M. and Bestavros A. (1999). Self-Similarity in World Wide Web Traffic: Evidence and Possible Causes. *IEEE ACM Transactions on Networking*. 5 (6): 835-846.
- 37 Beran J., Sherman R. Taqqu M. and Willinger W. (1995). Long-Range Dependence in Variable-Bit-Rate Video Traffic. *IEEE Transactions on Communications*. 43 (2): 1566-1579.
- 38 Ji C., Ma S. and Tian, X. (1999). Approximation Capability of Independent Wavelet Models to Heterogeneous Network Traffic. *Proceedings IEEE INFOCOM*'99. 170-177. NY, USA.
- 39 Ma, S. and Ji, C. (1998). Modeling Video Traffic in the Wavelet Domain. Proceedings of IEEE INFOCOM'98. 210-208. San Francisco, Florida, USA.
- 40 Ma, S. and Ji, C. (1998). Modeling Video Traffic Using Wavelet. *Proceedings of IEEE International Conference on Communications* (ICC'98). S16_4.1-S16_4.4. Atlanta, GA, USA.

- Garrett, M., and Willinger, W. (1994). Analysis, Modeling and Generation of Self-Similar VBR Video Traffic. *Computer Communication Review*, *Proceedings of ACM SIGCOMM'94*. 24 (4): 269-280.
- N. Likhanov, B. Tsybakov and N. D. Georganas (1995). Analysis on an ATM Buffer with Self-Similar ('fractal") Input Traffic. *Proceedings of IEEE INFOCOM*'95.
- 43 W. Willinger (1995). Traffic Modeling for High-Speed Networks: Theory versus Practice. In: F. P. Kelly and R. J. Williams, editors, *Stochastic Networks*. Springer-Verlag: 395-409.
- W. Willinger, M. S. Taqqu, R. Sherman and D. V. Wilson (1997). Self-Similarity through High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level. *IEEE/ACM Transactions on Networking*. 5 (1): 71-86
- W. Willinger, V. Paxon and M. S. Taqqu (1998). Self-Similarity and Heavy Tails: Structural Modeling of Network Traffic. In: R. J. Adler, R. E. Feldman and M. S. Taqqu, editors, *A Practical Guide to Heavy Tails: Statistical Techniques and Applications*. 26-53
- 46 O. J. Boxma (1996). Fluid Queues and Regular valuation. *Performance Evaluation*. 27/28: 699-712.
- 47 G. L. Choudhury and W. Whitt (1997). Long-Tail Buffer content distributions in Broadband Networks. *Performance Evaluation*. 30: 177-190.
- 48 N. Lokhanov and R. R. Mazumdar (1999). Cell Loss Asymptotics in Buffers fed with a large number of Independent Stationary Sources. *Journal of Applied Probability*. 36: 86-96.

- 49 H.-P. Schwefel and L. Lipsky (1999). Performance Results for Analytic Models of Traffic in Telecommunication Systems, based on Multiple ON-OFF Sources with Self-Similar Behavior. *Proceedings of ITC-16*. 55-65.
- 50 Heinz-Otto Peitgen and Dietmar Saupe et al. (1988). The Science of Fractal Images. New York. Springer-Verlag.
- 51 H.-P. Schwefel and L. Lipsky (2001). Impact of Aggregated Self-Similar ON/OFF Traffic on Delay Stationary Queuing Models (extended version). *Performance Evaluation*. 43: 203-221.
- M. Greiner, M. Jobmann and L. Lipsky (1999). The Importance fo Power-Tail Distributions for Modeling Queuing Systems. *Operational Research*. 47 (2): 313-326.
- 53 Gribble, S., Manku, G., Roselli, D., Brewer, E., Gibson, T. and Miller, E. (1998). Self-Similarity in File Systems. *Performance Evaluation Review*, *Proceedings of ACM SIGMERTICS*'98. 141-150. Madison, Wisconsin.
- 54 P. R. Jelenkovic and A. A. Lazar (1997). Multiplexing ON-OFF Sources with Subexponential on Periods: Part II. *Proceedings of ITC-15*. 965-974.
- 55 P. R. Jelenkovic and A. A. Lazar (1999). Asymptotics Results for Multiplexing Subexponential ON-OFF Processes. Advanced in Applied Probability. 31: 394-421.
- 56 P. Jelenkovic and P. Momcilovic (2001). Capacity Regions for Network Multiplexers with Heavy-Tailed Fluid ON-OFF Sources. *Proceedings of IEEE INFCOM*'2001.
- 57 P. Jelenkovic and P. Momcilovic (2002). Finite Buffer Queue with Generalized Processor Sharing and Heavy-Tailed Input Processes. *Computer Networks*. 40 (3): 433-443.

- 58 M. M. Krunz and A. M. Makowski (1998). A Source Model for VBR Video Traffic Based on M/G/∞ Input Processes: A comparison between Markovian and LRD Models. *IEEE Journal on Selected Areas in Communications*. 16 (5): 733-748.
- 59 M. Krunz nd A. M. Makowski (1998). A source Model for Video Traffic Based on M/G/∞ Input Processes. *Proceedings of IEEE INFOCOM'98*.
- 60 L. Liu, N. Ansari and Y. Q. Shi (1999). MPEG Video Traffic Models: Sequentially Modulated Self-Similar Processes. *In Broadband Communications: Convergence of Network Technologies*. 63-72.
- 61 F. Brichet, J. W. Roberts, A. Simonian and D. Veitch (1996). Heavy traffic analysis of a storage model with long-range dependent on/off sources. *Queueing Systems*. 23: 197-216.
- 62 N. G. Duffield and N. O'Connell (1995). Larger deviation and overflow probabilities for the general single-server queue, with applications. *Mathematical Processings of the Cambridge Philosophical Society*. 188: 363-374.
- 63 N. Rananand (1998). Upper-bound for tail probability of a queue with longindependent input. *Proceedings of ICC'98*.
- 64 O. Narayan (1998). Exact asymptotic queue length distribution for fractional Brownian motion. *Advances in Performance Analysis*. 1 (1): 39-63.
- L. Massoulie and A. Simonian (1999). Large buffer asymptotics for the queue with fractional Brownian motion input. *Journal of Applied Probability*. 36: 894-906.
- 66 R Addie, P. Mannersalo and I. Norros (1999). Performance formulae for queues with Gaussian input. *Proceedings of ITC-16*. 1169-1178.

- 67 R. Addie, P. Mannersalo and I. Norros (2000). Most probable paths and performance formulae for buffers with Gaussian input traffic. *European Transactions on telecommunications*. 13 (3): 183-196.
- 68 P. Mannersalo and I. Norros (2001). Approximate formulae for Gaussian priority queues. *Proceedings of ITC-17*.
- P. Mannersalo and I. Norros (2002). A most probable path approach to queueing systems with general Gaussian input. *Computer Networks*. 40 (3): 399-412.
- J. Choe and N. B. Shroff (2000). Use of the Supermum Distribution of Gaussian Processes in Queueing Analysis with Long-Range Dependence and Self-Similarity. *Communications in Statistics-Stochastic Models*. 16 (2): 209-231.
- 71 N. L. S. Fonseca, G. S. Mayor and C. A. V. Neto (2000). On the equivalent Bandwidth of Self-Similar Sources. ACM Transactions on Modeling and Computer Simulation. 10 (2): 104-124.
- 72 W. Lau, A. Erramilli, J. L. Wang and W. Willinger (1995). Self-Similar Traffic Generation: The Random Midpoint Displacement Algorithm and its Properties. *Proceedings of ICC'95*.
- I. Norros, P. Mannersalo, and J. L. Wang (1999). Simulation of Fractional Brownian motion with Conditionalized Random Midpoint Displacement. *Advances in Performance Analysis*. 2 (1): 77-101.
- 74 S. Ledesma and D. Liu (2000). Synthesis of Fractional Gaussian noise using Linear Approximation for Generating Self-Similar Network Traffic. Computer Communication Review. 30 (2): 4-17.

- 75 V. Paxon (1997). Fast Approximate Synthesis of Fractional Gaussian noise for Generating Self-Similar Network Traffic. *Computer Communication Review*. 27: 5-18.
- 76 T. Taralp, M. Devetsikiotis and I. Lambadaris (1998). In Search for better Statistics for Traffic Characterization. Proceedings of CAMAD'98: The 7th IEEE Workshop on Computer-Aided Modeling, Analysis and Design of Communication Links and Networks. 103-110.
- H.-D. J. Jeong, D. McNickle and K. Pawlikowski (1999). Fast Self-Similar Teletraffic Generation based on FGN and Wavelets. *Proceedings of ICON'99.* 75-82.
- 78 G. Samorodnitsky and M. S. Taqqu (1994). *Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance*. Chapman & Hall.
- 79 T. Mikosch, S. Resnick, H. Rootzen and A. Stegeman (2002). Is Network Traffic Approximated by Stable Levy motion or Fractional Brownian motion? *Annals of Applied probability*. 12 (10: 23-68.
- 80 A. Karairidis and D. Hatzinakos (1998). A Non-Gaussian Self-Similar Process for Broadband Heavy Traffic Modeling. *Proceedings of GLOBECOM*'98. 3513-2318.
- A. Karairidis and D. Hatzinakos (2001). Network Heavy modeling using α Stable Self-Similar Processes. *IEEE Transactions on Communications*. 49 (7): 1203-1214.
- A. Karairidis and D. Hatzinakos (1999). Resource Allocation issues for Long-Tailed LRD Internet WAN Traffic. *Proceedings of GLOBECOM'99*. 1495-1499.

- R. G. Garroppo, S. Giordano, S. Porcarelli and G. Procissi (2000). Testing α Stable Process in Modeling Broadband Teletraffic. *Proceedings of ICC 2000*.
 1615-1619.
- 84 F. C. Haramantzis, D. Hatzzinkos and I. Katzela (2001). Tail Probabilities for the multiplexing of Fractional α-Stable Broadband Traffic. *Proceedings of ICCC 2001*.
- N. Laskin, I. Lambadaris, F. C. Haramantzis and M. Devetsikiotis (2002).
 Fractional Levy motion and its Application to Network Traffic Modeling. *Computer Networks*. 40 (3): 363-375.
- J. R. M. Hosking (1981). Fractional Differencing. *Biometrika*. 68 (1): 165-176.
- 87 Erramilli A., Singh R. P. and Pruthi P. (1994). Chaotic Maps as Models of Packet Traffic. *ITC-14*. 329-338.
- 88 Erramilli A., Pruthi P. and Willinger W. (1994). Modelling Packet Traffic with Chaotic Maps. Technical Report. ISRN KTH/IT/R-94/18-SE. Stockholm-Kista, Sweden.
- 89 A. Adas and A. Mukherjee (1995). On Resource Management and QoS Guarantees for Long-Range Dependent Traffic. *Proceedings of IEEE INFOCOM'95*.
- 90 F. Xue, J. Liu, Y. Shu and O. Yang (1999). Traffic Modeling Based on FARIMA Models. Proceedings IEEE 1999 Canadian Conference on Electrical and Computer Engineering.
- 91 F. Xue (1999). Modeling and Predicting Long-Range Dependent Traffic with FARIMA Process. Proceedings of 1999 International Symposium on Communications.

- M. S. taqqu and V. Teverovsky (1998). On Estimating the Intensity of Long-Range Dependence in finite and infinite Variance-Time Series. In: R. J. Adler, R. E. Feldman and M. S. Taqqu, editors, *A Practical Guide to Heavy Tails: Statistical Techniques and Applications*. 177-217.
- 93 Sheng Ma (1998). Network Traffic Modeling and Analysis. Ph.D. Thesis. Electrical, Computer and Systems Engineering. Rensselaer Polytechnic Institute.
- 94 P. Flandrin (1992). Wavelet Analysis and Synthesis of fractional Brownian motion. *IEEE Transactions on Information Theory*. 38(2): 910-917.
- M. Stoksik, R. Lane and D. Nguyen (1994). Accurate Synthesis of fractional Brownian motion using Wavelets. *Electronic Letters*. 30 (5): 383-384.
- V. J. Ribeiro, M. S. Crouse, R. H. Riedi and R. G. Baraniuk (1999). A Multifractal Wavelet Model with Application to Network Traffic. *IEEE Transactions on Information Theory*. 45 (3): 992-1018.
- 97 M. S. Taqqu, V. Teverovsky and W. Willinger (1997). Is Network Traffic Self-Similar or Multifractal? *Fractals*. 5 (1): 63-73.
- 98 A. Fledmann, A. C. Gilbert, W. Willinger and T. G. Kurtz (1998). The Changing Nature of Network Traffic: Scaling Phenomena. *Computer Communications Review*. 28 (2): 5-29.
- 99 A. Erramilli, O. Narayan, A. Neidhardt and I. Saniee (2000). Performance Impacts of Multi-Scaling in Wide Area TCP/IP Traffic. *Proceedings of IEEE INFOCOM 2000.*
- 100 J. Levy Vehel and R. Riedi. Fractional Brownian motion and Data Traffic Modeling: The other end of the Spectrum. In: J. Levy Vehel, E. Lutton and C. Tricot, editors, *Fractals in Engineering*. Springer-Verlag. 1997.

- 101 J. Gao and I. Rubin (1999). Multifractal Analysis and Modeling of Long-Range Dependent Traffic. *Proceedings of ICC'99*.
- 102 J. Gao and I. Rubin (2000). Superposition of Multiplicative Multifractal Traffic Streams. *Proceedings of ICC 2000*.
- Roger Clery (1994). The Man and the Measure. The 2nd International Symposium on Telecommunications History. August 5-6. Brooklyn, Massachusetts, USA.
- Billingsley, P (1995). *Probability and Measure*. 3rd Edition. New York. John
 Wiley & Sons
- 105 Billingsley, P. (1979). *Probability and Measure*. New York. John Wiley & Sons.
- Billingsley, P. (1968). Convergence of Probability Measure. New York. John Wiley & Sons.
- 107 L. S. Leibovitch and T. I. Toth (1990). Ion Channel Kinetics Random or Dterministic Process? *Biophysical Journal*. 57.
- 108 Attila Vidacs. Self-Similar Traffic Modeling Techniques in ATM Networks.
 Master's Thesis. Technical University of Budapest, 1996.
- 109 Will E. Leland, Murad S. Taqqu and Walter Willinger (1994). On the Self-Similar Nature of Ethernet Traffic (extended version). *IEEE/ACM transactions on Networking*, 2(1), 1-15.
- 110 Paul Embrechts and Makoto Maejima (2000). An Introduction to the theory of Self similar stochastic processes. *International Journal of Physics*. 14: 1399-1420.

- 111 J. R. M. Hosking (1984). Modeling persistence in hydrological time series using fractional differencing. *Water Resources Research*. 20: 1898-1908.
- Basu, S., Mukherjee, A. and Klivansky, S. (1996). Time Series Models for Internet Traffic. *Proceedings IEEE INFCOM'96*. 2. San Francisco, CA. 611-620.
- 113 Li, S. Q. (1984). Performance Analysis of a DTDMA Local Area Network for Voice and Data. *Computer Networks*. 8 (2): 81-91.
- 114 Sampath, A. and Holtzman, J. M. (1997). Access Control of Data in Integrated Voice/Data CDMA System: Benefits and Tradeoffs. *IEEE Journal* on Selected Areas in Communications. 15 (8): 81-91.
- 115 B. He, M. Xie, T. N. Goh and K. L. Tsui. Control Charts Based on Generalized Poisson Model for Count Data. Technical Report. National University of Singapore. 2002.
- M. H. Rossiter (1988). The Switched Poisson Process and the SPP/G/1 Queue. Proceeding of International Teletraffic Congress (ICT'12). Turin, Italy.
- V. Ramaswami, M. Rumsewicz, W. Willinger and T. Eliazov (1991).
 Comaprison of Some Traffic Models for ATM Performance Studies.
 Proceeding of International Teletraffic Congress (ITC'13). Copenhagen.
- 118 M. Lee and D. Ahn (1995). Cell Loss Analysis and Design Tradeoffs of Nonblocking ATM Switches with Nonuniform Traffic. *IEEE/ACM Transactions on Networking*. 3 (2): 199-210.
- R. Addie and M. Zukerman (1992). A Gaussian Traffic Model for B-ISDN Statistical Multiplexer. *Proceeding IEEE GLOBCOM'92*. 3 (44): 1513-1517. Orlando, Florida.

- 120 R. Addie and M. Frater (1993). Loss Forecasting by Means of Gaussian Models of Video traffic. Proceedings δth Proceedings, 8th Australian Teletraffic Research Seminar (ARTS'93). Melbourne, Australia.
- 121 R. Addie and M. Zukerman (1993). A Gaussian Characterization of Correlated ATM Multiplexed Traffic and Related Queueing Studies," *Proceedings of IEEE ICC '93*. 3: 1404-1408. Geneva, Switzerland.
- 122 K. Fendick and W. Whitt (1989). Measurements and Approximations to Describe the Offered Traffic and Predict the Average Workload in a Single-Server Queue. *Proceedings IEEE*. 77: 171-194.
- H. Heffes and D. Lucantoni (1986). A Markov Modulated Characterization of Packetized Voice and Data Traffic and Related Statistical Multiplexer Performance. *IEEE Journal on Selected Areas in Communications*.4: 856-868.
- 124 D. Heyman, A. Tabatabai and T. Lakshman (1991). Statistical Analysis and Simulation Study of Video Teleconference Traffic in ATM Networks. *Proceedings GLOBCOM'91.*21-27.
- 125 S. Li, S. Chong and C. Hwang (1995). Link capacity Allocation and Network Control by Filtered Input Rate in High-Speed Networks. *IEEE/ACM Transactions on Networking*. 3 (1): 10-25.
- 126 M. Livny, B. Melamed and A. Tsiolis (1993). The Impact of Autocorrelation on Queuing Systems. *Management Science*. 39 (3): 322-339.
- Meier-Hellstern K. S. and Fischer W. (1992). The Markov-modulated Poisson process (MMPP) cookbook, *Performance Evaluation*. 18 (2): 149-171.

- Gusella R. (1991). Characterizing the Variability of Arrival Processes with Indexes of Dispersion. *IEEE Journal of Selected Areas in Communications*. 9 (2): 203-211.
- 129 Rossiter M. H., A. (1987). A Switched Poisson Model for Data Traffic. Australian Telecommunication Research. 21 (1): 53-57.
- Okuda T., Akimaru H. and Sakai M. (1990). A Simplified Performance Evaluation for Packetized Voice Systems. *Transactions of the IEICE*. E73 (6).
- 131 Meier-Hellstern K. (1987). A fitting algorithm for Markov-modulated Poisson processes having two arrival rates. *European Journal of Operational Research.* 29 (3): 370-377.
- 132 Arvidsson A. and Harris R. (1993). Analysis of the Accuracy of Bursty Traffic Models. Proceedings First International Conference on Telecommunication System Modeling and Analysis. 206-211. Nashville, Tennessee, USA.
- Arvidsson A. and Lind C. (1996). Using Markovian Models to replicate Real ATM traffics. *Performance Modeling and Evaluation of ATM Networks*. 2.
 England. Chapman & Hall.
- 134 C. Herrmann (1993). Analysis of discrete-time SMP/D/1 finite buffer queue with application in ATM. *Proceedings of INFOCOM'93*. 160-167
- 135 O. Rose (1997). Discrete-time analysis of finite buffer with VBR MPEG video traffic input. *Proceeding of ITC*'15. 413-422.
- E.-J. Ang and J. Barria (2000). The Markov modulated regulated Brownian motion: A second-order fluid flow model of a finite buffer. *Queuing Systems*. 35: 263-287.

- 137 N. B. Shroff and M. Schwartz (1998). Improved loss calculations at an ATM multiplexer. *IEEE/ACM Transactions on Networking*. 6 (4): 411-421.
- 138 Raj Jain (1986). Packet Trains-Measurements and a New Model for Computer Network Traffic. *IEEE Journal on Selected Areas in Communications*. 4 (6): 986-995.
- M. F. Neuts (1992). Models based on the Markovian arrival process. *IEICE Transactions on Communications*. E-75B: 1255-1265.
- 140 S. H. Kang, Y. H. Kim, D. K. Sung and B. D. Choi (2002). An Application of Markovian arrival process (MAP) to modeling superposed ATM cell streams. *IEEE Transactions on Communications*. 50 (4): 633-642.
- C. Blondia (1993). A discrete-time batch Markovian arrival process as B-ISDN traffic model. *Belgian Journal of Operational Research, Statistics and Computer Science*. 32 (3, 4): 3-23.
- K. S. Meier-Hellstern, P. E. Wirth, Y. Yan and D. A. Hoeflin (1991). Traffic models for ISDN data users: Office automation application. *Proc. ITC-13*: 167-172 Copenhagen, Denmark.
- 143 Kavitha Chandra and Charles Thompson (1994). A source model for ISDN packet data traffic. Proceedings of the 28th Annual Conference on Information Science and Systems. 1028-1034. Princeton University.
- B. Magaris, D. Anastassiou, P. Sen, G. Karlsson and J. D. Robbins (1988).
 Performance models of statistical multiplexing in packet video communications. *IEEE Transactions on Communications*. 36 (7): 834-844.
- R. G. Addie and M. Zukerman (1994). Performance evaluation of a singleserver autoregressive queue. *Australian Telecommunications Review*. 28 (1): 25-32.

- B. Maglaris *et al* (1988). Performance Models of Statistical Multiplexing in Packet Video Communications. *IEEE Transactions on Communications*. 36.
- 147 R. Grunenfelder et al (1991). Characterization of Video Codecs as Autoregressive Moving Average Processes and Related Queuing System Performance. *IEEE JSAC*. 9. 284-293.
- M. Hayes (1996). Statistical Digital Signal Processing and Modeling. John Wiley.
- 149 Abdelnaser Adas (1997). Traffic Models in Broadband Networks. *IEEE Communications magazine*. 82-89.
- 150 D. Lee, B. Melamed, A. Reibman and B. Sengupta (1991). Analysis of video multiplexer using TES as modeling methodology. *Proceedings of IEEE GLOBCOM'91*. 16-19.
- 151 B. Melamed and B. Sengupta (1992). TES modeling of video traffic. *IEICE transactions on communications*. E75-B (12): 1292-1300.
- 152 B. Melamed and D. Pendarakis (1994). TES-based model for compressed Star Wars video. Proceedings of Communications Theory Mini-Conference, IEEE GLOBCOM'94. San Francisco, USA.
- 153 D. Geist and B. Melamed (1992). TEStool: an environment for visual interactive modeling of autocorrelated traffic. *Proceeding of IEEE International Conference on Communications*. 1285-1289.
- 154 B. Melamed, D. Raychaudhuri, B. Sengupta and J. Zdepski (1994). TESbased video source modeling for performance evaluation of integrated networks. *IEEE Transactions on Communications*. 42 (10).

- 155 M. Ismail, I. Lambadaris, M. Devetsikiotis and A. Kaye (1995). Modeling prioritized MPEG video using TES and frame spreading strategy for transmission in ATM networks. *Proceeding of INFOCOM'95*. Boston
- 156 V. Ramaswami (1988). Traffic Performance Modeling for Packet Communication: Whence, Where and Whither? Keynote Address, *Proceeding of Australian Teletraffic Seminar*.
- 157 Lu, W. ((2000). Compact Multidimensional Broadband Wireless: The Convergence of Wireless Mobile and Access. *IEEE Communications Magazine*. 38 (11): 119-123.
- Rayes, A. and Sage, K. (2000). Integrated Management Architecture for IP-Based Networks. *IEEE Communications Magazine*. 38 (4): 48-53.
- Sahinoglu, Z. and Tekinay, S. (1999). On Multimedia Networks: Self-Similar Traffic and Network Performance. *IEEE Communications Magazine*. 37 (1); 48-52.
- 160 D. R. Cox. (1984). Long-Range Dependence: A Review. In: Statistics: H. A. David and H. T. David, editors. An Appraisal. Proceedings of 50th Anniversary Conference Iowa State Statistical Laboratory. The Iowa State University Press. 55-74.
- 161 J. Korevaar. (2002). A Century of Complex Tauberian Theory. *Bulletin of the American Mathematical Society*. 39 (4): 475-531.
- 162 D. Heath, S. Resnick and G. Samorodnitsky (1998). Heavy-Tails and Long-Range Dependence in On/OFF Processes and Associated Fluid Models. *Mathematics of Operational Research*. 23 (1): 145-164.
- 163 R. G. Garroppo, S. Giordano and M. Pagano (1998). Queueing Impact of Heavy-Tailed OFF Periods Distribution in Cell Switching Networks. *Proceedings of 11th ITC Specialist Seminar*. 221-227.

- 164 Mandelbrot, B. and Ness J. V. (1968). Fractional Brownian Motions, Fractional Noise and Applications. *SIAM Review*. 10 (4): 422-437.
- Mandelbrot, B. and Wallis, J. (1969). Computer Experiments with Fractional Gaussian Noises. *Water Resources Research*. 5 (1): 228-267.
- 166 Beran, J. Statistics for Long-Memory Processes. New York. Chapman & Hall. 1994.
- 167 Thomas Karagiannis, Mart Molle and Michalis Faloutsos (2004). Long-Range Dependence: Ten Years of Internet Traffic Modeling. *IEEE Internet Computing*, 08 (5): 57-64.
- 168 Marwan Krunz (2001). On the Limitations of the Variance-Time Test for Inference of Long-Range Dependence. *Proceedings of IEEE INFOCOM* 2001. 1254-1260.
- 169 J. W. Lamperti (1986). Semi-Stabel Stochastic Processes. *Transaction of the American Mathematical Society*. 104: 62-78.
- N. G. Duffield, J. T. Lewis, N. O'Connell, R. Russel and F. Toomey (1994).
 Statistical Issues Raised by the Bellcore Data. 11th Teletraffic Symposium.
 Cambridge. 23-25.
- 171 A. Erramilli, P. Pruthi and W. Willinger (1995). Self-Similarity in High-Speed Network Traffic Measurements: Fact of Artifact? *Proceedings of the* 12th Nordic Teletraffic Seminar NTS12, Espoo, Finland. August 22-24.
- M. Grasse, M. R. Frater and J. F. Arnold. *Implications of Non-Stationary of MPEG2 Video Traffic*. Technical Report. COST 257 TD (97) 01. 1997
- 173 V. Tsybakov and N. D. Georganas (1997). On Self-Similar Traffic in ATM Queue: Definitions, Overflow Probability Bound and Cell Delay Distributions. *IEEE/ACM Transactions on Networking*. 5 (3): 397-409.

- M. Toughan and D Veitch (1999). Measuring Long-Range Dependence under Changing Traffic Conditions. *Proceedings INFOCOM'99*. New York. 1513-1521.
- 175 Fernado Pereira and Touradi Ebrahimi. *The MPEG-4 Book*. NJ. Prentica Hall.2002.
- 176 Lain E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding for Next-Generation Multimedia. Wiley. 2003.
- 177 Frank R. Giordano, M. D. Weir and W. P. Fox. *A First Course in Mathematical Modeling*. Thomson Brooks/Cool. 2003.
- 178 James Sandefur. *Elementary Mathematical Modeling: A Dynamic Approach*. Thomson Brook/Cool. 2003.
- 179 A. A. Samarskii and A. P. Mikhailov. *Principles of Mathematical Modeling: Ideas, Methods, Examples.* Taylor & Francis. 2002.
- 180 Fowler H. J. and Leland W. E. (1991). Local Area Network Traffic Characteristics, with Implications for Broadband Network Congestion Management. *IEEE Journal on Selected Areas in Communication*. 9 (7): 1139-1149.
- 181 Manneville P. (1980). Intermittency, self-similarity and 1/f spectrum in dissipative dynamical systems. *Le Journal de Physique*. 41 (11): 1235-1243.
- 182 Ben-Mizrachi A., Procaccia I., Rosenberg N., Schmidt A. and Schuster H. G. (1994). Real and apparent divergencies in low-frequency spectra of nonlinear dynamical systems. *Physical Review*. 31 (3): 1830-1840.
- 183 Gaudenta Sakalauskiene (2003). The Hurst Phenomenon in Hydrology. Environmental Research, Engineering and Management. 3 (26): 16-20.

- 184 Hara, S. and Taketsugu, J. *Another Cause of Long-Range Time Dependence in Cellular Network Traffic.* Netherlands. Kluwer Academic Publisher. 2002.
- 185 Abry, P. and Veitch, D. (1998). Wavelet Analysis of Long-Range Dependent Traffic. *IEEE Transactions of Information Theory*. 44 (1): 2-15.
- H. F. Zhang, Y. T. Shu, and Oliver Yang (1997). Estimation of Hurst Parameter by Variance-Time Plots. *IEEE Pacific Rim Conference*. August 20-22. 2: 883-886.
- M. S. Taqqu, V. Teverovsky and W. Willinger (1995). Estimators for Long-Range Dependence: An Empirical Study. *Fractals*. 3: 785-798.
- 188 Sam Manthorpe. The Danger of Data Traffic Models. Technical Report, COST 242, TD (92) 25. Presented at Stockholm Management Committee Meeting, May 10-11. 1995.
- J. Beran (1986). Statistical methods for Data with Long-Range Dependence.
 Statistical Science. 7 (4): 404-427.
- 190 P. Whittle (1953). Estimation and Information in Stationary Time Series. *Arkiv for Matematic*. 2: 423-434.
- 191 Will E. Leland and Daniel V. Wilson (1991). High-Time Resolution Measurement and Analysis of LAN Traffic: Implications for LAN Interconnection. *Proceedings of IEEE INFOCOM'91*, Bal Harbour, FL, USA, 1360-1366.
- 192 Will E. Leland, Murad S. Taqqu and Walter Willinger (1993). On the Self-Similar Nature of Ethernet Traffic. *Proceedings of ACM Sigcomm'93*, San Francisco, CA, USA, 183-193.
- 193 V. Paxon and S. Floyd (1995). Wide Area Network: The Failure of Poisson Modeling. *IEEE/ACM transactions on Networking*, 3(3), 226-244.